(本館) (トップ) (分館)

Portal Site for Russellian in Japan

ラッセル『私の哲学の発展』(松下彰良・対訳)

My Philosophical Development, 1959

Back(前ページ) 第10章_イントロ累積索引 Next(次 ページ) Content s(総目次)
 

第10章 「ヴィトゲンシュタインの衝撃」 n.21

 彼(ラムジー)は同様の見方を命題関数の概念の変更に適用した。ホワイトヘッドと私は、命題関数を、不定の変項を含み、その変項にある値が与えられるやいなや普通の文となるような一つの式(expression 表現)である、と考えた。(つまり)たとえば「x は人間である」は、x に何か固有名を代入するやいなや、普通の文となる。命題関数のこの見方においては、命題関数は、その変項に関する点を別とすれば、内包(的規定)(intentions)によって構成されている。「人間である(is human)」という句(words 連語)は、多くの通常の文の共通部分をなすものであり、命題関数はそういった文の束をつくる一つの方法である(「a number of 多数の」を野田氏は「或る数の」と訳出/ここではいっぱい文をつくれることを言っている)。関数の値は、変項のいくつかの値に応じて、その句の固有の性質によって、確定的なものになる。(これに対し)ラムジーは命題関数を全く別の仕方で考えた。彼は、命題関数を、変項の(いろいろな)値に(いろいろな)命題を相互に関連付けるための手段にすぎないものだ、と考えた。彼は言う、「前に定義した述語関数(a predicative function)の概念 −それを我々は一定の目的のためになお必要とするであろう− に加えて、我々は命題関数の新たな概念を外延的に(in extention)定義するあるいはむしろ説明する。というのは、我々の体系ではそれを定義できないものと取り扱わなければならないからである。そういった一つの個物(individual)の関数は、命題と個物(individuals)との間の外延的な一対多の関係のいかなるものからも生じる(results from)。即ち、(それは)各々の(全ての)個物に(それぞれ)固有の命題を関係づけ(associate 結びつけ) −それが実行可能であれ実行不可能であれ(どちらであっても)− 個物が関数の変項の値であり、命題が関数の値であるようにすることによって生じる一つの相関関係(a correlation)である。

 このようにして
φ(ソクラテス)は「アン女王は死んだ」でありうるし、
φ(プラトン)は「アインシュタインは偉大な人である」でありうる。

φx'(注:xの上に山形の印あり)は、φxという命題をxという個物に恣意的に結びつけることにすぎない」。(ラムジー『数学の基礎』p.52)

 命題関数」という概念のこの新たな説明によって、ラムジーは「還元公理」なしですませることができるし、また、「 x = y 」を、『プリンキピア・マテマティカ(数学原理)』における定義と記号上区別できない形(であるもの)によって −ただし今や新たな解釈を与えて− 定義することができる。このようにして、彼は、『プリンキピア・マテマティカ』の記号的部分をほとんど変更することなく保持することに成功している。この記号的部分について彼は言う、「形式上はそれはほとんど変更されていない。しかしその意味は随分変えられている。このように解釈を変えながら形式を保存することにおいて、私(=ラムジー)は一連の驚くべき定義によって、数学を懐疑論者の手から救い出し、数学の命題に厳密な証明(demonstration)を与えたあの数学的論理学者達の偉大な学風に従っているのである。このようにしてのみ、我々は数学をブラウワーやワイルらの過激派の脅威から守ることができるのである。」(『数学の基礎』、p.56)

Chapter 10 The Impact of Wittgenstein, n.21

He applied a similar point of view in changing the conception of a propositional function. Whitehead and I thought of a propositional function as an expression containing an undetermined variable and becoming an ordinary sentence as soon as a value is assigned to the variable: ‘x is human', for example, becomes an ordinary sentence as soon as we substitute a proper name for 'x'. In this view of propositional functions, they are constituted by intensions except as regards the variable or variables. The words 'is human' form part of a number of ordinary sentences, and the propositional function is a method of making a bundle of such sentences. The values of the function are determinate for the several values of the variable in virtue of the intrinsic character of the phrase. Ramsey conceived of propositional functions quite differently. He thought of them as merely a means of correlating propositions with values of variables. He says, 'in addition to the previously defined concept of a predicative function, which we shall still require for certain purposes, we define, or rather explain, for in our system it must be taken as indefinable, the new concept of a propositional function in extension. Such a function of one individual results from any one-many relation in extension between propositions and individuals; that is to say, a correlation, practicable or impracticable, which to every individual associates a unique proposition, the individual being the argument to the function, the proposition its value.

Thus
φ (Socrates) may be Queen Anne is dead,
φ (Plato) may be Einstein is a great man;

φx being simply an arbitrary association of propositions φx to individuals x" [Foundations of Mathematics, page 52].

By using this new explanation of the concept 'propositional function', he is able to dispense with the axiom of reducibility and is also able to define 'x = y' in what is symbolically indistinguishable from the definition in the Principia, though it now has a new interpretation. In this way he succeeds in preserving the symbolic parts of Principia Mathematica almost unchanged. He says concerning this symbolic part, 'Formally it is almost unaltered; but its meaning has been considerably changed. And in thus preserving the form while modifying the interpretation, I am following the great school of mathematical logicians who, in virtue of a series of startling definitions, have saved mathematics from the sceptics, and provided a rigid demonstration of its propositions. Only so can we preserve it from the Bolshevik menace of Brouwer and Weyl' ( Foundations of Mathematics, page 56).
(掲載日:2020.02.13/更新日: )