バートランド・ラッセル『私の哲学の発展』第8章 「数学原理ーその数学的側面」 n.19


 もうびとつ別の例は(別の例をあげると)構造の概念を明瞭にするのに役立つかも知れない。次の仮定をしてみよう。(即ち)あなた(or我々)が,ある言語において構文の規則(rules of syntax 構文法、統語法)を知っているが、論理学に属する語以外の語はまったく知らず、そうして、その言語で書かれた一文を示されたとしてみよう(仮定しよう)。どういった相異なる意味をこの一文は持つ可能性があるだろうか? また、それらの意味の全てに共通な性質は何だろうか?(what are the different meanings that it may have? and what have they all in common? /たとえば、スワヒリ語で書かれた一文があり、単語の意味はいっさいわからないが、どの単語が主語、述語、あるいは補語であるかだけはわかっている、という例を考えればよいであろうか?) 個々の語(単語)に対し、その一文を有意義にする任意の意味、即ち論理的に無意味でない任意の意味を、あなたは与えてもよいだろう。そのようにして(thus)、その一文には、非常に多くの、おそらく無限の、可能な意味が存在することになるであろうが、しかし、それらの意味は全て同じ論理的構造をもっているであろう。もしその言語が一定の論理的条件を満たすなら、それに応じてその言語のいくつかの文を真にする諸事実の間にも、構造の同一性が存在するであろう。  関係算術(relation-arithmetic )は、興味ある一般化としてだけでなく、構造を扱うために必要な記号法の技術を提供するゆえに重要である、と私は考える。数学的論理学(数理論理学)に親しみのない人たちは、「構造」が何を意味するかを理解することに非常に困難を見出しており、そのために、彼らは経験的世界を理解する企てにおいて道を見失いがちである。この理由で - たとえ他に理由はまったくなくても -、関係算術の理論が多くの点でいままで人の注意を(これまで)引いてこなかったことを、私は残念に思う(しだいである)。  関係算術の理論が全く注意されなかったわけではなかったことを、私は、ベルリンのフンボルト大学のユルゲン・シュミット教授から1956年に受取った手紙によって知って驚いた。その理論のいくつかの部分が、彼が伝えるところによれば、無限数のアルファベットを持つ言語において、語のアルファベット順を定めるという、いわゆる「辞書編纂問題」において使われていた(とのことである)。

Chapter 8 Principia Mathematical Aspects, n.19
Another illustration may help to elucidate the notion of structure. Let us suppose that in a certain language you know the rules of syntax but none of the words except those belonging to logic, and suppose you are offered a sentence in this language: what are the different meanings that it may have? and what have they all in common? You may give to the separate words any meaning that makes the whole sentence significant — i.e. not logically nonsense. There will thus be a very great many, probably an infinite number, of possible meanings for your sentence, but all of them will have the same logical structure. If your language fulfils certain logical requirements, there will be a corresponding identity of structure among the facts that make some of your sentences true. I think relation-arithmetic important, not only as an interesting generalization, but because it supplies a symbolic technique required for dealing with structure. It has seemed to me that those who are not familiar with mathematical logic find great difficulty in understanding what is meant by ‘structure’, and, owing to this difficulty, are apt to go astray in attempting to understand the empirical world. For this reason, if for no other, I am sorry that the theory of relation- arithmetic has been largely unnoticed. That it was not wholly unnoticed I learnt, to my surprise, through a letter, received in 1956, from Professor Jürgen Schmidt of the Humboldt University in Berlin. Some parts of the theory, as he informed me, were used in what is called the ‘lexicographical problem’, which consists in defining alphabetical order among words in a language of which the alphabet infinite.
 Source: My Philosophical Development, chap. 8:1959.  
 More info.:https://russell-j.com/beginner/BR_MPD_08-190.HTM

コメントを残す

メールアドレスが公開されることはありません。 * が付いている欄は必須項目です