一連番号(出版年)/書誌事項 | 一連番号(出版年)/書誌事項 |
69-3(1993) The Collected Papers of B. Russell, v.3: Toward the "Principles of Mathematics", 1900-1902, ed. by Gregory H. Moore. 1.London & New York; Routledge, 1993. lviii, 895 p. illus. 24 cm. ISBN: 0-04-920095-X (Set) [Contents] Illustrations. Abbreviations. Introduction. Acknowledgements. Chronology. Part I: Drafts of The Principles of Mathematics. General headnote. 1.The Principles of Mathematics, draft of 1899-1900. Part i: Number Part ii: Whole and part Part iii. Quantity Part iv. Order Part v. Continuity and infinity Part vi. Space and Time Part vii. Matter and motion 2.Part i of the Principles, Draft of 1901 3.Plan for Book i: The Variable [1902] Part II: Absolute space and time. General headnote. 4.Is position in time absolute or relative? [1900] 5.The notion of order and absolute position in space and time [1901] 6.Is position in time and space absolute or relative? [1901] Part III: After Peano: Foundations of mathematocs. General Headnote. 7.On the notion of order [1901] 8.The logic of relations with some applications to the theory of series [1901] 9.Recent Italian work on the foundations of mathematics [1901] 10.Recent work on the principles of mathematics [1901] 11.Lecture ii: Logic of propositions [1901] 12.General theory of well-ordered series [1902] 13.On finite and infinite cardinal numbers [1902] 14.Continuous series [1902] 15.On likeness [1902] Part IV: Geometry. 16.Note [1902] 17.The teaching of Euclid [1902] 18.Geometry, Non-Euclidean [1902] Part V: General Philosophy. General headnote. 19.Review of Schultz, Psychologie der Axiome [1900] 20.Leibniz's doctrine of substance as deduced from his logic [1900] 21.Review of Boutroux, L'Imagination et les mathematiques selon Descartes [1901] 22.Review of Hastie, Kant's Cosmogony [1901] 23.Do psychical states have position in space? [1902] Appendices: i.Identity and diversity. i-1.Do differences differ? i-2.On Identity. i-3.Logic founded on diversity. i-4.On a logic founded on diversity. i-5.Logic founded on diversity. ii.An assault on Russell's paradox. iii.Notes on implication and classes. iii-1.Note on all and formal implication. iii-2.The variable. iii-3.Note on class. iii-4.Analytic theory of aCb. iii-5.Classes, implication, and formal implication. iv.French text of paper 5. v.Draft and French text of paper 8. v-1.On the logic of relations with applications to arithmetic and the theory of series. v-2.Sur la logique des relations avec des applications a la theorie des series. vi.Outline of paper 9. vii.Draft and French text of paper 12. vii-1.On the general theory of well-ordered series. vii-2.Theorie generale des series bien ordonnees. viii.French text of paper 16. ix.Geometry. ix-1.On geometry and dimensions. ix-2.Geometry in the 1901-02 lectures. x.Logic and methodology as a subject for the B.Sc. degree. xi.General theory of functions. Missing and unprinted texts. Annotation. Textual Notes. Bibliographical index. Symbols index. General index. ●所蔵館は、vol.1参照 |
69-4(1990) The Collected Papers of B. Russell, v.4: Foundations of Logic, 1903-05, ed. by Alasdair Urquhart, with the assistance of Albert C. Lewis. 1.London & New York; Routledge, 1994. lii,743 p. illus. 24 cm. ISBN: 0-04-920095-X (Set) [Contents] Part I: Early foundational work. 1.Classes [1903] a.Draft of *12 to *16. b.*12.5 etc. c.General theory of classes. 2.Relations [1903] 3.Functions [1903] a.Functions and objects. b.Primitive propositions for functions. c.No greatest cardinal. d.Functional complexes. e.Complexes and functions. Part II: THE zig-zag theory. 4.Outlines of symbolic logic [1904] 5.On functions, classes and relations [1904] 6.On functions [1904] 7.Fundamental Notions [1904] 8.On the functionality of denoting complexes [1904] 9.On the nature of functions [1904] 10.On classes and relations [1905] Part III: The theory of denoting. 11.On the meaning and denotation of phrases [1903] 12.Dependent variables and denotation [1903] 13.Points about denoting [1903] 14.On meaning and denotation [1903] 15.On fundamentals [1905] 16.On Denoting [1905] Part IV: Philosophy of logic and mathematics. 17.Meinong's theory of complexes and assumptions [1904] 18. The axiom of infinity [1904] 19.Non-Euclidean geometry [1904] 20.The existential import of propositions [1905] 21.The nature of truth [1905] 22.Necessity and possibility [1905] 23.On the relation of mathematics to symbolic logic [1905] Part V: Philosophical reviews. 24.Recent work on the philosophy of Leibniz [1903] 25.Review of Couturat, Opuscules et fragments inedits de Leibniz [1904] 26.Review of Geissler, Die Grundsatze und das Wesen des Unendlichen in der Mathematik und Philosophie [1903] 27.Principia Ethica [1903] 28.The Meaning of Good [1904] 29.Review of Delaporte, Essai philosophique sur les geometries non-euclidiennes [1904] 30.Review of Hinton, The Fourth Dimension [1904] 31.Review of Petronievics, Principien der Metaphysik [1905] 32.Science and Hypothesis [1905] 33.Review of Poincare, Science and Hypothesis [1905] 34.Review of Meinong and Others, Untersuchungen zur Gegenstandstheorie und Psychologie [1905] Appendices: i.Frege on the contradiction. ii.Comments on definitions of philosophical terms. iii.Sur la relation des mathematiques a la logistique. Annotation. Textual notes. Bibliographical index. General index ●所蔵館は、vol.1を参照
|
---|