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INTRODUCTION TO THE
SECOND EDITION

HE Principles of Mathematics ” was published in 1903, and most of

it was written in 1900. In the subsequent years the subjects of

which it treats have been widely discussed, and the technique of
mathematical logic has been greatly improved ; while some new problems
have arisen, some old ones have been solved, and others, though they
remain in a controversial condition, have taken on completely new forms.
In these circumstances, it seemed useless to attempt to amend this or
that, in the book, which no longer expresses my present views. Such
interest as the book now possesses is historical, and consists in the fact
that it represents a certain stage in the development of its subject. I
have therefore altered nothing, but shall endeavour, in this Introduction,
to say in what respects I adhere to the opinions which it expresses, and
in what other respects subsequent research seems to me to have shown
them to be erroneous.

The fundamental thesis of the following pages, that mathematics and
logic are identical, is one which I have never since seen any reason to
modify. This thesis was, at first, unpopular, because logic is traditionally
associated with philosophy and Aristotle, so that mathematicians felt it
to be none of their business, and those who considered themselves
logicians resented being asked to master a new and rather difficult
mathematical technique. But such feelings would have had no lasting
influence if they had been unable to find support in more serious reasons
for doubt. These reasons are, broadly speaking, of two opposite kinds :
first, that there are certain unsolved difficulties in mathematical logic,
which make it appear less certain than mathematics is believed to be ;
and secondly that, if the logical basis of mathematics is accepted, it
justifies, or tends to justify, much work, such as that of Georg Cantor,
which is viewed with suspicion by many mathematicians on account of
the unsolved paradoxes which it shares with logic. These two opposite
lines of criticism are represented by the formalists, led by Hilbert, and
the intuitionists, led by Brouwer.

The formalist interpretation of mathematics is by no means new, but
for our purposes we may ignore its older forms. As presented by Hilbert,
for example in the sphere of number, it consists in leaving the integers
undefined, but asserting concerning them such axioms as shall make
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possible the deduction of the usual arithmetical propositions. That is
to say, we do not assign any meaning to our symbols 0,1,2, .. eyltcept
that they are to have certain properties enumerated in the axioms.
These symbols are, therefore, to be regarded as variables. The later
integers may be defined when 0 is given, but 0 is to be merely something
having the assigned characteristics. Accordingly the symbols 0,1, 2, . ..
do not represent one definite series, but any progression whatever. The
formalists have forgotten that numbers are needed, not only for doing
sums, but for counting. Such propositions as *“ There were 12 Apostles ”
or “London has 6,000,000 inhabitants > cannot be interpreted in their
system. For the symbol “ 0 ”” may be taken to mean any finite integer,
without thereby making any of Hilbert’s axioms false ; and thus every
number-symbol becomes infinitely ambiguous. The formalists are like
a watchmaker who is so absorbed in making his watches look pretty that
he has forgotten their purpose of telling the time, and has therefore
omitted to insert any works.

There is another difficulty in the formalist position, and that is as
regards existence. Hilbert assumes that if a set of axioms does not lead
to a contradiction, there must be some set of objects which satisfies the
axioms ; accordingly, in place of seeking to establish existence theorems
by producing an instance, he devotes himself to methods of proving the
self-consistency of his axioms. For him, ‘‘ existence,”” as usually under-
stood, is an unnecessarily metaphysical concept, which should be replaced
by the precise concept of non-contradiction. Here, again, he has
forgotten that arithmetic has practical uses. There is no limit to the
systems of non-contradictory axiomis that might be invented. Our
reasons for being specially interested in the axioms that lead to ordinary
arithmetic lie outside arithmetic, and have to do with the application of
number to empirical material. This application itself forms no part of
either logic or arithmetic ; but a theory which makes it a priori impossible
cannot be right. The logical definition of numbers makes their con-
nection with the actual world of countable objects intelligible ; the
formalist theory does not.

The intuitionist theory, represented first by Brouwer and later by
Weyl, is a more scrious matter. There is a philosophy associated with
the theory, which, for our purposes, we may ignore ; it is only its bearing
on logic and mathematics that concerns us. The essential point here is
the refusal to regard a proposition as either true or false unless some
method exists of deciding the alternative. Brouwer denies the law of
excluded middle where no such method exists. This destroys, for
example, the proof that there are more real numbers than rational
numbers, and that, in the series of real numbers, every progression has a
limit. Consequently large parts of analysis, which for centuries have
been thought well established, are rendered doubtful.

Associated with this theory is the doctrine called finitism, which
calls in question propositions involving infinite collections or infinite
series, on the ground that such propositions are unverifiable. This
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doctrine is an aspect of thorough-going empiricism, and must, if taken
seriously, have consequencee even more destructive than those that are
recognized by its advocates. Men, for example, though they form a
finite class, are, practically and empirically, just as impossible to enumerate
as if their number were infinite. 1f the finitist’s principle is admitted,
we must not make any general statement—such as © All men are mortal ”
—about a collection defined by its properties, not by actual mention of
all its members. This would make a clean sweep of all science and of all
mathematics, not only of the parts which the intuitionists consider
questionable. Disastrous consequences, however, cannot be regarded as
proving that a doctrine is false ; and the finitist doctrine, if it is to be
disproved, can only be met by a complete theory of knowledge. I do
not believe it to be true, but I think no short and easy refutation of it is
possible.

An excellent and very full discussion of the question whether mathe-
matics and logic are identical will be found in Vol. III. of Jérgensen’s
*“ Treatise of Formal Logic,” pp. 57-200, where the reader will find a
dispassionate examination of the arguments that have been adduced
against this thesis, with a conclusion which is, broadly speaking, the
same as mine, namely that, while quite new grounds have been given in
recent years for refusing to reduce mathematics to logic, none of these
grounds is in any degree conclusive.

This brings me to the definition of mathematics which forms the first
sentence of the * Principles.” In this definition various changes are
necessary. To begin with, the form “p implies ¢ is only one of many
logical forms that mathematical propositions may take. I was originally
led to emphasise this form by the consideration of Geometry. It was clear
that Euclidean and non-Euclidean systems alike must be included in pure
mathematics, and must not be regarded as mutually inconsistent ; we
must, therefore, only assert that the axioms imply the propositions, not
that the axioms are true and therefore the propositions are true. Such
instances led me to lay undue stress on implication, which is only one
among truth-functions, and no more important than the others. Next:
when it is said that “p and ¢ are propositions containing one or more
variables,” it would, of course, be more correct to say that they are
propositional functions; what is said, however, may be excused on the
ground that propositional functions had not yet been defined, and were not
yet familiar to logicians or mathematicians.

I come next to a more serious matter, namely the statement that
“neither p nor ¢ contains any constants except logical constants.” I
postpone, for the moment, the discussion as to what logical constants are.
Assuming this known, my present point is that the absence of non-logical
constants, though a necessary condition for the mathematical character of
a proposition, is not a sufficient condition. Of this, perhaps, the best
examples are statements concerning the number of things in the world.
Take, say: “There are at least three things in the world.” This is
equivalent to : “ Thereexist objects z, y, z, and properties ¢, ¥, %, such that
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z but not y has the property @,z but not z has the property y, and y but not z
has the property 7.” This statement can be enunciated in purely logical
terms, and it can be logically proved to be true of classes of classes of classes :
of these there must, in fact, be at least 4, even if the universe did not exist.
For in that case there would be one class, the null-class ; two classes of
classes, namely, the class of no classes and the class whose only member is the
null class ; and four classes of classes of classes, namely the one which is
null, the one whose only member is the null class of classes, the one whose
only member is the class whose only member is the null class, and the one
which is the sum of the two last. But in the lower types, that of individuals,
that of classes, and that of classes of classes, we cannot logically prove
that there are at least three members. From the very nature of logic,
something of this sort is to be expected ; for logic aims at independence
of empirical fact, and the existence of the universe is an empirical fact.
It is true that if the world did not exist, logic-books would not exist ; but
the existence of logic-books is not one of the premisses of logic, nor can it
be inferred from any proposition that has a right to be in a logic-book.

In practice, a great deal of mathematics is possible without assuming
the existence of anything. All the elementary arithmetic of finite integers
and rational fractions can be constructed ; but whatever involves infinite
classes of integers becomes impossible. This excludes real numbers and
the whole of analysis. To include them, we need the ““ axiom of infinity,”
which states that, if n is any finite number, there is at least one class having
n members. At the time when I wrote the “ Principles,” I supposed that
this could be proved, but by the time that Dr. Whitehead and I published
“ Principia Mathematica,” we had become convinced that the supposed
proof was fallacious.

The above argument depends upon the doctrine of types, which, although
it occurs in a crude form in Appendix B of the * Principles,”” had not yet
reached the stage of development at which it showed that the existence of
infinite classes cannot be demonstrated logically. What is said as to
existence-theorems in the last paragraph of the last chapter of the
*“ Principles ” (pp. 497-8) no longer appears to me to be valid: such
existence-theorems, with certain exceptions, are, I should now say, examples
of propositions which can be enunciated in logical terms, but can only be
proved or disproved by empirical evidencé.

Another example is the multiplicative axiom, or its equivalent,
Zermelo's axiom of selection. This asserts that, given a set of mutually
exclusive classes, none of which is null, there is at least one class consisting
of one representative from each class of the set. Whether this is true or
not, no one knows. It is easy to imagine universes in which it would be
true, and it is impossible to prove that there are possible universes in which
it would be false ; but it is also impossible (at least, so I believe) to prove
that there are no possible universes in which it would be false. I did not
become aware of the necessity for this axiom until a year after the
“ Principles ” wag published. This book contains, in consequence, certain
errors, for example the assertion, in §119 (p. 123), that the two definitions
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of infinity are equivalent, which can only be proved if the multiplicative
akiom is assumed.

Such examples—which might be multiplied indefinitely—show that a
proposition may satisfy the definition with which the ““ Principles * opens,
and yet may be incapable of logical or mathematical proof or disproof.
All mathematical propositions are included under the definition (with
certain minor emendations), but not all propositions that are included are
mathematical. In order that a proposition may belong to mathematics
it must have a further property: according to some it must be
“ tautological,” and according to Carnap it must be ‘ analytic.” Itis by
no means easy to get an exact definition of this characteristic ; moreover,
Carnap has shown that it is necessary to distinguish between ‘ analytic ”
and “demonstrable,” the latter being a somewhat narrower concept.
And the question whether a proposition is or is not * analytic,” or
‘ demonstrable ” depends upon the apparatus of premisses with which we
begin. Unless, therefore, we have some criterion as to admissible logical
premisses, the whole question as to what are logical propositions becomes
to a very considerable extent arbitrary. This is a very unsatisfactory
conclusion, and I do not accept it as final. But before anything more can
be said on this subject, it is necessary to discuss the question of logical
constants,”” which play an essential part in the definition of mathematics
in the first sentence of the * Principles.”

There are three questions in regard to logical constants : First, are there
such things ? Second, how are they defined ? Third, do they occur in
the propositions of logic ? Of these questions, the first and third are highly
ambiguous, but their various meanings can be made clearer by a little
discussion.

First : Are there logical constants ? There is one sense of this question
in which we can give a perfectly definite affirmative answer : in the linguistic
or symbolic expression of logical propositions, there are words or symbols
which play a constant part, ¢.e., make the same contribution to the sig-
nificance of propositions wherever they occur. Such are, for example,
“or,” “and,” “ not,” “if-then,” “ the null-class,” “0,” “1,”” “2,” . ..
The difficulty is that, when we analyse the propositions in the written
expression of which such symbols occur, we find that they have no
constituents corresponding to the expressions in question. In some cases
this is fairly obvious : not even the most ardent Platonist would suppose
that the perfect ““ or ” is laid up in heaven, and that the ““ or’s ” here on
earth are imperfect copies of the celestial archetype. But in the case of
numbers thisis far less obvious. The doctrines of Pythagoras, which began
with arithmetical mysticism, influenced all subsequent philosophy and
mathematics more profoundly than is generally realized. Numbers were
immutable and eternal, like the heavenly bodies; numbers were intelligible:
the science of numbers was the key to the universe. The last of these
beliefs has misled mathematicians and the Board of Education down
to the present day. Consequently, to say that numbers are symbols
which mean nothing appears as a horrible form of atheism. At the time



x Introduction

when I wrote the “ Principles,” I shared with Frege a belief in the Platonic
reality of numbers, which, in my imagination, peopled the timeless realm
of Being. It was a comforting faith, which I later abandoned with regret.
Something must now be said of the steps by which I was led to abandon it.

In Chapter IV of the “ Principles ” it is said that ‘‘ every word
occurring in a sentence must have some meaning ”’ ; and again “ Whatever
may be an object of thought, or may occur in any true or false proposition,
or can be counted as one, I call a term. ... A man, a moment, a number,
a class, a relation, a chimara, or anything else that can be mentioned,
is sure to be a term ; and to deny that such and such a thing is a term
must always be false.” This way of understanding language turned out
to be mistaken. That a word * must have some meaning ’—the word,
of course, being not gibberish, but one which has an intelligible use—
is not always true if taken as applying to the word in isolation. What is
true is that the word contributes to the meaning of the sentence in
which it occurs ; but that is a very different matter.

The first step in the process was the theory of descriptions. According
to this theory, in the proposition “ Scott is the author of Waverley,”
there is no constituent corresponding to “ the author of Waverley ™ :
the analysis of the proposition is, roughly : “ Scott wrote Waverley, and
whoever wrote Waverley was Scott ™ ; or, more accurately : “The pro-
positional function ‘x wrote Waverley is equivalent to x s Scott ’ is true
for all values of x.”” This theory swept away the contention—advanced,
for instance, by Meinong—that there must, in the realm of Being, be such
objects as the golden mountain and the round square, since we can talk
about them. ‘ The round square does not exist ” had always been a
difficult proposition ; for it was natural to ask “ What is it that does not
exist ¢~ and any possible answer had seemed to imply that, in some
sense, there is such an object as the round square, though this object has
the odd property of not existing. The theory of descriptions avoided
this and other difficulties.

The next step was the abolition of classes. This step was taken in
‘ Principia Mathematica,” where it is said : *“ The symbols for classes,
like those for descriptions, are, in our system, incomplete symbols ;
their uses are defined, but they themselves are not assumed to mean
anything at all. . .. Thus classes, so far as we introduce them, are merely
symbolic or linguistic conveniences, not genuine objects ”” (Vol. I, pp. 71-2).
Seeing that cardinal numbers had been defined as classes of classes, they
also became “ merely symbolic or linguistic conveniences.” Thus, for
example, the proposition ““ 14-1=2,” somewhat simplified, becomes the
following : “ Form the propositional function ‘a is not b, and whatever
x may be, x is a y is always equivalent to z is @ or z is b ’ ; form also the
propositional function * a is a v, and, whatever x may be, z is a v but 7
not @ is always equivalent to x is 6.7 Then, whatever v may be, the
assertion that ome of these propositional functions is not always false
(for different values of @ and b) is equivalent to the assertion that the other
isnot always false.” Here the numbers 1 and 2 have entirely disappeared.
and a similar analysis can be applied to any arithmetical proposition.
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Dr. Whitehead, at this stage, persuaded me to abandon points of
space, instants of time, and particles of matter, substituting for them
logical constructions composed of events. In the end, it seemed to
result that none of the raw material of the world has smooth logical
properties, but that whatever appears to have such properties is con-
structed artificially in order to have them. I do not mean that statements
apparently about points or instants or numbers, or any of the other
entities which Occam’s razor abolishes, are false, but only that they need
interpretation which shows that their linguistic form is misleading, and
that, when they are rightly analysed, the pseudo-entities in question are
found to be not mentioned in them.  Time consists of instants,” for
example, may or may not be a true statement, but in either case it
mentions neither time nor instants. It may, roughly, be interpreted
as follows : Given any event z, let us define as its “ contemporaries ”
those which end after it begins, but begin before it ends; and among
these let us define as *“ initial contemporaries ” of = those which are not
wholly later than any other contemporaries of . Then the statement
“time consists of instants ” is true if, given any event z, every event
which is wholly later than some contemporary of = is wholly later than
some initial contemporary of x. A similar process of interpretation is
necessary in regard to most, if not all, purely logical constants.

Thus the question whether logical constants occur in the propositions
of logic becomes more difficult than it seemed at first sight. It is, in
fact, a question to which, as things stand, no definite answer can be given,
because there is no exact definition of “ occurring in ”* a proposition.
But something can be said. In the first place, no proposition of logic
can mention any particular object. The statement * If Socrates is & man
and all men are mortal, then Socrates is mortal ”’ is not a proposition of
logic ; the logical proposition of which the above is a particular case is:
*“If = has the property of ¢, and whatever has the property ¢ has the
property v, then z has the property v, whatever z, ¢, » may be.”” The
word °‘ property,” which occurs here, disappears from the correct
symbolic statement of the proposition; but “if-then,” or something
serving the same purpose, remains. After the utmost efforts to reduce
the number of undefined elements in the logical calculus, we shall find
ourselves left with two (at least) which seem indispensable: one is
incompatibility ; the other is the truth of all values of a propositional
function. (By the “ incompatibility "’ of two propositions is meant that
they are not both true.) Neither of these looks very substantial. What
was said earlier about ‘¢ or >’ applies equally to incompatibility ; and it
would seem absurd to say that generality is a constituent of a general
proposition.

Logical constants, therefore, if we are to be able to say anything
definite about them, must be treated as part of the language, not as part of
what the language speaks about. In this way, logic becomes much more
linguistic than I believed it to be at the time when I wrote the
* Principles.” It will still be true that no constants except logical
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constants oceur in the verbal or symbolic expression of logical propositions,
but it will not be true that these logical constants are names of objects,
as “ Socrates ”’ is intended to be.

To define logic, or mathematics, is therefore by no means easy except
in relation to some given set of premisses. A logical premiss must have
certain characteristics which can be defined : it must have complete
generality, in the sense that it mentions no particular thing or quality ;
and it must be true in virtue of its form. Given a definite set of logical
premisses, we can define logic, in relation to them, as whatever they
enable us to demonstrate. But (1) it is hard to say what makes a
proposition true in virtue of its form ; (2) it is difficult to see any way of
proving that the system resulting from a given set of premisses is
complete, in the sense of embracing everything that we should wish
to include among logical propositions. As regards this second point, it
bas been customary to accept current logic and mathematics as a datum,
and seek the fewest premisses from which this datum can be reconstructed.
But when doubts arise—as they have arisen—concerning the validity of
certain parts of mathematics, this method leaves us in the lurch.

It seems clear that there must be some way of defining logic otherwise
than in relation to a particular logical language. The fundamental
characteristic of logic, obviously, is that which is indicated when we say
that logical propositions are true in virtue of their form. The question of
demonstrability cannot enter in, since every proposition which, in one
system, is deduced from the premisses, might, in another system, be
itself taken as a premiss. If the proposition is complicated, this is
inconvenient, but it cannot be impossible. All the propositions that
are demonstrable in any admissible logical system must share with the
premisses the property of being true in virtue of their form ; and all
propositions which are true in virtue of their form ought to be included in
any adequate logic. Some writers, for example Carnap in his ¢ Logical
Syntax of Language,” treat the whole problem as being more a matter of
liguistic choice than I can believe it to be. In the above-mentioned work,
Carnap has two logical languages, one of which admits the multiplicative
axiom and the axiom of infinity, while the other does not. I cannot
myself regard such a matter as one to be decided by our arbitrary choice.
It seems to me that these axioms either do, or do not, have the character-
istic of formal truth which characterizes logic, and that in the former
event every logic must include them, while in the latter every logic
must exclude them. I cenfess, however, that T am unable to give any
clear account of what is meant by saying that a proposition is “ true in
virtue of its form.”” But this phrase, inadequate as it is, points, I think,
to the problem which must be solved if an adequate definition of logic
is to be found.

I come finally to the question of the contradictions and the doctrine
of types. Henri Poincaré, who considered mathematical logic to be
no help in discovery, and therefore sterile, rejoiced in the contradictions :
“ La logistique n’est plus stérile; elle engendre la contradiction !
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All that mathematical logic did, however, was to make it evident that
contradictions follow from premisses previously accepted by all logicians,
however innocent of mathematics. Nor were the contradictions all new ;
some dated from Greek times.

In the * Principles,” only three contradictions are mentioned:
Burali Forti’s concerning the greatest ordinal, the contradiction con-
cerning the greatest cardinal, and mine concerning the classes that are
not members of themselves (pp. 323, 366, and 101). What is said as to
possible solutions may be ignored, except Appendix B, on the theory
of types; and this itself is only a rough sketch. The literature on the
contradictions is vast, and the subject is still controversial. The most
complete treatment of the subject known to me is to be found in Carnap’s
*“ Logical Syntax of Language” (Kegan Paul, 1937). What he says
on the subject seems to me either right or so difficult to refute that a
refutation could not possibly be attempted in a short space. I shall,
therefore, confine myself to a few general remarks.

At first sight, the contradictions seem to be of three sorts : those that
are mathematical, those that are logical, and those that may be suspected
of being due to some more or less trivial linguistic trick. Of the definitely
mathematical contradictions, those concerning the greatest ordinal and
the greatest cardinal may be taken as typical.

The first of these, Burali Forti’s, is as follows: Let us arrange all
ordinal numbers in order of magnitude ; then the last of these, which we
will call N, is the greatest of ordinals. But the number of all ordinals
from O up to N is N+1, which is greater than N. We cannot escape
by suggesting that the series of ordinal numbers has no last term ; for in
that case equally this series itself has an ordinal number greater than any
term of the series, i.e., greater than any ordinal number.

The second contradiction, that concerning the greatest cardinal, has
the merit of making peculiarly evident the need for some doctrine of
types. We know from elementary arithmetic that the number of
combinations of n things any number at a time is 2%, i.e., that a class
of n terms has 2" sub-classes. We can prove that this proposition
remains true when = is infinite. And Cantor proved that 2" is always
greater than n. Hence there can be no greatest cardinal. Yet one would
have supposed that the class containing everything would have the
greatest pnssible number of terms. Since, however, the number of
classes of things exceeds the number of things, clearly classes of things
are not things. (I will explain shortly what this statement can mean.)

Of the obviously logical contradictions, one is discussed in Chapter X ;
in the linguistic group, the most famous, that of the liar, was invented by
the Greeks. [t is as follows : Suppose a man says “ I am lying.” If he
is lying, his statement is true, and therefore he is not lying : if he is not
lying, then, when he says he is lying, he is lying. Thus either hypothesis
implies its contradictory.

The logical and mathematical contradictions, as might be expected,
are not reallv distinguishable : but the linguistic group, according to
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Ramsey*, can be solved by what may be called, in a broad sense, linguistic
considerations. They are distinguished from the logical group by the
fact that they introduce empirical notions, such as what somebody asserts
or means ; and since these notions are not logical, it is possible to find
solutions which depend upon other than logical considerations. This
renders possible a great simplification of the theory of types, which, as
it emerges from Ramsey’s discussion, ceases wholly to appear unplausible
or artificial or a mere ad hoc hypothesis designed to avoid the
contradictions.

The technical essence of the theory of types is merely this: Given
a propositional function “@x” of which all values are true, there are
expressions which it is not legitimate to substitute for “ z.”” For example:
All values of “if = is & man z is a mortal ”’ are true, and we can infer
““if Socrates is a man, Socrates is a mortal” ; but we cannot infer “‘if the
law of contradiction is a man, the law of contradiction is a mortal.”
The theory of types declares this latter set of words to be nonsense, and
gives rules as to permissible values of “x” in “ @z.” In the detail
there are difficulties and complications, but the general principle is
merely a more precise form of one that has always been recognized.
In the older conventional logic, it was customary to point out that such
a form of words as ‘ virtue is triangular ”” is neither true nor false, but
no attempt was made to arrive at a definite set of rules for deciding whether
a given series of words was or was not significant. This the theory of types
achieves. Thus, for example I stated above that ‘‘ classes of things are
not things.” This will mean : “ If ‘z is a member of the class a’ is a
proposition, and ‘ gz’ is a proposition, then ‘ ga’ is not a proposition,
but a meaningless collection of symbols.”

There are still many controversial questions in mathematical logic,
which, in the above pages, I have made no attempt to solve. I have
mentioned only those matters as to which, in my opinion, there has been
some fairly definite advance since the time when the * Principles ” was
-written. Broadly speaking, I still think this book is in the right where it
disagrees with what had been previously held, but where it agrees with
older theories it is apt to be wrong. The changes in philosophy which
seem to me to be called for are partly due to the technical advances of
mathematical logic in the intervening thirty-four years, which have
simplified the apparatus of primitive ideas and propositions, and have
swept away many apparent entities, such as classes, points, and instants.
Broadly, the result is an outlook which is less Platonic, or less realist in the
medizval sense of the word. How far it is possible to go in the direction
of nominalism remains, to my mind, an unsolved question, but one which,
whether completely soluble or not, can only be adequately investigated
by means of mathematical logic.

* Foundations of Mathematics, Kegan Paul, 1931, p.20 fi.



PREFACE.

THE present work has two main objects. One of these, the proof

that all pure mathematics deals exclusively with concepts definable
in terms of a very small number of fundamental logical concepts, and
that all its propositions are deducible from a very small number of
fundamental logical principles, is undertaken in Parts IL—VIL. of this
Volume, and will be established by strict symbolic reasoning in Volume 11,
The demonstration of this thesis has, if I am not mistaken, all the
certainty and precision of which mathematical demonstrations are capable.
As the thesis is very recent among mathematicians, and is almost
universally denied by philosophers, I have undertaken, in this volume,
to defend its various parts, as occasion arose, against such adverse
theories as appeared most widely held or most difficult to disprove.
I have also endeavoured to present, in language as untechnical as
possible, the more important stages in the deductions by which the
thesis is established.

The other object of this work, which occupies Part I, is the
explanation of the fundamental concepts which mathematics accepts
as indefinable. This is a purely philosophical task, and I cannot flatter
myself that I have done more than indicate a vast field of inquiry, and
give a sample of the methods by which the inquiry majy be conducted.
The discussion of indefinables—which forms the chief part of philosophical
logic—is the endeavour to see clearly, and to make others see clearly,
the entities concerned, in order that the mind may have that kind of
acquaintance with them which it has with redness or the taste of a
pineapple. Where, as in the present case, the indefinables are obtained
primarily as the necessary residue in a process of analysis, it is often
easier to know that there must be such entities than actually to perceive
them ; there is a process analogous to that which resulted in the discovery
of Neptune, with the difference that the final stage—the search with a
mental telescope for the entity which has been inferred—is often the
most difficult part of the undertaking. In the case of classes, I must
confess, I have failed to perceive any concept fulfilling the conditions
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requisite for the notion of class. And the contradiction discussed in
Chapter x. proves that something is amiss, but what this is I have
hitherto failed, to discover.

The second volume, in which I have had the great good fortune
to secure the collaboration of Mr A. N. Whitehead, will be addressed
exclusively to mathematicians; it will contain chains of deductions,
from the premisses of symbolic logic through Arithmetic, finite and
infinite, to Geometry, in an order similar to that adopted in the present
volume ; it will also contain various original developments, in which the
method of Professor Peano, as supplemented by the Logic of Relations,
has shown itself a powerful instrument of mathematical investigation.

The present volume, which may be regarded either as a commentary
upon, or as an introduction to, the second volume, is addressed in equal
measure to the philosopher and to the mathematician ; but some parts
will be more interesting to the one, others to the other. I should advise
mathematicians, unless they are specially interested in Symbolic Logic,
to begin with Part IV., and only refer to earlier parts as occasion arises.
The following portions are more specially philosophical: Part I
(omitting Chapter 1.); Part IL, Chapters x1., xv., xvr.,, xvir.; Part IIL;
Part IV., §207, Chapters xxvr, xxvir, xxxr; Part V., Chapters xui1,
xuir., xuit; Part VL, Chapters v, v, 1i.; Part VIL, Chapters vz,
L1V., LV., LVIL, LviiL; and the two Appendices, which belong to Part I.,
and should be read in connection with it. Professor Frege’s work, which
largely anticipates my own, was for the most part unknown to me when
the printing of the present work began; I had seen his Grundgesetze
der Arithmetik, but, owing to the great difficulty of his symbolism, I had
failed to grasp its importance or to understand its contents. The only
method, at so late a stage, of doing justice to his work, was to devote
an Appendix to it; and in some points the views contained in the
Appendix differ from those in Chapter vi., especially in §71, 73, 74
On questions discussed in these sections, I discovered errors after passing
the sheets for the press; these errors, of which the chief are the denial
of the null-class, and the identification of a term with the class whose
only member it is, are rectified in the Appendices. The subjects
treated are so difficult that I feel little confidence in my present
opinions, and regard any conclusions which may be advocated as
essentially hypotheses.

A few words as to the origin of the present work may serve to
show the importance of the questions discussed. About six years ago,
I began an investigation into the philosophy of Dynamics. I was
met by the difficulty that, when a particle is subject to several forces,
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no one of the component accelerations actually occurs, but only
the resultant acceleration, of which they are not parts; this fact
rendered illusory such causation of particulars by particulars as is
affirmed, at first sight, by the law of gravitation. It appeared also that
the difficulty in regard to absolute motion is insoluble on a relational
theory of space. From these two questions I was led to a re-examination
of the principles of Geometry, thence to the philosophy of continuity
and infinity, and thence, with a view to discovering the meaning of the
word any, to Symbolic Logic. 'The final outcome, as regards the
philosophy of Dynamics, is perhaps rather slender; the reason of this
is, that almost all the problems of Dynamics appear to me empirical,
and therefore outside the scope of such a work as the present. Many
very interesting questions have had to be omitted, especially in Parts
V1. and VIL, as not relevant to my purpose, which, for fear of
misunderstandings, it may be well to explain at this stage.

When actual objects are counted, or when Geometry and Dynamics
are applied to actual space or actual matter, or when, in any other way,
mathematical reasoning is applied to what exists, the reasoning employed
has a form not dependent upon the objects to which it is applied being
just those objects that they are, but only upon their having certain
general properties. In pure mathematics, actual objects in the world
of existence will never be in question, but only hypothetical objects
having those general properties upon which depends whatever deduction
is being considered; and these general properties will always be
expressible in terms of the fundamental concepts which I have called
logical constants. Thus when space or motion is spoken of in pure
mathematics, it is not actual space or actual motion, as we know them
in experience, that are spoken of, but any entity possessing those abstract
general properties of space or motion that are employed in the reasonings
of geometry or dynamics. The question whether these properties belong,
as a matter of fact, to actual space or actual motion, is irrelevant to pure
mathematics, and therefore to the present work, being, in my opinion,
a purely empirical question, to be investigated in the laboratory or the
observatory. Indirectly, it is true, the discussions connected with pure
mathematics have a very important bearing upon such empirical questions,
since mathematical space and motion are held by many, perhaps most,
philosophers to be self-contradictory, and therefore necessarily different
from actual space and motion, whereas, if the views advocated in the
following pages be valid, no such self-contradictions are to be found in
mathematical space and motion. But extra-mathematical considerations
of this kind have been almost wholly excluded from the present work.
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On fundamental questions of philosophy, my position, in all its chief
features, is derived from Mr G. E. Moore. I have accepted from him
the non-existential nature of propositions (except such as happen to
assert existence) and their independence of any knowing mind; also
the pluralism which regards the world, both that of existents and
that of entities, as composed of an infinite number of mutually
independent entities, with relations which are ultimate, and not
reducible to adjectives of their terms or of the whole which these
compose. Before learning these views from him, I found myself
completely unable to construct any philosophy of arithmetic, whereas
their acceptance brought about an immediate liberation from a large
number of difficulties which I believe to be otherwise insuperable.
The doctrines just mentioned are, in my opinion, quite indispensable
to any even tolerably satisfactory philosophy of mathematics, as I hope
the following pages will show. But I must leave it to my readers to
judge how far the reasoning assumes these doctrines, and how far it
supports them. Formally, my premisses are simply assumed; but the
fact that they allow mathematics to be true, which most current
philosophies do not, is surely a powerful argument in their favour.

In Mathematics, my chief obligations, as is indeed evident, are to
Georg Cantor and Professor Peano. If I had become acquainted
sooner with the work of Professor Frege, I should have owed a
great deal to him, but as it is I arrived independently at many
results which he had already established. At every stage of my work,
I have been assisted more than I can express by the suggestions, the
criticisms, and the generous encouragement of Mr A. N. Whitehead ;
he also has kindly read my proofs, and greatly improved the final
expression of a very large number of passages. Many useful hints
I owe also to Mr W. E. Johnson; and in the more philosophical parts
of the book I owe much to Mr G. E. Moore besides the general position
which underlies the whole.

In the endeavour to cover so wide a field, it has been impossible to
acquire an exhaustive knowledge of the literature. There are doubtless
many important works with which I am unacquainted ; but where the
labour of thinking and writing necessarily absorbs so much time, such
ignorance, however regrettable, seems not wholly avoidable.

Many words will be found, in the course of discussion, to be defined
in senses apparently departing widely from common usage. Such
departures, I must ask the reader to believe, are never wanton, but have
been made with great reluctance. In philosophical matters, they have
been necessitated mainly by two causes. First, it often happens that
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two cognate notions are both to be considered, and that language has
two names for the ome, but none for the other. It is then highly
convenient to distinguish between the two names commonly used as
synonyms, keeping one for the usual, the other for the hitherto nameless
sense. The other cause arises from philosophical disagreement with
received views. Where two qualities are commonly supposed inseparably
conjoined, but are here regarded as separable, the name which has
applied to their combination will usually have to be restricted to one
or other. For example, propositions are commonly regarded as (1) true
or false, (2) mental. Holding, as I do, that what is true or false is not
in general mental, I require a name for the true or false as such, and
this name can scarcely be other than proposition. In such a case, the
departure from usage is in no degree arbitrary. As regards mathematical
terms, the necessity for establishing the existence-theorem in each case—
i.e. the proof that there are entities of the kind in question—has led to
many definitions which appear widely different from the notions usually
attached to the terms in question. Instances of this are the definitions
of cardinal, ordinal and complex numbers. In the two former of these,
and in many other cases, the definition as a class, derived from the
principle of abstraction, is mainly recommended by the fact that it
leaves no doubt as to the existence-theorem. But in many instances of
such apparent departure from usage, it may be doubted whether more
has been done than to give precision to a notion which had hltherto
been more or less vague.

For publishing a work containing so many unsolved difficulties, my
apology is, that investigation revealed no near prospect of adequately
resolving the contradiction discussed in Chapter x., or of acquiring a
better insight into the nature of classes. The repeated discovery of errors
in solutions which for a time had satisfied me caused these problems to
appear such as would have been only concealed by any seemingly satis-
factory theories which a slightly longer reflection might have produced ;
it seemed better, therefore, merely to state the difficulties, than to wait
until I had become persuaded of the truth of some almost certainly
erroneous doctrine.

My thanks are due to the Syndics of the University Press, and to
their Secretary, Mr R. T. Wright, for their kindness and courtesy
in regard to the present volume.

Loxnon,
December, 1902.
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PART I

THE INDEFINABLES OF MATHEMATICS.






CHAPTER 1L

DEFINITION OF PURE MATHEMATICS.

1. Pere Mathematics is the class of all propositions of the form
“p implies g,” where p and ¢ are propositions containing one or more
variables, the same in the two propositions, and neither p nor ¢ contains
any constants except logical constants. And logical constants are all
notions definable in terms of the following : Implication, the relation
of a term to a class of which it is a member, the notion of such that,
the notion of relation, and such further notions as may be involved
in the general notion of propositions of the above form. In addition
to these, mathematics uses a notion which is not a constituent of the
propositions which it considers, namely the notion of truth.

2. The above definition of pure mathematics is, no doubt, some-
what unusual. Its various parts, nevertheless, appear to be capable of
exact justification—a justification which it will be the object of the
present work to provide. It will be shown that whatever has, in the
past, been regarded as pure mathematics, is included in our definition,
and that whatever else is included possesses those marks by which
mathematics is commonly though vaguely distinguished from other
studies. The definition professes to be, not an arbitrary decision to
use a common word in an uncommon signification, but rather a precise
analysis of the ideas which, more or less unconsciously, are implied in
the ordinary employment of the term. Our method will therefore be
one of analysis, and our problem may be called philosophical—in the
sense, that is to say, that we seek to pass from the complex to the
51mple, from the demonstrable to its indemonstrable premisses. But
in one respect not & few of our discussions will differ from those that
are usually called philosophical. We shall be able, thanks to the labours
of the mathematicians themselves, to arrive at certainty in regard to
most of the questions with which we shall be concerned; and among
those capable of an exact solution we shall find many of the problems
which, in the past, have been involved in all the traditional uncertainty
of philosophical strife. The nature of number, of infinity, of space,
time and motion, and of mathematical inference itself, are all questions
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to which, in the present work, an answer professing itself fiemonstrable
with mathematical certainty will be given—an answer which, however,
consists in reducing the above problems to problems in pure logic,
which last will not be found satisfactorily solved in what follows.

3. The Philosophy of Mathematics has been hitherto as con-
troversial, obscure and unprogressive as the other branches of philosophy.
Although it was generally agreed that mathematics is in some sense
true, philosophers disputed as to what mathematical propositions really
meant : although something was true, no two people were agreed as to
what it was that was true, and if something was known, no one knew
what it was that was known. So long, however, as this was doubtful,
it could hardly be said that any certain and exact knowledge was to be
obtained in mathematics. We find, accordingly, that idealists have
tended more and more to regard all mathematics as dealing with mere
appearance, while empiricists have held everything wathematical to be
approximation to some exact truth about which they had nothing to
tell us. This state of things, it must be confessed, was thoroughly
unsatisfactory. Philosophy asks of Mathematics: What does it mean ?
Mathematics in the past was unable to answer, and Philosophy answered
by introducing the totally irrelevant notion of mind. But now
Mathematics is able to answer, so far at least as to reduce the whole
of its propositions to certain fundamental notions of logic. At this
point, the discussion must be resumed by Philosophy. I shall endeavour
to indicate what are the fundamental notions involved, to prove at
length that no others occur in mathematics, and to point out briefly
the philosophical difficulties involved in the analysis of these notions.
A complete treatment of these difficulties would involve a treatise on
Logic, which will not be found in the following pages.

4. There was, until very lately, a special difficulty in the principles
of mathematics. It seemed plain that mathematics consists of deductions,
and yet the orthodox accounts of deduction were largely or wholly
inapplicable to existing mathematics. Not only the Aristotelian
syllogistic theory, but also the modern doctrines of Symbolic Logie,
were either theoretically inadequate to mathematical reasoning, or at
any rate required such artificial forms of statement that they could not
be practically applied. In this fact lay the strength of the Kantian
view, which asserted that mathematical reasoning is not strictly formal,
but always uses intuitions, i.. the & priori knowledge of space and
time. Thanks to the progress of Symbolic Logic, especially as treated
by Professor Peano, this part of the Kantian philosophy is now capable
of a final and irrevocable refutation. By the help of ten principles
of deduction and ten other premisses of a general logical nature
(e.g- “implication is a relation™), all mathematics can be strictly and
formally deduced; and all the entities that occur in mathematics can
be defined in terms of those that occur in the above twenty premisses.
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In this statement, Mathematics includes not only Arithmetic and
Analysis, but also Geometry, Euclidean and non-Euclidean, rational
Dynamics, and an indefinite number of other studies still unborn or in
their infancy. The fact that all Mathematics is Symbolic Logic is one
of the greatest discoveries of our age; and when this fact has been
established, the remainder of the principles of mathematics consists in
the analysis of Symbolic Logic itself.

5. The general doctrine that all mathematics is deduction by
logical principles from logical principles was strongly advocated by
Leibniz, who urged constantly that axioms ought to be proved and
that all except a few fundamental notions ought to be defined. But
owing partly to a faulty logic, partly to belief in the logical necessity
of Euclidean Geometry, he was led into hopeless errors in the endeavour
to carry out in detail a view which, in its general outline, is now known
to be correct*. The actual propositions of Euclid, for example, do not
follow from the principles of logic alone ; and the perception of this fact
led Kant to his innovations in the theory of knowledge. But since
the growth of non-Euclidean Geometry, it has appeared that pure
mathematics has no concern with the question whether the axioms
and propositions of Euclid hold of actual space or not: this is a question
for applied mathematics, to be decided, so far as any decision is possible,
by experiment and observation. What pure mathematics asserts is merely
that the Euclidean propositions follow from the Euclidean axioms—i.e.
it asserts an implication: any space which has such and such properties
has also such and such other properties. Thus, as dealt with in pure
mathematics, the Euclidean and non-Euclidean Geometries are equally
true: in each nothing is affirmed except implications. All propositions
as to what actually exists, like the space we live in, belong to experi-
mental or empirical science, not to mathematics; when they belong to
applied mathematics, they arise from giving to one or more of the
variables in a proposition of pure mathematics some constant value
satisfying the hypothesis, and thus enabling us, for that value of the
variable, actually to assert both hypothesis and consequent instead of
asserting merely the implication. We assert always in mathematics
that if a certain assertion p is true of any entity @, or of any set of
entities z, ¥, 2, ..., then some other assertion ¢ is true of those entities ;
but we do not assert either p or g separately of our entities. We assert
a relation between the assertions p and ¢, which I shall call formal
implication.

6. Mathematical propositions are not only characterized by the
fact that they assert implications, but also by the fact that they contain
variables. "The notion of the variable is one of the most difficult with
which Logic has to deal, and in the present work a satisfactory theory

* On this subject, cf. Couturat, La Logique de Leibniz, Paris, 1901.
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as to its nature, in spite of much discussion, will hardly be found.
For the present, I only wish to make it plain that there are variables
in all mathematical propositions, even where at first sight they might
seem to be absent. FElementary Arithmetic might be thought to form
an exception: 1+41=2 appears neither to contain variables nor to
assert an implication. But as a matter of fact, as will be shown in
Part II, the true meaning of this proposition is: “If x is one and
y is one, and x differs from y, then x and y are two.” And this
proposition both contains variables and asserts an implication. We
shall find always, in all mathematical propositions, that the words any
or some occur ; and these words are the marks of a variable and a formal
implication. Thus the above proposition may be expressed-in the form:
¢ Any unit and any other unit are two units.” The typical proposition
of mathematics is of the form “¢ (z, v, z,...) implies ¥ (z, ¥, 2,...),
whatever values x, y, 2z,... may have”; where ¢(z, g, 2,...) and
¥ (z, 7, 2,...), for every set of values of z, y, z,..., are propositions.
It is not asserted that ¢ is always true, nor yet that 4 is always true,
but merely that, in all cases, when ¢ is false as much as when ¢ is true,
4r follows from it.

The distinction between a variable and a constant is somewhat
obscured by mathematical usage. It is customary, for example, to speak
of parameters as in some sense constants, but this is a usage which
we shall have to reject. A constant is to be something absolutely
definite, concerning which there is no ambiguity whatever. Thus 1, 2,
8, ¢, m, Socrates, are constants; and so are man, and the human race,
past, present and future, considered collectively. Proposition, implica-
tion, class, etc. are constants; but a proposition, any proposition, some
proposition, are not constants, for these phrases do not denote one
definite object. And thus what are called parameters are simply
variables. Take, for example, the equation ax + by +c¢=0, considered
as the equation to a straight line in a plane. Here we say that « and y
are variables, while 4, b, ¢ are constants. But unless we are dealing
with one absolutely particular line, say the line from a particular point
in London to a particular point in Cambridge, our a, b, ¢ are not
definite numbers, but stand for any numbers, and are thus also variables.
And in Geometry nobody does deal with actual particular lines; we
always discuss any line. The point is that we collect the various
couples 2, y into classes of classes, each class being defined as those
couples that have a certain fixed relation to one triad (a, b, ¢). But
from class to class, a, b, ¢ also vary, and are therefore properly variables.

7. It is customary in mathematics to regard our variables as
restricted to certain classes: in Arithmetic, for instance, they are
supposed to stand for numbers. But this only means that jf they
stand for numbers, they satisfy some formula, i.e. the hypothesis that
they are numbers implies the formula. This, then, is what is really
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asserted, and in this proposition it is no longer necessary that our
variables should be numbers: the implication holds equally when they
are not so. Thus, for example, the proposition “z and y are numbers
implies (z +y)*=a"+2zxy +3*” holds equally if for z and y we substi-
tute Socrates and Plato® : both hypothesis and consequent, in this case,
will be false, but the implication will still be true. Thus in every
proposition of pure mathematics, when fully stated, the variables have
an absolutely unrestricted field: any conceivable entity may be substi-
tuted for any one of our variables without impairing the truth of our
proposition.

8. We can now understand why the constants in mathematics are
to be restricted to logical constants in the sense defined above. The
process of transforming constants in a proposition into variables leads
to what is called generalization, and gives us, as it were, the formal
essence of a proposition. Mathematics is interested exclusively in fypes
of propositions ; if a proposition p containing only constants be proposed,
and for a certain one of its terms we imagine others to be successively
substituted, the result will in general be sometimes true and sometimes
false. Thus, for example, we have “Socrates is a man”; here we turn
Socrates into a variable, and consider “z is & man.” Some hypotheses
as to z, for example, “z is a Greek,” insure the truth of “z is & man™;
thus “z is a Greek” implies “z is a man,” and this holds for all values of
z. But the statement is not one of pure mathematics, because it depends
upon the particular nature of Greek and man. We may, however, vary
these too, and obtain: If a and b are classes, and a is contained in b,
then “z is an a” implies “x is 2 5.” Here at last we have a proposition
of pure mathematics, containing three variables and the constants class,
contained in, and those involved in the notion of formal implications with
variables. So long as any term in our proposition can be turned into
a variable, our proposition can be generalized; and so long as this is
possible, it is the business of mathematics to do it. If there are several
chains of deduction which differ only as to the meaning of the symbols,
so that propositions symbolically identical become capable of several
interpretations, the proper course, mathematically, is to form the class of
meamngs which may attach to the symbols, and to assert that the
formula in question follows from the hypothesis that the symbols belong
to the class in question. In this way, symbols which stood for constants
become transformed into variables, and new constants are substituted,
consisting of classes to which the old constants belong. Cases of such
generalization are so frequent that many will occur at once to every
mathematician, and innumerable instances will be given in the present
work. Whenever two sets of terms have mutual relations of the same

* It is necessary to suppose arithmetical addition and multiplication defined (as

may be easily done) so that the above formula remains significant when z and y arc
not numbers.
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type, the same form of deduction will apply to both. For example, the
mutual relations of points in a Euclidean plane are of the same type as
those of the complex numbers; hence plane geometry, considered as a
branch of pure mathematics, ought not to decide whether its variables
are points or complex numbers or some other set of entities having the
same type of mutual relations. Speaking generally, we ought to deal,
in every branch of mathematics, with any class of entities whose mutual
relations are of a specified type; thus the class, as well as the particular
term considered, becomes a variable, and the only true constants are the
types of relations and what they involve. Now a #ype of relation is to
mean, in this discussion, a class of relations characterized by the above
formal identity of the deductions possible in regard to the various
members of the class; and hence a type of relations, as will appear more
fully hereafter, if not already evident, is always a class definable in
terms of logical constants*. 'We may therefore define a type of relations
as a class of relations defined by some property definable in terms of
logical constants alone.

9. Thus pure mathematics must contain no indefinables except
logical constants, and consequently no premisses, or indemonstrable
propositions, but such as are concerned exclusively with logical constants
and with variables, It is precisely this that distinguishes pure from
applied mathematics. In applied mathematics, results which have been
shown by pure mathematics to follow from some hypothesis as to the
variable are actually asserted of some constant satisfying the hypothesis
in question. Thus terms which were variables become constant, and a
new premiss is always required, namely: this particular entity satisfies
the hypothesis in question. Thus for example Euclidean Geometry, as a
branch of pure mathematics, consists wholly of propositions having the
hypothesis “§ is a Euclidean space™ If we go on to: “The space
that exists is Euclidean,” this enables us to assert of the space that exists
the consequents of all the hypotheticals constituting Euclidean Geometry,
where now the variable .S is replaced by the constant actual space. But
by this step we pass from pure to applied mathematics.

10. The connection of mathematics with logic, according to the
above account, is exceedingly close. The fact that all mathematical
constants are logical constants, and that all the premisses of mathematics
are concerned with these, gives, I believe, the precise statement of what
philosophers have meant in asserting that mathematics is & priori. The
fact is that, when.once the apparatus of logic has been accepted, all
mathematics necessarily follows. The logical constants themselves are
to be defined only by enumeration, for they are so fundamental that all
the properties by which the class of them might be defined presuppose

. * One-one, many-one, transitive, symmetrical, are instances of types of relations
with which we shall be often concerned.
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some terms of the class. But practically, the method of discovering the
logical constants is the analysis of symbolic logie, which will be the
business of the following chapters. The distinction of mathematics from
logic is very arbitrary, but if a distinction is desired, it may be made as
follows. Logic consists of the premisses of mathematics, together with
all other propositions which are concerned exclusively with logical
constants and with variables but do not fulfil the above definition of
mathematics (§ 1). Mathematics consists of all the consequences of the
above premisses which assert formal implications containing variables,
together with such of the premisses themselves as have these marks.
Thus some of the premisses of mathematics, e.g. the principle of the
syllogism, “if p implies ¢ and ¢ implies », then p implies »,” will
belong to mathematics, while others, such as “implication is a relation,”
will belong to logic but not to mathematics. But for the desire to
adhere to usage, we might identify mathematics and logic, and define
either as the class of propositions containing only variables and logical
constants; but respect for tradition leads me rather to adhere to the
above distinction, while recognizing that certain propositions belong to
both sciences.

From what has now been said, the reader will perceive that the
present work has to fulfil two objects, first, to show that all mathematics
follows from symbolic logic, and secondly to discover, as far as possible,
what are the principles of symbolic logic itself. The first of these objects
will be pursued in the following Parts, while the second belongs to
Part I.  And first of all, as a preliminary to a critical analysis, it will
be necessary to give an outline of Symbolic Logic considered simply as &
branch of mathematics. This will occupy the following chapter.



CHAPTER IL

SYMBOLIC LOGIC.

11. Syaporic or Formal Logic—I shall use these terms as
synonyms—is the study of the various general types of deduction.
The word symbolic designates the subject by an accidental characteristic,
for the employment of mathematical symbols, here as elsewhere, is merely
a theoretically irrelevant convenience. The syllogism in all its figures
belongs to Symbolic Logic, and would be the whole subject if all
deduction were syllogistic, as the scholastic tradition supposed. It is
from the recognition of asyllogistic inferences that modern Symbolic
Logic, from Leibniz onward, has derived the motive to progress. Since
the publication of Boole’s Laws of Thought (1854), the subject has
been pursued with a certain vigour, and has attained to a very consider-
able technica] development*. Nevertheless, the subject achieved almost
nothing of utility either to philosophy or to other branches of mathematics,
until it was transformed by the new methods of Professor Peano+.
Symbolic Logic has now become not only absolutely essential to every
philosophical logician, but also necessary for the comprehension of
mathematics generally, and even for the successful practice of certain
branches of mathematics. How useful it is in practice can only be
judged by those who have experienced the increase of power derived
from acquiring it; its theoretical functions must be briefly set forth in
the present chaptery.

* By far the most complete account of the non-Peanesque methods will be found
in the three volumes of Schrider, Vorlesungen iber die Algebra der Logik, Leipzig,
1890, 1891, 1895.

t See Formulaire de Muthématiques, Turin, 1895, with subsequent editions in
later years; also Revue de Mathématiques, Vol. vir, No. 1 (1900). The editions of
the Formulaire will be quoted as F. 1895 and so on. The Revue de Mathématiques,
which was originally the Rivista di Mutematica, will be referred to as R. d. M.

{ In what follows the main outlines are due to Professor Peano, except as
regards relations ; even in those cases where I depart from his views, the problems
considered have been suggested to me by his works.
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12. Symbolic Logic is essentially concerned with inference in
general*, and is distinguished from various special branches of mathe-
matics mainly by its generality. Neither mathematics nor symbolic
logic will study such special relations as (say) temporal priority, but
mathematics will deal explicitly with the class of relations possessing
the formal properties of temporal priority—properties which are
summed up in the notion of continuityt. And the formal properties
of a relation may be defined as those that can be expressed in terms
of logical constants, or again as those which, while they are preserved,
permit our relation to be varied without invalidating any inference in
which the said relation is regarded in the light of a variable. But
symbolic logic, in the narrower sense which is convenient, will not
investigate what inferences are possible in respect of continuous relations
(i.e. relations generating continuous series); this investigation belongs
to mathematics, but is still too special for symbolic logic. What
symbolic logic does investigate is the general rules by which inferences
are made, and it requires a classification of relations or propositions
only in so far as these general rules introduce particular notions. The
particular notions which appear in the propositions of symbolic logic,
and all others definable in terms of these notions, are the logical
constants. The number of indefinable logical constants is not great:
it appears, in fact, to be eight or nine. These notions alone form the
subject-matter of the whole of mathematics: no others, except such
as are definable in terms of the original eight or nine, occur anywhere
in Arithmetic, Geometry, or rational Dynamics. For the technical
study of Symbolic Logic, it is convenient to take as a single indefinable
the notion of a formal implication, i.e. of such propositions as “z is
a man implies # is a mortal, for all values of x™—propositions whose
general type is: “ ¢ (x) implies ¥ (2) for all values of 2, where ¢ (z),
V¥ (x), for all values of a, are propositions. The analysis of this notion
of formal implication belongs to the principles of the subject, but is not
required for its formal development. In addition to this notion, we
require as indefinables the following: Implication between propositions
not containing variables, the relation of a term to a class of which it
is a member, the notion of such that, the notion of relation, and truth.
By means of these notions, all the propositions of svmbolic logic can be
stated.

13. 'The subject of Symbolic Logic comsists of three parts, the
calculus of propositions, the caleulus of classes, and the calculus of
relations. Between the first two, there is, within limits, a certain
parallelism, which arises as follows: In any symbolic expression, the

* I may as well say at once that I do not distinguish between inference and
deduction. Whatis called induction appears to me to be either disguised deduction
or a mere method of making plausible guesses

+ See below, Part V, Chap. xxxvr.
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letters may be interpreted as classes or as propositions, and the relation
of inclusion in the one case may be replaced by that of formal implication
in the other. Thus, for example, in the principle of the syllogism, if
a, b, ¢ be classes, and a is contained in b, b in ¢, then a is contained in c;
but if @, b, c be propositions, and @ implies b, b implies ¢, then a implies c.
A great deal has been made of this duality, and in the later editions of
the Formulaire, Peano appears to have sacrificed logical precision to its
preservation *. But, as a matter of fact, there are many ways in which
the calculus of propositions differs from that of classes. Consider,
for example, the following: “If p, g, 7 are propositions, and p implies
g or 7, then p implies ¢ or p implies ».” This proposition is true; but
its correlative is false, namely: “If a, b, c are classes, and @ is contained
in b or ¢, then a is contained in b or a is contained in ¢.” For example,
English people are all either men or women, but are not all men nor yet
all women. The fact is that the duality holds for propositions asserting
of a variable term that it belongs to a class, i.e. such propositions as
“z is a man,” provided that the implication involved be formal, i.c. one
which holds for all values of z. But “2 is a man” is itself not a
proposition at all, being neither true nor false; and it is not with such
entities that we are concerned in the propositional calculus, but with
genuine propositions. To continue the above illustration: It is true
that, for all values of 2, “z is a man or a woman ™ either implies “z is a
man” or implies “2 is a woman.” But it is false that “z is a man or
woman” either implies “2 is a man” for all values of z, or implies
“a is & woman ” for all values of 2. Thus the implication involved, which
is always one of the two, is not formal, since it does not hold for all values
of z, being not always the same one of the two. The symbolic affinity
of the propositional and the class logic is, in fact, something of a snare,
and we have to decide which of the two we are to make fundamental.
Mr McColl, in an important series of paperst, has contended for the
view that implication and propositions are more fundamental than
inclusion and classes; and in this opinion I agree with him. But he
does not appear to me to realize adequately the distinction between
genuine propositions and such as contain a real variable: thus he is led
to speak of propositions as sometimes true and sometimes false, which
of course is impossible with a genuine proposition. As the distinction
involved is of very great importance, I shall dwell on it before proceeding
further. A proposition, we may say, is anything that is true or that is

* Ou the points where the duality breaks down, cf. Schrider, op. cit., Vol. 11,
Lecture 21.

t Cf. “The Calculus of Equivalent Statements,” Proceedings of the London
Mathematical Society, Vol. 1x and subsequent volumes ; “Symbolic Reasoning,” Mind,
Jan. 1880, Oct. 1897, and Jan. 1900; “La Logique Symbolique et ses Applications,”
Bibliothéque du Congrés International de Philosophie, Vol. 11 (Paris, 1901). 1 shall in
future quote the proceedings of the above Congress by the title Congres.
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false. An expression such as “z is a man™ is therefore not a proposi-
tion, for it is neither true nor false. If we give to 2 any constant value
whatever, the expression becomes a proposition: it is thus as it were a
schematic form standing for any one of a whole class of propositions.
And when we say “x is a man implies z is a mortal for all values of z,”
we are not asserting a single implication, but a class of implications ;
we have now a genuine proposition, in which, though the letter  appears,
there is no real variable: the variable is absorbed in the same kind of
way as the z under the integral sign in a definite integral, so that the
result is no longer a function of 2. Peano distinguishes a variable which
appears in this way as apparent, since the proposition does not depend
upon the variable ; whereas in “z is a man ™ there are different proposi-
tions for different values of the variable, and the variable is what Peano
calls 7eal*. I shall speak of propositions exclusively where there is no
real variable: where there are one or more real variables, and for all
values of the variables the expression involved is a proposition, I shall
call the expression a propositional function. The study of genuine
propositions is, in my opinion, more fundamental than that of classes;
but the study of propositional functions appears to be strictly on a
par with that of classes, and indeed scarcely distinguishable therefrom.
Peano, like McColl, at first regarded propositions as more fundamental
than classes, but he, even more definitely, considered propositional func-
tions rather than propositions. From this criticism, Schroder is exempt:
his second volume deals with genuine propositions, and points out their
formal differences from classes.

A. The Propositional Calculus.

14. The propositional calculus is characterized by the fact that
all its propositions have as hypothesis and as consequent the assertion of
a material implication. Usually, the hypothesis is of the form “p im- -
plies p,” etc., which (§ 16) is equivalent to the assertion that the letters
which occur in the consequent are propositions. Thus the consequents
consist of propositional functions which are true of all propositions.
It is important to observe that, though the letters employed are symbols
for variables, and the consequents are true when the variables are giver
values which are propositions, these values must be genuine propositions.
not propositional functions. "The hypothesis “p is a proposition” is
not satisfied if for p we put “a is a man,” but it is satisfied if we put
“Socrates is a man” or if we put “z is a man implies z is & mortal for
all values of 2.” Shortly, we may say that the propositions represented
by single letters in this calculus are variables, but do not contain
variables—in the case, that is to say, where the hypotheses of the
propositions which the calculus asserts are satisfied.

* F. 1901, p. 2.
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15. Our calculus studies the relation of implication between
sropositions. This relation must be distinguished flro.m the relajcion
f formal implication, which holds between proposxtlf)nal functions
vhen the one implies the other for all values of the variable. Fc!n-nal
mplication is also involved in this calculus, but is not explicitly
studied: we do not consider propositional functions in_general, but
only certain definite propositional functions which occur in the propo-
sitions of our caleulus. How far formal implication is definable in
terms of implication simply, or material implication as it may be
called, is a difficult question, which will be discussed in Chapter ur
What the difference is between the two, an illustration will explain.
The fifth proposition of Euclid follows from the fourth: if the fourth
is true, so is the fifth, while if the fifth is false, so is the fourth.
This is a case of material implication, for both propositions are absolute
constants, not dependent for their meaning upon the assigning of a
value to a variable. But each of them states a formal implication. The
fourth states that if 2 and y be triangles fulfilling certain conditions,
then x and y are triangles fulfilling certain other conditions, and that
this implication holds for all values of z and y; and the fifth states that
if 2 is an isosceles triangle, 2 has the angles at the base equal. The
formal implication involved in each of these two propositions is quite
a different thing from the material implication holding between the
propositions as wholes; both notions are required in the propositional
caleulus, but it is the study of material implication which specially
distinguishes this subject, for formal implication occurs throughout the
whole of mathematics.

It has been customary, in treatises on logic, to confound the two
kinds of implication, and often to be really considering the formal kind
where the material kind only was apparently involved. For example,
when it is said that “Socrates is a man, therefore Socrates is a mortal,”
Socrates is felt as a variable: he is a type of humanity, and one feels that
any other man would have done as well. If, instead of therefore, which
implies the truth of hypothesis and consequent, we put “Socrates is a
man implies Socrates is a mortal,” it appears at once that we may
substitute not -only another man, but any other entity whatever, in the
place of Socrates. Thus although what is explicitly stated, in such a
case, is a material implication, what is meant is a formal implication ; and
some effort is needed to confine our imagination to material implication.

16. A definition of implication is quite impossible.  If p implies
g, then if p is true ¢ is true, ie. p’s truth implies ¢s truth ; also if ¢ is
false p is false, i.c. ¢'s falsehood implies p’s falsehood*.  Thus truth and
falsehood give us merely new implications, not a definition of implication.

* The reader is recommended to observe that the main implications in these
statements are formal, i.e. “p implies 9" formally implies “p's truth implies ¢'s
truth.” while the suberdinate implications are material.
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If p implies g, then both are false or both true, or p is false and ¢ true;
it is impossible to have ¢ false and p true, and it is necessary to have
g true or p false*. In fact, the assertion that g is true or p false turns
out to be strictly equivalent to “p implies ¢”; but as equivalence means
mutual implication, this still leaves implication fundamental, and not
definable in terms of disjunction. Disjunction, on the other hand, is
definable in terms of implication, as we shall shortly see. It follows
from the above equivalence that of any two propositions there must be
one which implies the other, that false propositions imply all propositions,
and true propositions are implied by all propositions. But these are
results to be demonstrated; the premisses of our subject deal exclusively
with rules of inference.

It may be observed that, although implication is indefinable,
proposition can be defined. Every proposition implies itself, and
whatever is not a proposition implies nothing. Hence to say “p is a
proposition” is equivalent to saying “p implies p™; and this equivalence
may be used to define propositions. As the mathematical sense of
definition is widely different from that current among philosophers,
it may be well to observe that, in the mathematical sense, a new
propositional function is said to be defined when it is stated to be
equivalent to (i.e. to imply and be implied by) a propositional function
which has either been accepted as indefinable or has been defined in
terms of indefinables. The definition of entities which are not
propositional functions is derived from such as are in ways which will
be explained in connection with classes and relations.

17. 'We require, then, in the propositional calculus, no indefinables
except the two kinds of implication—remembering, however, that formal
implication is a complex notion, whose analysis remains to be undertaken.
As regards our two indefinables, we require certain indemonstrable
propositions, which hitherto I have not succeeded in reducing to less
than ten. Some indemonstrables there must be; and some propositions,
such as the syllogism, must be of the number, since no demonstration
is possible without them. But concerning others, it may be doubted
whether they are indemonstrable or merely undemonstrated; and it
should be observed that the method of supposing an axiom false, and
deducing the consequences of this assumption, which has been found
admirable in such cases as the axiom of parallels, is here not universally
available. For all our axioms are principles of deduction; and if they
are true, the consequences which appear to follow from the employment
of an opposite principle will not really follow, so that arguments from
the supposition of the falsity of an axiom are here subject fo special
fallacies. Thus the number of indemonstrable propositions may be
capable of further reduction, and in regard to some of them I know of

* I may as well state once for all that the alternatives of a disjunction will never
be considered as mutually exclusive unless expressly said to be so.
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no grounds for regarding them as indemonstrable except that they have
hitherto remained undemeonstrated.

18. The ten axioms are the following. (1) If p implies g, then
p implies g*; in other words, whatever p and ¢ may be, “p implies ¢”
is a proposition. (2) If p implies ¢, then p implies p; in 9ther words,
whatever implies anything is a proposition. (3) If p n.nphes g, then ¢
implies g; in other words, whatever is implied by anything is a proposition.
(4) A true hypothesis in an implication may be dropped, and the
consequent asserted. This is a principle incapable of formal symbolic
statement, and illustrating the essential limitations of formalism—a
point to which I shall return at a later stage. Before proceeding
further, it is desirable to define the joint assertion of two propositions,
or what is called their logical product. This definition is highly artificial,
and illustrates the great distinction between mathematical and philo-
sophical definitions. It is as follows: If p implies p, then, if ¢ implies g,
pq (the logical product of p and ¢) means that if p implies that ¢ implies
7, then 7 is true. In other words, if p and g are propositions, their joint
assertion is equivalent to saying that every proposition is true which is
such that the first implies that the second implies it. We cannot, with
formal correctness, state our definition in this shorter form, for the
hypothesis “p and ¢ are propositions™ is already the logical product of
“p is a proposition™ and “gq is a proposition.” We can now state the
six main principles of inference, to each of which, owing to its importance,
a name 1s to be given; of these all except the last will be found in
Peano’s accounts of the subject. (5) If p implies p and g implies ¢,
then pg implies p. This is called simplification, and asserts merely that
the joint assertion of two propositions implies the assertion of the first
of the two. (6) If p implies ¢ and ¢ implies r, then p implies . This
will be called the syllogism. (7) If g implies ¢ and r implies », and
if p implies that ¢ implies r, then pg implies 7. This is the principle of
importation. In the hypothesis, we have a product of three propositions;
but this can of course be defined by means of the product of two.
The principle states that if p implies that ¢ implies 7, then r follows
from the joint assertion of p and ¢. For example: “If T call on so-and-
so, then if she is at home I shall be admitted” implies “If I call on
so-and-so and she is at home, I shall be admitted.” (8) If p implies
p and g implies g, then, if pg implies 7, then p implies that ¢ implies 7.
This is the converse of the preceding principle, and is called caportation+.
The previous illustration reversed will illustrate this principle. (9) If
p implies g and p implies r, then p implies ¢r: in other words, a

* Note that the implications denoted by if and then, in these axioms, are formal,
while those denoted by implies are material.

t (7) and (8) cannot (1 think) be deduced from the definition of the logical
product, because they are required for passing from ““If p is a proposition, then ‘q is
a proposition” implies etc.” to “If p and g are propositious, then etc.”
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proposition which implies each of two propositions implies them both.
This is called the principle of composition. (10) If p implies p and
q implies ¢, then “‘p implies ¢” implies p” implies p. This is called
the principle of reduction; it has less self-evidence than the previous
principles, but is equivalent to many propositions that are self-evident.
I prefer it to these, because it is explicitly concerned, like its predecessors,
with implication, and has the same kind of logical character as they
have. If we remember that “p implies ¢” is equivalent to “g or not-p,”
we can easily convince ourselves that the above principle is true; for
“¢p implies ¢” implies p” is equivalent to “ p or the denial of ‘g or not-
Py ie. to “p or ‘p and not g,”” i.e. to p. But this way of persuading
ourselves that the principle of reduction is true involves many logical
principles which have not yet been demonstrated, and cannot be
demonstrated except by reduction or some equivalent. The principle is
especially useful in connection with negation. Without its help, by
means of the first nine principles, we can prove the law of contradiction;
we can prove, if p and ¢ be propositions, that p 1mp11eq not-not-p; that
“p implies not-¢” is equivalent to ““g implies not-p™ and to not-pg;
that “p implies ¢” implies “not-g implies not-p™; that p implies that
not-p implies p; that not-p is equivalent to “p implies not-p™; and that
%p implies not-¢” is equivalent to “not-not-p implies not-¢.” But we
cannot prove without reduction or some equivalent (so far at least as
I have been able to discover) that p or not-p must be true (the law of
excluded middle); that every proposition is equivalent to the negation
of some other proposition; that not-not-p implies p; that “not-¢ implies
not-p™ 1mphes “p implies ¢”; that “not -p implies p™ implies p, or that
“p implies ¢” implies “g or not-p.” Each of these assumptions is
equivalent to the principle of reduction, and may, if we choose, be sub-
stituted for it. Some of them—especially excluded middle and double
negation—appear to have far more self-evidence. But when we have
seen how to define disjunction and negation in terms of implication, we
shall see that the supposed simplicity vanishes, and that, for formal
purposes at any rate, reduction is simpler than any of the possible
alternatives. For this reason I retain it among my premisses in
preference to more usual and more superficially obvious propositions.

19. Disjunction or logical addition is defined as follows: “p or g™
is equivalent to “‘p implies ¢" implies ¢.” It is easy to persuade
ourselves of this equivalence, by remembering that a false proposition
implies every other; for if p is false, p does imply ¢, and therefore,
if « ‘P implies ¢ implies g, it follows that ¢ is true. But this argument
again uses principles which have not yet been demonstrated, “and is
merely designed to elucidate the definition by anticipation. From this
definition, by the help of reduction, we can prove that “p or ¢” is
equivalent to “g or p.” An alternative definition, deducible from the
above, is: “Any proposition implied by p and implied by ¢ is true,” or,
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in other words, “¢ p implies s and ‘g implies s* together impI.y 8, wha.tevgr
s may be.” Hence we proceed to the definition of negation: not-p is
equivalent to the assertion that p implies all propositions, i.c. tha:t
“r implies 7” implies “p implies " whatever r may be*. E:rom this
point we can prove the laws of contradiction and excluded middle and
double negation, and establish all the formal properties of .Iogx.cal
multiplication and addition—the associative,commutative and distributive
laws. Thus the logic of propositions is now complete. )

Philosophers will object to the above definitions of disjunction and
negation on the ground that what we mean by these notions is some-
thing quite distinct from what the definitions assign as their meanings,
and that the equivalences stated in the definitions are, as a matter of
fact, significant propositions, not mere indications as to the way in
which symbols are going to be used. Such an objection is, I think, well-
founded, if the above account is advocated as giving the true philosophic
analysis of the matter. But where a purely formal purpose is to be
served, any equivalence in which a certain notion appears on one side
but not on the other will do for a definition. And the advantage of
having before our minds a strictly formal development is that it pro-
vides the data for philosophical analysis in a more definite shape than
would be otherwise possible. Criticism of the procedure of formal logic,
therefore, will be best postponed until the present brief account has been
brought to an end.

B. The Calculus of Classes.

20. In this calculus there are very much fewer new primitive pro-
positions—in fact, two seem sufficient—but there are much greater
difficulties in the way of non-symbolic exposition of the ideas embedded
in our symbolism. These difficulties, as far as possible, will be postponed
to later chapters. For the present, I shall try to make an exposition
which is to be as straightforward and simple as possible.

The calculus of classes may be developed by regarding as fundamental
the notion of class, and also the relation of a member of a class to its
class. This method is adopted by Professor Peano, and is perhaps more
philosophically correct than a different method which, for formal pur-
poses, I have found more convenient. In this method we still take as

* The principle that false propositions imply all propositions solves Lewis
Carroll’s logical paradox in Mind, N. S. No. 11 (1894). The assertion made in that
paradox is that, if p, ¢, » be propositions, and ¢ implies », while p implies that
g implies not-r, then p must be false, on the supposed ground that ‘g implies »” and
““ ¢ implies not-r” are incompatible. But in virtue of our definition of negation, if
q be false both these implications will hold: the two together, in fact, what-
ever proposition r may he, are equivalent to not-g. Thus the only inference
warranted by Lewis Carroll’s premisses is that if p be true, ¢ must be false, i.e. that

p implies not-¢; and this is the conclusion, oddly enough, which common sense would
have drawn in the particular case which he discusses.
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fundamental the relation (which, following Peano, I shall denote by ¢)
of an individual to a class to which it belongs, i.e. the relation of Socrates
to the human race which is expressed by saying that Socrates is a man.
In addition to this, we take as indefinables the notion of a propositional
function and the notion of such that. It is these three notions that
characterize the class-calculus. Something must be said in explanation
of each of them.

21. The insistence on the distinction between € and the relation of
whole and part between classes is due to Peano, and is of very great
importance to the whole technical development and the whole of the
applications to mathematics. In the scholastic doctrine of the syllogism,
and in all previous symbolic logic, the two relations are confounded,
except in the work of Frege*. The distinction is the same as that
between the relation of individual to species and that of species to
genus, between the relation of Socrates to the class of Greeks and the
relation of Greeks to men. On the philosophical nature of this distinc-
tion I shall enlarge when I come to deal critically with the nature of
classes; for the present it is enough to observe that the relation of
whole and part 1s transitive, while e is not so: we have Socrates is a
a man, and men are a class, but not Socrates is a class. It is to be
observed that the class must be distinguished from the class-concept
or predicate by which it is to be defined: thus men are a class, while
man is a class-concept. The relation ¢ must be regarded as holding
between Socrates and men considered collectively, not between Socrates
and man. I shall return to this point in Chapter vi. Peano holds
that all propositional functions containing only a single variable are
capable of expression in the form “x is an a,” where a is a constant
class ; but this view we shall find reason to doubt.

- 22. The next fundamental notion is that of a propositional func-
tion. Although propositional functions occur in the calculus of pro-
positions, they are there each defined as it occurs, so that the gencral
notion is not required. But in the class-calculus it is necessary to intro-
duce the general notion explicitly. Peano.does not require it, owing to
his assumption that the form “2 is an a” is general for one variable, and
that extensions of the same form are available for any number of
variables. But we must avoid this assumption, and must therefore
introduce the notion of a propositional function. We may explain (but
not define) this notion as follows: ¢x is a propositional function if, for
every value of x, ¢z is a proposition, determinate when r is given.
Thus “ is a man” is a propositional function. In any proposition, how-
ever complicated, which contains no real variables, we may imagine one
of the terms, not a verb or adjective, to be replaced by other terms: instead
of “Socrates is & man™ we may put ¥ Plato is a man,” “ the number 2

* See his Begriffsschrift, Halle, 1879, and Grundgesetze der Arithmetik, Jena, 1893,
p- 2.
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is a man.” and so on*. Thus we get successive propositions all agreeing
except as to the one variable term. Putting « for the variable term,
“ 2 is a man” cxpresses the type of all such propositions. A pro-
positional function in general will be true for some values of the variable
and false for others. The instances where it is true for all values of the
variable, so far as they are known to me, all express implications, such as
“ 2 is a man implies « is a mortal”; but I know of no ¢ priori reason for
asserting that no other propositional functions are true for all values of
the variable.

23. This brings me to the notion of such that. The values of z
which render a propositional function ¢z true are like the roots of an
equation—indeed the latter are a particular case of the former—and we
may consider all the values of 2 which are such that ¢z istrue. Ingeneral,
these values form a class, and in fact a class may be defined as all
the terms satisfying some propositional function. There is, however,
some limitation required in this statement, though I have not been able to
discover precisely what the limitation is. This results from a certain
contradiction which I shall discuss at length at a later stage (Chap. x).
The reasons for defining class in this way are, that we require to provide
for the null-class, which prevents our defining a class as a term to
which some other has the relation €, and that we wish to be able
to define classes by relations, i.e. all the terms which have to other
terms the relation R are to form a class, and such cases require somewhat
complicated propositional functions.

24, With regard to these three fundamental notions, we require
two primitive propositions. The first asserts that if 2 belongs to the
class of terms satisfying a propositional function ¢, then ¢x is true.
The second asserts that if ¢x and g are equivalent propositions for all
values of x, then the class of 2’s such that ¢z is true is identical with
the class of 2’s such that g is true.  Identity, which occurs here, is
defined as follows: x is identical with 7 if y belongs to every class to
which @ belongs, on other words, if “ @ is a » ” implies “y is a u > for
all values of u. With regard to the primitive proposition itself, it is to
be observed that it decides in favour of an extensional view of classes.
Two class concepts need not be identical when their extensions are so:
man and featherless biped are by no means identical, and no more are even
prime and integer between 1 und 3. These are class-concepts, and if our
axiom is to hold, it must not be of these that we are to speak in dealing
with classes. ~We must be concerned with the actual assemblage of
terms, not with any concept denoting that assemblage. For mathe-
matical purposes, this is quite essential.  Consider, for cxample, the
problem as to how many combinations can be formed of a given set

* Verbs and adjectives occurring as such are distinguished by the fact that, if
they be taken as variable, the resulting function is only a proposition for some values
of the variable, i.e. for such as are verbs or adjectives respectively. See Chap. 1v.
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of terms taken any number at a time, i.e. as to how many classes are
contained in a given class. If distinct classes may have the same ex-
tension, this problem becomes utterly indeterminate. And certainly
common usage would regard a class as determined when all its terms are
given. 'The extensional view of classes, in some form, is thus essential to
Symbolic Logic and to mathematics, and its necessity is expressed in the
above axiom. But the axiom itself is not employed until we come to
Arithmetic; at least it need not be employed, if we choose to distinguish
the equality of classes, which is defined as mutual inclusion, from the
identity of individuals. Formally, the two are totally distinct: identity
is defined as above, equality of @ and & is defined by the equivalence of
“zisan a” and “z is a b” for all values of .

25. Most of the propositions of the class-calculus are easily
deduced from those of the propositional calculus. The logical product
or common part of two classes @ and b is the class of a’s such that the
logical product of “x is an a” and “z is a 5" is true. Similarly we define
the logical sum of two classes (@ or b), and the negation of a class (not-a).
A new idea is introduced by the logical product and sum of a class of
classes. If & is a class of classes, its logical product is the class of terms be-
longing to each of the classes of %, i.e. the class of terms z such that “«
is a k™ implies “z is a »™ for all values of . The logical sum is the class
which is contained in every class in which every class of the class & is
contained, i.e. the class of terms @ such that, if “u is a A implies “u is
contained in ¢” for all values of =, then, for all values of ¢,  is a ¢.
And we say that a class a is contained in a class b when “z is ana”
implies “z is a b™ for all values of z. In like manner with the above
we may define the product and sum of a class of propositions. Another
very important notion is what is called the existence of a class—a word
which must not be supposed to mean what existence means in philosophy.
A class is said to exist when it has at least one term. A formal defini-
tion is as follows: a is an existent class when and only when any
proposition is true provided “z is an a” always implies it whatever value
we may give to . It must be understood that the proposition implied
must be a genuine proposition, not a propositional function of 2. A
class a exists when the logical sum of all propositions of the form “z is
an a” is true, 4.e. when not all such propositions are false.

It is important to understand clearly the manner in which pro-
positions in the class-calculus are obtained from those in the pro-
positional calculus. Consider, for example, the syllogism. We have
“p implies¢” and “q implies 7" imply “p implies .” Now put “z is
an a,” “a is a b “x is a ¢” for p, ¢, r, where x must have some definite
value, but it is not necessary to decide what value. We then find that
if, for the value of # in question, # is an a implieszisa d,and xisa b
implies « is a ¢, then # is an a implies # is a c. Since the value of 2 is
irrelevant, we may vary z, and thus we find that if a is contained in b,
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and b in ¢, then a is contained in ¢. This is the class-syllogism. But in
applying this process it is necessary to employ the utmost caution,
if fallacies are to be successfully avoided. In this connection it will
be instructive to examine a point upon which a dispute has arisen
between Schrider and Mr McColl*. Schrider asserts that if p, ¢, 7 are
propositions, “pg implies 7™ is equivalent to the disjunction “p implies r
or g implies ».” Mr McColl admits that the disjunction implies the
other, but denies the converse implication. The reason for the diver-
gence is, that Schroder is thinking of propositions and material im-
plication, while Mr McColl is thinking of propositional functions and
formal implication. As regards propositions, the truth of the principle
may be easily made plain by the following considerations. If pg implies
r, then, if either p or ¢ be false, the one of them which is false implies 7,
because false propositions imply all propositions. But if both be true,
pq is true, and therefore r is true, and therefore p implies » and ¢ im-
plies 7, because true propositions are implied by every proposition.
Thus in any case, one at least of the propositions p and ¢ must
imply 7. (This is not a proof, but an elucidation.) But Mr McColl
objects: Suppose p and ¢ to be mutually contradictory, and r to be the
null proposition, then pg implies r but neither p nor ¢ implies 7. Here
we are- dealing with propositional functions and formal implication. A
propositional function is said to be null when it is false for all values of
x; and the class of #’s satisfying the function is called the null-class,
being in fact a class of no terms. Either the function or the class,
following Peano, I shall denote by A. Now let our r be replaced by A,
our p by ¢, and our ¢ by not-¢x, where ¢z is any propositional function.
Then pq is false for all values of z, and therefore implies A. But it is
not in general the case that ¢ is always false, nor yet that not-¢a is always
false; hence neither always implies A. Thus the above formula can only
be truly interpreted in the propositional calculus: in the class-calculus
it is false. This may be easily rendered obvious by the following
considerations: Let ¢z, Yz, yz be three propositional functions. Then
“¢x . Yz implies xz” implies, for all values of x, that either ¢ implies
Xz or Yz implies xz. But it does not imply that either ¢pa implies yz
for all values of z, or Y2 implies y for all values of z. The disjunction
is what I shall call a variable disjunction, as opposed to a constant one:
that is, in some cases one alternative is true, in others the other, whereas
in a constant disjunction there is one of the alternatives (though it is not
stated which) that is always true. Wherever disjunctions occur in regard
to propositional functions, they will only be transformable into statements
in the class-caleulus in cases where the disjunction is constant. This is
a point. which is both important in itself and instructive in its bearings.
Another way of stating the matter is this: In the proposition: If

*_Schrader; Algebra der Logik, Vol. 11, pp. 258-9; McColl, “Calculus of
Equivalent Statements,” fifth paper, Proc. Lond. Math. Soc. Vol. xxvim, p- 182.
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¢z . Yrx implies yz, then either ¢z implies yx or Yz implies yz, the
implication indicated by if and then is formal, while the subordinate
implications are material; hence the subordinate implications do not
lead to the inclusion of one class in another, which results only from
formal implication.

The formal laws of addition, multiplication, tautology and negation
are the same as regards classes and propositions. The law of tautology
states that no change is made when a class or proposition is added to or
multiplied by itself. A new feature of the class-calculus is the null-class,
or class having no terms. This may be defined as the class of terms that
belong to every class, as the class which does not exist (in the sense
defined above), as the class which is contained in every class, as the
class A which is such that the propositional function “z is a A™ is false
for all values of z, or as the class of 2’s satisfying any propositional
function ¢z which is false for all values of ». All these definitions are
easily shown to be equivalent.

26. Some important points arise in connection with the theory of
identity. We have already defined two terms as identical when the
second belongs to every class to which the first belongs. It is easy to
show that this definition is symmetrical, and that identity is transitive
and reflexive (i.e. if z and g, y and z are identical, so are « and z; and
whatever # may be, z is identical with z). Diversity is defined as the
negation of identity. If x be any term, it is necessary to distinguish
from x the class whose only member is z: this may be defined as the
class of terms which are identical with z. The necessity for this
distinction, which results primarily from purely formal considerations,
was discovered by Peano; I shall return to it at a later stage. Thus
the class of even primes is not to be identified with the number 2, and
the class of numbers which are the sum of 1 and 2 is not to be identified
with 8. In what, philosophically speaking, the difference consists, is a
point to be considered in Chapter vi.

C. The Calculus of Relations.

27. The calculus of relations is a more modern subject than the
calculus of classes. Although a few hints for it are to be found in
De Morgan*, the subject was first developed by C. S. Peircet. A careful
analysis of mathematical reasoning shows (as we shall find in the course
of the present work) that types of relations are the true subject-matter
discussed, however a bad phraseology may disguise this fact; hence the
logic of relations has a more immediate bearing on mathematics than

* Camb. Phil. Trans. Vol x, “On the Syllogism, No. 1v, and on the Logic of
Relations.” Cf. ib. Vol. 1x, p. 104; also his Formal Logic (London, 1847), p. 50.

t See especially his articles on the Algebra of Logic, American Journal of
Mathematics, Vols. mx and vir. The subject is treated at length by C. S. Peirce’s
methods in Schréder, op. cit., Vol. mr
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that of classes or propositions, and any theoretically correct and adequate
expression of mathematical truths is only possible by its means. Peirce
and Schréder have realized the great importance of the subject, but
unfortunately their methods, being based, not on Peano, but on the
older Symbolic Logic derived (with modifications) from Boole, are so
cumbrous and difficult that most of the applications which ought to be
made are practically not feasible. In addition to the defects of the old
Symbolic Logic, their method suffers technically (whether philosophically
or not I do not at present discuss) from the fact that they regard a
relation essentially as a class of couples, thus requiring elaborate
formulae of summation for dealing with single relations. This view is
derived, I think, probably unconsciously, from a philosophical error: it
has always been customary to suppose relational propositions less
ultimate than class-propositions (or subject-predicate propositions, with
which class-propositions are habitually confounded), and this has led
to a desire to treat relations as a kind of classes. However this may
be, it was certainly from the opposite philosophical belief, which I
derived from my friend Mr G. E. Moore*, that I was led to a different
formal treatment of relations. This treatment, whether more philo-
sophically correct or not, is certainly far more convenient and far more
powerful as an engine of discovery in actual mathematicst.

28. If R be a relation, we express by 2Ry the propositional function
“z has the relation R toy.” We require a primitive (i.e. indemonstrable)
proposition to the effect that #Ry is a proposition for all values of z
and y. We then have to consider the following classes: The class of
terms which have the relation R to some term or other, which I call the
class of referents with respect to R; and the class of terms to which
some term has the relation R, which I call the class of relata. Thus if
R be paternity, the referents will be fathers and the relata will be
children. We have also to consider the corresponding classes with
respect to particular terms or classes of terms: so-and-so’s children, or
the children of Londoners, afford illustrations.

The intensional view of relations here advocated leads to the result
that two relations may have the same extension without being identical.
Two relations R, R’ are said to be equal or equivalent, or to have the
same extension, when 2Ry implies and is implied by zR'y for all values
of # and y. But there is no need here of a primitive proposition, as
there was in the case of classes, in order to obtain a relation which is
determinate when the extension is determinate. We may replace a
relation R by the logical sum or product of the class of relations
equivalent to R, i.e. by the assertion of some or of all such relations;
and this is identical with the logical sum or product of the class of
relations equivalent to R/, if R’ be equivalent to R. Here we use

* See his article ““ On the Nature of Judgment,” Mind, N. S. No. 30.
t See my articles in R. d. M. Vol. vii, No. 2 and subsequent numbers.
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the identity of two classes, which results from the primitive proposition
as to identity of classes, to establish the identity of two relations—
a procedure which could not have been applied to classes themselves
without a vicious circle.

A primitive proposition in regard to relations is that every relation
has a converse, i.e. that, if B be any relation, there is a relation R’ such
that zRy is equivalent to yR'z for all values of z and y. Following

Schroder, I shall denote the converse of R by R. Greater and less,
before and after, implying and implied by, are mutually converse
relations. With some relations, such as identity, diversity, equality,
inequality, the converse is the same as the original relation: such
relations are called symmetrical. When the converse is incompatible
with the original relation, as in such cases as greater and less, I call the
relation asymmetrical ; in intermediate cases, not-symmetrical.

The most important of the primitive propositions in this subject is
that between any two terms there is a relation not holding between any
two other terms. This is analogous to the principle that any term is
the only member of some class; but whereas that could be proved,
owing to the extensional view of classes, this principle, so far as I can
discover, is incapable of proof. In this point, the extensional view of
relations has an advantage; but the advantage appears to me to be
outweighed by other considerations. When relations are considered
intensionally, it may seem possible to doubt whether the above principle
is true at all. It will, however, be generally admitted that, of any two
terms, some propositional function is true which is not true of a certain
given different pair of terms. If this be admitted, the above principle
follows by considering the logical product of all the relations that hold
between our first pair of terms. Thus the above principle may be
replaced by the following, which is equivalent to it: If xRy implies
'Ry, whatever R may be, so long as R is a relation, then « and &,
y and 7 are respectively identical. But this principle introduces a
logical difficulty from which we have been hitherto exempt, namely a
variable with a restricted field; for unless R is a relation, 2Ry is not a
proposition at all, true or false, and thus R, it would seem, cannot take
all values, but only such as are relations. I shall return to the discussion
of this point at a later stage.

29. Other assumptions required are that the negation of a relation
is a relation, and that the logical product of a class of relations (i.e. the
assertion of all of them simultaneously) is a relation. Also the relative
product of two relations must be a relation. The relative product of two
relations R, . is the relation which holds between x and =z whenever
there is a term y to which z has the relation R and which has to x the
relation .§. Thus the relation of a maternal grandfather to his grandson
is the relative product of father and mother; that of a paternal grand-
mother to her grandson is the relative product of mother and father;
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that of grandparent to grandchild is the relative product of parent and
parent. The relative product, as these instances show, is not in general
commutative, and does not in general obey the law of tautology. The
relative product is a notion of very great importance. Since it does not
obey the law of tautology, it leads to powers of relations: the square of
the relation of parent and child is the relation of grandparent and
grandchild, and so on. Peirce and Schrider consider also what they call
the relative sum of two relations R and .S, which holds between z and =,
when, if & be any other term whatever, either & has to y the relation R,
or y has to z the relation S. This is a complicated notion, which I have
found no occasion to employ, and which is introduced only in order to
preserve the duality of addition and multiplication. This duality has a
certain technical charm when the subject is considered as an independent
branch of mathematics; but when it is considered solely in relation to
the principles of mathematics, the duality in question appears devoid of
all philosophical importance.

30. Mathematics requires, so far as I know, only two other
primitive propositions, the one that material implication is a relation,
the other that e (the relation of a term to a class to which it belongs) is
a relation®*. We can now develop the whole of mathematics without
further assumptions or indefinables. Certain propositions in the logic
of relations deserve to be mentioned, since they are important, and it
might be doubted whether they were capable of formal proof. If u, v
be any two classes, there is a relation R the assertion of which between
any two terms x and y is equivalent to the asscrtion that  belongs to »
and y to v. If « be any class which is not null, there is a relation which
all its terms have to it, and which holds for no other pairs of terms. If
R be any relation, and « any class contained in the class of referents
with respect to R, there is a relation which has « for the class of its
referents, and is equivalent to R throughout that class; this relation is
the same as R where it holds, but has a more restricted domain. (I use
domain as synonymous with class of referents.) TFrom this point onwards,
the development of the subject is technical : special types of relations are
considered, and special branches of mathematics result.

D. Peano’s Symbolic Logic.

31. So much of the above brief outline of Symbolic Logic is
inspired by Peano, that it secrus desirable to discuss his work explicitly,
Justifying by criticism the points in which I have departed from him.

The question as to which of the notions of symbolic logic are to be
taken as indefinable, and which of the propositions as indemonstrable,
is, as Professor Peano has insistedt, to some extent arbitrary. But it is

* There is a difficulty in regard to this primitive proposition, discussed in §§ 53,
94 below.

1 E.g. F. 1901, p. G; F. 1897, Part I, pp. 62-3.
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important to establish all the mutual relations of the simpler notions
of logic, and to examine the consequence of taking various notions as
indefinable. It is necessary to realize that definition, in mathematics,
does not mean, as in philosophy, an analysis of the idea to be defined
into constituent ideas. This notion, in any case, is only applicable to
concepts, whereas in mathematics it is possible to define terms which
are not concepts®. Thus also many notions are defined by symbolic
logic which are not capable of philosophical definition, since they are
simple and unanalyzable. Mathematical definition consists in pointing
out a fixed relation to a fixed term, of which one term only is capable:
this term is then defined by means of the fixed relation and the fixed
term. The point in which this differs from philosophical definition
may be elucidated by the remark that the mathematical definition does
not point out the term in question, and that only what may be called
philosophical insight reveals which it is among all the terms there are.
This is due to the fact that the term is defined by a concept which
denotes it unambiguously, not by actually mentioning the term denoted.
What is meant by denoting, as well as the different ways of denoting,
must be accepted as primitive ideas in any symbolic logict: in this
respect, the order adopted seems not in any degree arbitrary.

32. For the sake of definiteness, let us now examine some one
of Professor Peano’s expositions of the subject. In his later expositions}
he has abandoned the attempt to distinguish clearly certain ideas and
propositions as primitive, probably because of the realization that any
such distinction is largely arbitrary. But the distinction appears useful,
as introducing greater definiteness, and as showing that a certain set
of primitive ideas and propositions are sufficient; so far from being
abandoned, it ought rather to be made in every possible way. I shall,
therefore, in what follows, expound one of his earlier expositions, that
of 18978.

The primitive notions with which Peano starts are the following:
Class, the relation of an individual to a class of which it is a member,
the notion.of a term, implication where both propositions contain the
same variables, i.e. formal implication, the simultaneous affirmation of
two propositions, the notion of definition, and the negation of a pro-
position. From these notions, together with the division of a complex
proposition into parts, Peano professes to deduce all symbolic logic by
means of certain primitive propositions. Let us examine the deduction
in outline.

We may observe, to begin with, that the simultaneous affirmation
of #wo propositions might seem, at first sight, not enough to take as a
primitive idea. For although this can be extended, by successive steps,
to the simultaneous affirmation of any finite number of propositions,

* See Chap. 1v. + See Chap. v.
1 F. 1901 and R. d. M. Vol. v, No. 1 (1900). § F. 1897, Part 1.



98 The Indefinables of Mathematics [cHAP. 1

yet this is not all that is wanted; we require to be able to affirm
simultaneously all the propositions of any class, finite or infinite. But
the simultaneous assertion of a class of propositions, oddly enough, is
much easier to define than that of two propositions (see § 34, (3)). If k
be a class of propositions, their simultaneous affirmation is the assertion
that “p is a k” implies p. If this holds, all-propositions of the class are
true; if it fails, one at least must be false. We have seen that the
logical product of two propositions can be defined in a highly artificial
manner; but it might almost as well be taken as indefinable, since no
further property can be proved by means of the definition. We may
observe, also, that formal and material implication are combined by
Peano into one primitive idea, whereas they ought to be kept separate.
33. Before giving any primitive propositions, Peano proceeds to
some definitions. (1) If a is a class, “2 and y are &’s™ is to mean
“zisanaand yisana” (2) If a and b are classes, “every aisa d”
means “x is an a implies that z is a b.” If we accept formal implication
as a primitive notion, this definition seems unobjectionable; but it may
well be held that the relation of inclusion between classes is simpler than
formal implication, and should not be defined by its means. This is a
difficult question, which I reserve for subsequent discussion. A formal
implication appears to be the assertion of a whole class of material
implications. The complication introduced at this point arises from
the nature of the variable, a point which Peano, though he has done
very much to show its importance, appears not to have himself suffi-
ciently considered. The notion of one proposition containing a variable
implying another such proposition, which he takes as primitive, is
complex, and should therefore be separated into its constituents; from
this separation arises the necessity of considering the simultaneous
affirmation of a whole class of propositions before interpreting such
a proposition as “z is an a implies that 2 isa 8.” (3) We come next
to a perfectly worthless definition, which has been since abandoned*.
This is the definition of such that. 'The 2’s such that x is an a, we are
told, are to mean the class a. But this only gives the meaning of such
that when placed before a proposition of the type “z is an a.” Now
it is often necessary to consider an « such that some proposition is true
of it, where this proposition is not of the form “z is an a.” Peano holds
(though he does not lay it down as an axiom) that every proposition
containing only one variable is reducible to the form “z is an at.”
But we shall see (Chap. x) that at least one such proposition is not
reducible to this form. And in any case, the only utility of such that
is to effect the reduction, which cannot therefore be assumed to be
already effected without it. The fact is that such that contains a primi-
tive idea, but one which it is not easy clearly to disengage from other ideas.

* In consequence of the criticisms of Padoa, R. d. M. Vol. vi, p. 112.
T R. d. M. Vol. vii, No. 1, p. 25; F. 1901, p. 21, § 2, Prop. 4. 0, Note.
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In order to grasp the meaning of such that, it is necessary to observe,
first of all, that what Peano and mathematicians generally call one
proposition containing a variable is really, if the variable is apparent,
the conjunction of a certain class of propositions defined by some
constancy of form; while if the variable is real, so that we have a
propositional function, there is not a proposition at all, but merely
a kind of schematic representation of any proposition of a certain type.
“The sum of the angles of a triangle is two right angles,” for example,
when stated by means of a variable, becomes: Let z be a triangle; then
the sum of the angles of x is two right angles. This expresses the
conjunction of all the propositions in which it is said of particular
definite entities that if they are triangles, the sum of their angles is
two right angles. But a propositional function, where the variable is
real, represents any proposition of a certain form, not all such proposi-
tions (see § 59-62). There is, for each propositional function, an
indefinable relation between propositions and entities, which may be
expressed by saying that all the propositions have the same form,
but different entities enter into them. It is this that gives rise to
propositional functions. Given, for example, a constant relation and
a constant term, there is a one-one correspondence between the propo-
sitions asserting that various terms have the said relation to the said
term, and the various terms which occur in these propositions. It is
this notion which is requisite for the comprehension of such that. Let
z be a variable whose values form the class a, and let f(x) be a one-
valued function of 2 which is a true proposition for all values of # within
the class a, and which is false for all other values of 2. Then the terms
of a are the class of terms such that f(z)is a true proposition. This
gives'an explanation of such that. But it must always be remembered
that the appearance of having ome proposition f(z) satisfied by a
number of values of z is fallacious: f(2) is not a proposition at all,
but a propositional function. What is fundamental is the relation of
various propositions of given form to the various terms entering
severally into them as arguments or values of the variable; this
relation is equally required for interpreting the propositional function
f(x) and the notion suck that, but is itself ultimate and inexplicable.
(4) We come next to the definition of the logical product, or
common part, of two classes. If @ and b be two classes, their common
part consists of the class of terms z such that #is an @ and 2 is a b.
Here already, as Padoa points out (loc. cit.), it is necessary to extend the
meaning of such that beyond the case where our proposition asserts
membership of a class, since it is only by means of the definition that
the common part is shown to be a class.

34. The remainder of the definitions preceding the primitive
propositions are less important, and may be passed over. Of the
primitive propositions, some appear to be merely concerned with the
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symbolism, and not to express any real properties of what is symbolized ;
others, on the contrary, are of high logical importance.

(1) The first of Peano’s axioms is “every class is contained in
itself.” 'This is equivalent to “every proposition implies itself.” There
seems no way of evading this axiom, which is equivalent to the law of
identity, except the method adopted above, of using self-implication
to define propositions. (2) Next we have the axiom that the product
of iwo classes is a class. This ought to have been stated, as ought also
the definition of the logical product, for a class of classes; for when
stated for only two classes, it cannot be extended to the logical product
of an infinite class of classes. If class is taken as indefinable, it is a
genuine axiom, which is very necessary to reasoning. But it might
perbaps be somewhat generalized by an axiom concerning the terms
satisfying propositions of a given form: e.g. “the terms having one
or more given relations to one or more given terms form a class.”
"In Section B, above, the axiom was wholly evaded by using a generalized
form of the axiom as the definition of class. (3) We have next two
axioms which are really only one, and appear distinct only because Peano
defines the common part of two classes instead of the common part of a
class of classes. These two axioms state that, if a, b be classes, their logical
product, ab, is contained in & and is contained in 4. These appear as
different axioms, because, as far as the symbolism shows, ad might be
different from da. It is one of the defects of most symbolisms that they
give an order to terms which intrinsically have none, or at least none
that is relevant. So in this case: if K be a class of classes, the logical
product of K consists of all terms belonging to every class that belongs
to K. With this definition, it becomes at once evident that no order
of the terns of X is involved. Hence if X has only two terms, @ and b,
it is indifferent whether we represent the logical product of X by ab
or by ba, since the order exists only in the symbols, not in what is
symbolized. It is to be observed that the corresponding axiom with
regard to propositions is, that the simultaneous assertion of a class of
propositions implies any proposition of the class; and this is perhaps
the best form of the axiom. Nevertheless, though an axiom is not
required, it is necessary, here as elsewhere, to have a means of connecting
the case where we start from a class of classes or of propositions or of
relations with the case where the class results from enumeration of its
terms. Thus although no order is involved in the product of a class of
propositions, there is an order in the product of two definite proposi-
tions p, g, and it is significant to assert that the products pg and gp are
equivalent. But this can be proved by means of the axioms with which
we began the calculus of propositions (§ 18). It is to be observed that
this proof is prior to the proof that the class whose terms are p and g is
identical with the class whose terms are ¢ and p. (4) We have next
two forms of syllogism, both primitive propositions. The first asserts
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that, if a, &, ¢ be classes, and & is contained in 3, and « is an a, then z is
a b; the second asserts that if a, 8, ¢ be classes, and a is contained in &,
b in ¢, then a is contained in ¢. It is one of the greatest of Peano’s
merits to have clearly distinguished the relation of the individual to its
class from the relation of inclusion between classes. The difference is
exceedingly fundamental : the former relation is the simplest and most
essential of all relations, the latter a complicated relation derived from
logical implication. It results from the distinction that the syllogism
in Barbara has two forms, usually confounded : the one the time-honoured
assertion that Socrates is a man, and therefore mortal, the other the
assertion that Greeks are men, and therefore mortal. These two forms
are stated by Peano’s axioms. It is to be observed that, in virtue of the
definition of what is meant by one class being contained in another,
the first form results from the axiom that, if p, ¢, 7 be propositions, and
p implies that g implies 7, then the product of p and g implies 7. This
axiom is now substituted by Peano for the first form of the syllogism*:
it is more general and cannot be deduced from the said form. The
second form of the syllogism, when applied to propositions instead of
classes, asserts that implication is transitive. This principle is, of course,
the very life of all chains of reasoning. (5) We have next a principle
of reasoning which Peano calls composition: this asserts that if a is
contained in  and also in ¢, then it is contained in the common part
of both. Stating this principle with regard to propositions, it asserts
that if a proposition implies each of two others, then it implies their
joint assertion or logical product; and this is the principle which was
called composition above.

'35. From this point, we advance successfully until we require the
idea of nggation. 'This is taken, in the edition of the Formulaire we are
considering, as a new primitive idea, and disjunction is defined by its
means. By means of the negation of a proposition, it is of course easy
to define the negation of a class: for “x is a not-a™ is equivalent to “a
is not an a.” But we require an axiom to the effect that not-a is a
class, and another to the effect that not-not-a is a. Peano gives also a
third axiom, namely : If a, b, ¢ be classes, and ab is contained in ¢, and =
is an a but not a ¢, then z is not a . This is simpler in the form: If p,
g, T be propositions, and p, ¢ together imply r, and ¢ is true while 7 is
false, then ¢ is false. This would be still further 1mproved by being put
in the form: If ¢, r are propositions, and ¢ implies 7, then not-r implies
not-g; a form which Peano obtains as a deduction. By dealing with
propositions before classes or propositional functions, it is possible, as we
saw, to avoid treating negation as a primitive idea, and to replace all
axioms respecting negation by the principle of reduction.

‘We come next to the definition of the disjunction or logical sum of
two classes. On this subject Peano has many times changed his

* Seee.g. F. 1901, Part I, § 1, Prop. 3. 3 (p. 10).
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procedure. In the edition we are considering, “a or & is defined as the
negation of the logical product of not-a and not-3, i.e. as the class of
terms which are not both not-a and not-b. In later editions (e.g. F. 1901,
p- 19), we find a somewhat less artificial definition, namely: “a or 5™
consists of all terms which belong to any class which contains @ and
contains b. Either definition seems logically unobjectionable. It is to
be observed that a and b are classes, and that it remains a question for
philosophical logic whether there is not a quite different notion of the
disjunction of individuals, as e.g. “Brown or Jones.” I shall consider
this question in Chapter v. It will be remembered that, when we begin
by the calculus of propositions, disjunction is defined before negation ;
with the above definition (that of 1897), it is plainly necessary to take
negation first.

36. The connected notions of the null-class and the existence of a
class are next dealt with. In the edition of 1897, a class is defined as
null when it is contained in every class. When we remember the
definition of one class @ being contained in another & (“z is an a”
implies “z is a b™ for all values of z), we see that we are to regard
the implication as holding for all values, and not only for those values
for which 2 really is an a. This is a point upon which Peano is not
explicit, and I doubt whether he has made up his mind on it. If the
implication were only to hold when « really is an a, it would not give a
definition of the null-class, for which this hypothesis is false for all values
of z. 1 do not know whether it is for this reason or for some other that
Peano has since abandoned the definition of the inclusion of classes
by means of formal implication between propositional functions: the
inclusion of classes appears to be now regarded as indefinable. Another
definition which Peano has sometimes favoured (e.g. F. 1895, Errata,
p- 116) is, that the null-class is the product of any class into its
negation—a definition to which similar remarks apply. In R. d. M. vi,
No. 1 (§ 3, Prop. 1. 0), the null-class is defined as the class of those terms
that belong to every class, i.e. the class of terms x such that “q is a
class™ implies “& is an a™ for all values of a. There are of course no
such terms z ; and there is a grave logical difficulty in trying to interpret
extensionally a class which has no extension. This point is one to which
I shall return in Chapter vi.

From this point onward, Peano’s logic proceeds by a smooth develop-
ment. But in one respect it is still defective: it does not recognize as
ultimate relational propositions not asserting membership of a class.
For this reason, the definitions of a function* and of other essentially
relational notions are defective. But this defect is easily remedied by
applying, in the manner explained above, the principles of the
Formulaire to the logic of relationst.

* E.g. F.1901, Part I, § 10, Props. 1. 0. 01 (p. 33). |

t See my article ““ Sur la logique des relations,” R. d. M. Vol. vir, 2 (1901).



CHAPTER IIL

IMPLICATION AND FORMAL IMPLICATION.

37. Ix the preceding chapter I endeavoured to present, briefly and
uncritically, all the data, in the shape of formally fundamental ideas
and propositions, that pure mathematics requires. In subsequent Parts
I shall show that these are all the data by giving definitions of the
various mathematical concepts—number, infinity, continuity, the various
spaces of geometry, and motion. In the remainder of Part I, I shall
give indications, as best I can, of the philosophical problems arising in
the analysis of the data, and of the directions in which I imagine these
problems to be probably soluble. Some logical notions will be elicited
which, though they seem quite fundamental to logic, are not commonly
discussed in works on the subject ; and thus problems no longer clothed
in mathematical symbolism will be presented for the consideration of
philosophical logicians.

Two kinds of implication, the material and the formal, were found to
be essential to every kind of deduction. In the present chapter I wish
to examine and distinguish these two kinds, and to discuss some methods
of attempting to analyze the second of them.

In the discussion of inference, it is common to permit the intrusion
of a psychological element, and to consider our acquisition of new
knowledge by its means. But it is plain that where we validly infer one
proposition from another, we do so in virtue of a relation which holds
between the two propositions whether we perceive it or not: the mind,
in fact, is as purely receptive in inference as common sense supposes it to
be in perception of sensible objects. The relation in virtue of which it
is possible for us validly to infer is what I call material implication.
We have already seen that it would be a vicious circle to define this
relation as meaning that if one proposition is true, then another is true,
for if and then already involve implication. The relation holds, in fact,
when it does hold, without any reference to the truth or falsehood of the
propositions involved.

But in developing the consequences of our assumptions as to impli-
cation, we were led to conclusions which do not by any means agree with
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what is commonly held concerning implication, for we found that any
false proposition implies every proposition and any true proposition is
implied by every proposition. Thus propositions are formally like a set
of lengths each of which is one inch or two, and implication is like the
relation “equal to or less than” among such lengths. It would certainly
not be commonly maintained that “2+2=4" can be deduced from
“Socrates is a man,” or that both are implied by “Socrates is a triangle.”
But the reluctance to admit such implications is chiefly due, I think, to
preoccupation with formal implication, which is a much more familiar
notion, and is really before the mind, as a rule, even where material
implication is what is explicitly mentioned. In inferences from “Socrates
is & man,” it is customary not to consider the philosopher who vexed the
Athenians, but to regard Socrates merely as a symbol, capable of being
replaced by any other man; and only a vulgar prejudice in favour of
true propositions stands in the way of replacing Socrates by a number, a
table, or a plum-pudding. Nevertheless, wherever, as in Euclid, one
particular proposition is deduced from another, material implication is
involved, though as a rule the material implication may be regarded as a
particular instance of some formal implication, obtained by giving some
constant value to the variable or variables involved in the said formal
implication. And although, while relations are still regarded with the
awe caused by unfamiliarity, it is natural to doubt whether any such
relation as implication is to be found, yet, in virtue of the general
principles laid down in Section C of the preceding chapter, there must
be a relation holding between nothing except propositions, and holding
between any two propositions of which either the first is false or the
second true. Of the various equivalent relations satisfying these
conditions, one is to be called.implication, and if such a notion seems
unfamiliar, that does not suffice to prove that it is illusory.

38. At this point, it is necessary to consider a very difficult
logical problem, namely, the distinction between a proposition actually
asserted, and a proposition considered merely as a complex concept.
Oxe of our indemonstrable principles was, it will be remembered, that
if the hypothesis in an implication is true, it may be dropped, and the
consequent asserted. This principle, it was observed, eludes formal
statement, and points to a certain failure of formalism in general. The
principle is employed whenever a proposition is said to be proved; for
what happens is, in all such cases, that the proposition is shown to be
implied by some trué proposition. Another form in which the principle
is constantly employed is the substitution of a constant, satisfying the
hypothesis, in the consequent of a formal implication. If ¢ implies Yo
for all values of z, and if @ is a constant satisfying ¢z, we can assert
{ra, dropping the true hypothesis ¢a. This occurs, for example, when-
ever any of those rules of inference which employ the hypothesis
that the variables involved are propositions, are applied to particular
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propositions. The principle in question is, therefore, quite vital to any
kind of demonstration.

The independence of this principle is brought out by a consideration
of Lewis Carroll’s puzzle,  What the Tortoise said to Achilles*.” The
principles of inference which we accepted lead to the proposition that, if
p and g be propositions, then p together with “p implies ¢~ implies g.
At first sight, it might be thought that this would enable us to assert ¢
provided p is true and implies g. But the puzzle in question shows that
this is not the case, and that, until we have some new principle, we shall
only be led into an endless regress of more and more complicated impli-
cations, without ever arriving at the assertion of . We need, in fact,
the notion of therefore, which is quite different from the notion of implies,
and holds between different entities. In grammar, the distinction is that
between a verb and a verbal noun, between, say, ¢ 4 is greater than B™
and “ 4’s being greater than B.” In the first of these, a proposition is
actually asserted, whereas in the second it is merely considered. But
these are psychological terms, whereas the difference which I desire to
express is genuinely logical. It is plain that, if I may be allowed to
use the word assertion in a non-psychological sense, the proposition
“p implies g™ asserts an implication, though it does not assert p or gq.
The p and the ¢ which enter into this proposmon are not strictly the
same as the p or the ¢ which are separate propositions, at least, if they
are true. The question is: How does a proposition differ by being
actually true from what it would be as an entity if it were not true? It
is plain that true and false propositions alike are entities of a kind, but
that true propositions have a quality not belonging to false ones, a
quality which, in a non-psychological sense, may be called being
asserted.” Yet there are grave difficulties in forming a consistent theory
on this point, for if assertion in any way changed a proposition, no
proposxtlon which can possibly in any context be unasserted could be
true, since when asserted it would become a different proposition. But
this is plainly false; for in “p implies g,” p and g are not asserted, and
yet they may be true. Leaving this puzzle to logic, however, we must
insist that there is a difference of some kind between an asserted and an
unasserted propositiont. When we say therefore, we state a relation
which can only hold between asserted propositions, and which thus
differs from implication. Wherever therefore occurs, the hypothesis
may be dropped, and the conclusion asserted by itself. This seems to
be the first step in answering Lewis Carroll’s puzzle.

39. It is commonly said that an inference must have premisses
and a conclusion, and it is held, apparently, that two or more premisses
are necessary, if not to all inferences, yet to most. This view is borne
out, at first sight, by obvious facts: every syllogism, for example, is held

* Mind, N. S. Vol. 1v, p. 278.
+ Frege (loc. cit.) has a special symbol to denote assertion.
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to have two premisses. Now such a theory greatly complicates the
relation of implication, since it renders it a relation which may have any
number of terms, and is symmetrical with respect to all but one of them,
but not symmetrical with respect to that one (the conclusion). This
complication is, however, unnecessary, first, because every simultaneous
assertion of a number of propositions is itself a single proposition, and
secondly, because, by the rule which we called ezportation, it is always
possible to exhibit an implication explicitly as holding between single
propositions. To take the first point first: if & be a class of proposi-
tions, all the propositions of the class k& are asserted by the single
proposition *for all values of , if & implies z, then ‘x is a &’ implies
2, or, in more ordinary language, “every k is true.” And as regards
the second point, which assumes the number of premisses to be finite,
“pq implies 7 is equivalent, if ¢ be a proposition, to “p implies that ¢
implies 7,” in which latter form the implications hold explicitly between
single propositions. Hence we may safely hold implication to be a
relation between two propositions, not a relation of an arbitrary number
of premisses to a single conclusion.

40. I come now to formal implication, which is a far more difficult
notion than material implication. In order to avoid the general notion
of propositional function, let us begin by the discussion of a particular
instance, say “z is a man implies z is a mortal for all values of z.”
This proposition is equivalent to “all men are mortal” “every man is
mortal” and “any man is mortal.” But it seems highly doubtful
whether it is the same proposition. It is also connected with a purely
intensional proposition in which man is asserted to be a complex notion
of which mortal is a constituent, but this proposition is quite distinct
from the one we are discussing. Indeed, such intensional propositions
are not always present where one class is included in another: in general,
either class may be defined by various different predicates, and it is by
no means necessary that every predicate of the smaller class should
contain every predicate of the larger class as a factor. Indeed, it may
very well happen that both predicates are philosophically simple: thus
colour and existent appear to be both simple, yet the class of colours is
part of the class of existents. The intensional view, derived from
predicates, is in the main irrelevant to Symbolic Logic and to Mathe-
matics, and I shall not consider it further at present.

_ 41. It may be doubted, to begin with, whether “2 is a man
implies z is a mortal ”is to be regarded as asserted strictly of all possible
terms, or only of such terms as are men. Peano, though he is not explicit,
appears to hold the latter view. But in this case, the hypothesis ceases
to be significant, and becomes a mere definition of z: z is to mean any
man. The hypothesis then becomes a mere assertion concerning the
meaning of the symbol «, and the whole of what is asserted concerning
the matter dealt with by our symbol is put into the conclusion. The
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premiss says: z is to mean any man. The conclusion says: 2 is mortal,
But the implication is merely concerning the symbolism: since any man
is mortal, if # denotes any man, # is mortal. Thus formal implication,
on this view, has wholly disappeared, leaving us the proposition “any
man is mortal” as expressing the whole of what is relevant in the
proposition with a variable. It would now only remain to examine
the proposition “any man is mortal,” and if possible to explain this
proposition without reintroducing the variable and formal implication.
It must be confessed that some grave difficulties are avoided by this
view. Consider, for example, the simultaneous assertion of all the
propositions of some class k: this is not expressed by “‘z is a k” implies
a for all values of 2.” For as it stands, this proposition does not express
what is meant, since, if 2 be not a proposition, “z is a k™ cannot imply
z ; hence the range of variability of 2 must be confined to propositions,
unless we prefix (as above, § 39) the hypothesis “2 implies 2.” This
remark applies generally, throughout the propositional calculus, to all
cases where the conclusion is represented by a single letter: unléss the
letter does actually represent a proposition, the implication asserted will
be false, since only propositions can be implied. The point is that, if 2
be our variable,  itself is a proposition for all values of z which are
propositions, but not for other values. This makes it plain what the
limitations are to which our variable is subject: it must vary only within
the range of values for which the two sides of the principal implication
are propositions, in other words, the two sides, when the variable is not
replaced by a constant, must be genuine propositional functions. If this
restriction is not observed, fallacies quickly begin to appear. Itshould be
noticed that there may be any number of subordinate implications which
do not require that their terms should be propositions: it is only of the
principal implication that this is required. Take, for example, the first
principle of inference: If p implies g, then p implies ¢. This holds
equally whether p and ¢ be propositions or not; for if either is not a
proposition, “p implies ¢ ™ becomes false, but does not cease to be a
proposition. In fact, in virtue of the definition of a proposition, our
principle states that “p implies ¢” is a propositional function, i.e. that
it is a proposition for all values of p and ¢. But if we apply the
principle of importation to this proposition, so as to obtain “*p implies
¢, together with p, implies ¢,” we have a formula which is only true
when p and g are propositions: in order to make it true universally, we
must preface it by the hypothesis “ p implies p and ¢ implies ¢.” In this
way, in many cases, if not in all, the restriction on the variability of the
variable can be removed ; thus, in the assertion of the logical product of
a class of propositions, the formula *“if 2 implies z, then ‘z is a &’
implies #” appears unobjectionable, and allows z to vary without restric-
tion. Here the subordinate implications in the premiss and the conclusion
are material : only the principal implication is formal.
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Returning now to “2 is a man implies # is a mortal,” it is plain that
no restriction is required in order to insure our having a genuine pro-
position. And it is plain that, although we might restrict the values of
x to men, and although this seems to be done in the proposition
“all men are mortal,” yet there is no reason, so far as the truth of our
proposition is concerned, why we should so restrict our z. Whether 2
be a man or not, “x is a man ” is always, when a constant is substituted
for xz, a proposition implying, for that value of z, the proposition “x is
a mortal.” And unless we admit the hypothesis equally in the cases
where it is false, we shall find it impossible to deal satisfactorily with the
null-class or with null propositional functions. We must, therefore,
allow our z, wherever the truth of our formal implication is thereby
unimpaired, to take all values without exception; and where any
restriction on variability is required, the implication is not to be
regarded as formal until the said restriction has been removed by being
prefixed as hypothesis. (If Yz be a proposition whenever z satisfies ¢z,
where ¢z is a propositional function, and if ., whenever it is a pro-
position, implies y, then “+ implies y2” is not a formal implication,
but “ ¢z implies that yx implies xx” is a formal implication.)

42. It is to be observed that “z is a man implies  is a mortal
is not a relation of two propositional functions, but is itself a single
propositional function having the elegant property of being always
true. For “x is a man” is, as it stands, not a proposition at all,
and does not imply anything; and we must not first vary our z in
“z is & man,” and then independently vary it in “z is a mortal,”
for this would lead to the proposition that “everything is a man”
implies “everything is a mortal,” which, though true, is not what was
meant. This proposition would have to be expressed, if the language
of variables were retained, by two variables, as “z is a man implies
¥ is a mortal” But this formula too is unsatisfactory, for its natural
meaning would be: “If anything is a man, then everything is a mortal.”
The point to be emphasized is, of course, that our z, though variable,
must be the same on both sides of the implication, and this requires
that we should not obtain our formal implication by first varying (say)
Socrates in “Socrates is a man,” and then in “Socrates is a mortal,”
but that we should start from the whole proposition Socrates is a
man implies Socrates is a mortal,” and vary Socrates in this Pproposition
as a whole. Thus our formal implication asserts a class of implications,
not a single implication at all. We do not, in a word, have one im-
plication containing a variable, but rather a variable implication. We
have a class of implications, no one of which contains a variable, and
we assert that every member of this class is true. This is a first step
towards the analysis of the mathematical notion of the variable.

. But, it may be asked, how comes it that Socrates may be varied
n the proposition * Socrates is a man implies Socrates is mortal ”? In
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virtue of the fact that true propositions are implied by all others, we
have “Socrates is a man inmplies Socrates is a phllosopher but in this
proposition, alas, the variability of Socrates is sadly restricted. 'This
seems to show that formal implication involves something over and
above the relation of implication, and that some addltlonal relation
must hold where a term can be varied. In the case in question, it is
natural to say that what is involved is the relation of inclusion between
the classes men and mortals—the very relation which was to be defined
and explained by our formal implication. But this view is too simple
to meet all cases, and is therefore not required in any case. A larger
number of cases, though still not all cases, can be dealt with by the
notion of what I shall call assertions. "This notion must now be brleﬂy
explained, leaving its critical discussion to Chapter vir.

43. It bas al\vays been customary to divide propositions into
subject and predicate; but this division has the defect of omitting the
verb. It is true that a graceful concession is sometimes made by loose
talk about the copula, but the verb deserves far more respect than is
thus paid to it. We may say, bmadly, that every proposition may be
divided, some in only one way, some in several ways, into a term ‘(the
subject) and something which is said about the subject which something
I shall call the assertion. Thus “Socrates is a man™ may be divided
into Socrates and is a man. "The verb, which is the distinguishing mark
of propositions, remains with the assertion; but the assertion itself,
being robbed of its subject, is neither true nor false. In logical dis-
cussions, the notion of assertion often occurs, but as the word proposition
is used for it, it does not obtain separate consideration. Consider, for
example, the best statement of the identity of indiscernibles: “If r and »
be any two diverse entities, some assertion holds of x which does not
hold of %.” But for the word assertion, which would ordinarily be
replaced by proposition, this statement is one which would commonly
pass unchallenged. Again, it might be said: “Socrates was a philo-
sopher, and the same is true of Plato.” Such statements require the
analysis of a proposition into an assertion and a subject, in order that
there may be something identical which can be said to be affirmed of
two subjects.

44. We can now see how, where the analysis into subject and
assertion is legitimate, to distinguish implications in which there is a
term which can be varied from others in which this is not the case. Two
ways of making the distinction may be suggested, and we shall have to
decide between them. It may be said that there is a relation between
the two assertions “is a man” and “is a wortal,” in virtue of which,
when the one holds, so does the other. Or again, we may analyze the
whole proposition “Socrates.is a man implies Socrates is a mortal ™ into
Socrates and an assertion about himn, and say that the assertion in
question holds of all terms. Neither of these theories replaces the above



40 The Indefinables of Mathematics [cHAP. IO

analysis of “z is a man implies # is a mortal ” into a class of material
implications ; but whichever of the two is trile carries the analysis one
step further. The first theory suffers from the difficulty that it is
essential to the relation of assertions involved that both assertions
should be made of the same subject, though it is otherwise irrelevant
what subject we choose. The second theory appears objectionable on
the ground that the suggested analysis of Socrates is a man implies
Socrates is a mortal” seems scarcely possible. The proposition in
question consists of two terms and a relation, the terms being “Socrates
is a man” and “Socrates is a mortal”; and it would seem that when a
relational proposition is analyzed into a subject and an assertion, the
subject must be one of the terms of the relation which is asserted. This
objection seems graver than that against the former view; I shall
therefore, at any rate for the present, adopt the former view, and regard
formal implication as derived from a relation between assertions.

We remarked above that the relation of inclusion between classes is
insufficient. This results from the irreducible nature of relational
propositions. Take e.g. “Socrates is married implies Socrates had a
father.” Here it is affirmed that because Socrates has one relation,
he must have another. Or better still, take “ 4 is before B implies B is
after 4.7 This is a formal implication, in which the assertions are
(superficially at least) concerning different subjects; the only way to
avoid this is to say that both propositions have both 4 and B as
subjects, which, by the way, is quite different from saying that they
have the one subject “4 and B.” Such instances make it plain that
the notion of a propositional function, and the notion of an assertion,
are more fundamental than the notion of class, and that the latter is
not adequate to explain all cases of formal implication. I shall not
enlarge upon this point now, as it will be abundantly illustrated in
subsequent portions of the present work.

It is important to realize that, according to the above analysis of
formal implication, the notion of every term is indefinable and ultimate.
A formal implication is one which holds of every term, and therefore
every cannot be explained by means of formal implication. If a and b
be classes, we can explain ‘“‘every a is & 8™ by means of “x is an a
implies @ is a ”; but the every which occurs here is a derivative and
subsequent notion, presupposing the notion of every ferm. It seems
to be the very essence of what may be called a formal truth, and of
formal reasoning generally, that some assertion is affirmed to hold of
every term; and unless the notion of every ferm is admitted, formal
truths are impossible.

45. The fundamental importance of formal implication is brought
out by the consideration that it is involved in all the rules of inference.
This shows that we cannot hope wholly to define it in terms of material
implication, but that some further element or elements must be involved.
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We may observe, however, that, in a particular inference, the rule
according to which the inference proceeds is not required as a premiss.
This point has been emphasized by Mr Bradley*; it is closely connected
with the principle of dropping a true premiss, being again a respect
in which formalism breaks down. In order to apply a rule of inference,
it is formally necessary to have a premiss asserting that the present
case is an instance of the rule; we shall then need to affirm the rule by
which we can go from the rule to an instance, and also to affirm that here
we have an instance of this rule, and so on into an endless process.
The fact is, of course, that any implication warranted by a rule of
inference does actually hold, and is not merely implied by the rule.
This is simply an instance of the non-formal principle of dropping a
true premiss: if our rule implies a certain implication, the rule may be
dropped and the implication asserted. But it remains the case that the
fact that our rule does imply the said implication, if introduced at all,
must be simply perceived, and is not guaranteed by any formal deduction;
and often it is just as easy, and consequently just as legitimate, to perceive
immediately the implication in question as to perceive that it is implied
by one or more of the rules of inference.

To sum up our discussion of formal implication : a formal implication,
we said, is the affirmation of every material implication of a certain
class; and the class of material implications involved is, in simple cases,
the class of all propositions in which a given fixed assertion, made con-
cerning a certain subject or subjects, is affirmed to imply another given
fixed assertion concerning the same subject or subjects. Where a formal
implication holds, we agreed to regard it, wherever possible, as due to
some relation between the assertions concerned. This theory raises many
formidable logical problems, and requires, for its defence, a thorough
analysis of the constituents of propositions. To this task we must now
address ourselves.

* Logic, Book 11, Part I, Chap. 1z (p. 227).



CHAPTER 1IV.

PROPER NAMES, ADJECTIVES, AND VERBS.

46. Ix the present chapter, certain yuestions are to be discussed
belonging to what may be called philosophical grammar. The study
of grammar, in my opinion, is capable of throwing far more light on
philosophical questions than is commonly supposed by philosophers.
Although a grammatical distinction cannot be uncritically assumed to
correspond to a genuine philosophical difference, yet the one is primd
facie evidence of the other, and may often he aost usefully employed
as a source of discovery. Moreover, it must be admitted, I think, that
every word occurring in a sentence must have some meaning: a perfectly
meaningless sound could not be employed in the more or less fixed
way in which language employs words. The correctness of our philo-
sophical analysis of a proposition may therefore be usefully checked
by the exercise of assigning the meaning of each word in the sentence
expressing the proposition. On the whole, grammar seems to me to
bring us much nearer to a correct logic than the current opinions of
philosophers; and in what follows, grammar, though not our master,
will yet be taken as our guide®.

Of the parts of speech, three are specially important: substantives,
adjectives, and verbs. Among substantives, some are derived from
adjectives or verbs, as humanity from human, or sequence from follows.
(I am not speaking of an etymological derivation, but of a logical one.)
Others, such as proper names, or space, time, and matter, are not
derivative, but appear primarily as substantives. What we wish to
obtain is a classification, not of words, but of ideas; I shall therefore
call adjectives or predicates all notions which are capable of being such,
even in a form in which grammar would call them substantives. The
fact is, as we shall sce, that hwman and hwmanity denote precisely .
the same concept, these words being employed respectively according to
the kind of relation in which this concept stands to the other constituents
of a proposition in which it occurs. The distinction which we require

¥ tl'he excellence of grammar as a guide is proportional to the paucity of
inflexions, i.e. to the degree of analysis effected by the language considered.
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is not identical with the grammatical distinction between substantive
and adjective, since one single concept may, according to circumstances,
be either substantive or adjective: it is the distinction between proper
and general names that we require, or rather between the objects in-
dicated by such names. In every proposition, as we saw in Chapter 1,
we may make an analysis into something asserted and something about
which the assertion is made. A proper name, when it occurs in a
proposition, is always, at least according to one of the possible ways
of analysis (where there are several), the subject that the proposition
or some subordinate constituent proposition is about, and not what is
said about the subject. Adjectives and verbs, on the other hand,
are capable of occurring in propositions in which they cannot be
regarded as subject, but only as parts of the assertion. Adjectives
are distinguished by capacity for denofing—a term which I intend
to use in a technical sense to be discussed in Chapter v. Verbs
are distinguished by a special kind of connection, exceedingly hard
to define, with truth and falsehood, in virtue of which they dis-
tinguish an asserted proposition from an unasserted one, e.g. “ Caesar
died” from “the death of Caesar.” These distinctions must now be
amplified, and I shall begin with the distinction between general and
proper names.

47. Philosophy is familiar with a certain set of distinctions, all
more or less equivalent: I mean, the distinctions of subject and pre-
dicate, substance and attribute, substantive and adjective, zhis and
what*. 1 wish now to point out briefly what appears to me to be the
truth concerning these cognate distinctions. The subject is important,
since the issues between monismm and monadism, between idealism and
empiricism, and between those who maintain and those who deny that
all truth is concerned with what exists, all depend, in whole or in part,
apon the theory we adopt in regard to the present question. But the
subject is treated here only because it is essential to any doctrine of
number or of the nature of the variable. Its bearings on general
philosophy, important as they are, will be left wholly out of account.

Whatever may be an object of thought, or may occur in any true
or false proposition, or can be counted as one, I call a ferm. This,
then, is the widest word in the philosophical vocabulary. I shall use
as synonymous with it the words unit, individual, and entity. The
first two emphasize the fact that every term is one, while the third is
derived from the fact that every term has being, i.e. is in some sense.
A man, a moment, a number, a class, a relation, a chimaera, or anything
<lse that can be mentioned, is sure to be a term ; and to deny that such
and such a thing is a term must always be false.

It might perhaps be thought that a word of such extreme generality
could not be of any great use. Such a view, however, owing to certain

* This last pair of terms is due to Mr Bradley.
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wide-spread philosophical doctrines, would be erroneous. A term is,
in fact, possessed of all the properties commonly assigned to substances
or substantives. Every term, to begin with, is a logical subject: it is,
for example, the subject of the proposition that itself is one. Again
every term is immutable and indestructible. What a term is, it is, and
no change can be conceived in it which would not destroy its identity
and make it another term*. Another mark which belongs to terms
is numerical identity with themselves and numerical diversity from all
other termst. Numerical identity and diversity are the source of unity
and plurality ; and thus the admission of many terms destroys monism.
And it seems undeniable that every constituent of every proposition can
be counted as one, and that no proposition contains less than two
constituents. 7Term is, therefore, a useful word, since it marks dissent
from various philosophies, as well as because, in many statements, we
wish to speak of any term or some term.

48. Among terms, it is possible to distinguish two kinds, which
I shall call respectively things and concepts. 'The former are the terms
indicated by proper names, the latter those indicated by all other words.
Here proper names are to be understood in a somewhat wider sense than
is usual, and things also are to be understood as embracing all par-
ticular points and instants, and many other entities not commonly called
things. Among concepts, again, two kinds at least must be distinguished,
namely those indicated by adjectives and those indicated by verbs. The
former kind will often be called predicates or class-concepts; the latter
are always or almost always relations. (In intransitive verbs, the notion
expressed by the verb is complex, and usually asserts a definite relation
to an indefinite relatum, as in ¢ Smith breathes.”)

In a large class of propositions, we agreed, it is possible, in one or
more ways, to distinguish a subject and an assertion about the subject.
The assertion must always contain a verb, but except in this respect,
assertions appear to have no universal properties. In a relational
proposition, say “ 4 is greater than B,” we may regard 4 as the subject,
and “is greater than B” as the assertion, or B as the subject and ““ 4 is
greater than” as the assertion. There are thus, in the case proposed,
two ways of analyzing the proposition into subject and assertion.
Where a relation has more than two terms, as in “ 4 is here now?,”
there will be more than two ways of making the analysis. But in
some propositions, there is only a single way: these are the subject-

* The notion of a term here set forth is a modification of Mr G. E. Moore’s
notion of a concept in his article “On the Nature of Judgment,” Mind, N. S. No. 30,
from which notion, however, it differs in some important respects.

+ On identity, see Mr G. E. Moore’s article in the Proceedings of the Aristotelian
Society, 1900-1901.

{ This proposition means * 4 is in this place at this time.” It will be shown in
Part VII that the relation expressed is not reducible to a two-term relation.
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predicate propositions, such as “Socrates is human.” The proposition
“humanity belongs to Socrates,” which is equivalent to * Socrates is
human,” is an assertion about humanity; but it is a distinct propo-
sition. In “Socrates is human,” the notion expressed by human occurs
in a different way from that in which it occurs when it is called
humanity, the difference being that in the latter case, but not in the
former, the proposition is about this notion. 'This indicates that
humanity is a concept, not a thing. I shall speak of the terms of a
proposition as those terms, however numerous, which occur in a propo-
sition and may be regarded as subjects about which the proposition is.
It is a characteristic of the terms of a proposition that any one of
them may be replaced by any other entity without our ceasing to have
a proposition. Thus we shall say that “Socrates is human™ is a
proposition having only one term; of the remaining components of
the proposition, one is the verb, the other is a predicate. 'With the sense
which is has in this proposition, we no longer have a proposition at all
if we replace human by something other than a predicate. Predicates,
then, are concepts, other than verbs, which occur in propositions having
only one term or subject. Socrates is a thing, because Socrates can
never occur otherwise than as term in a proposition: Soerates is not
capable of that curious twofold use which is involved in Auman and
humanity. Points, instants, bits of matter, particular states of mind,
and particular existents generally, are things in the above sense, and
so are many terms which do not exist, for example, the points in a
non-Euclidean space and the pseudo-existents of a novel. All classes,
it would seem, as numbers, men, spaces, etc., when taken as single terms,
are things; but this is a point for Chapter v1.

Predicates are distinguished from other terms by a number of very
interesting properties, chief among which is their connection with what
I shall call denoting. One predicate always gives rise to a host of
cognate notions: thus in addition to hwman and humanity, which
only differ grammatically, we have man, a man, some man, any man,
every man, all men*, all of which appear to be genuinely distinct one
from another. The study of these various notions is absolutely vital
to any philosophy of mathematics; and it is on account of them that
the theory of predicates is important.

49. Tt might be thought that a distinction ought to be made
between a concept as such and a concept used as a term, between,
e.g., such pairs as is and being, human and humanity, one in such a
proposition as “this is one™ and'1 in “1 is a number.” But inex-
tricable difficulties will envelop us if we allow such a view. There is,

* 1 use all men as collective, i.e. as nearly synonymous with the human race, but
differing therefrom by being many and not one. I shall always use a// collectively,
confining myself to every for the distributive sense. Thus I shall say *“ every man is
mortal,” not ‘“all men are mortal.”
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of course, a grammatical difference, and this corresponds to a difference
as regards relations. In the first case, the concept in question is used
as a concept, that is, it is actually predicated of a term or asserted to
relate two or more terms; while in the second case, the concept is
itself said to have a predicate or a relation. There is, therefore,
no difficulty in accounting for the grammatical difference. But what
I wish to urge is, that the difference lies solely in external relations,
and not in the intrinsic nature of the terms. For stppose that one
as adjective differed from 1 as term. In this statement, one as
adjective has been made into a term; hence either it has become
1, in which case the supposition is self-contradictory ; or there is some
other difference between one and 1 in addition to the fact that the
first denotes a concept not a term while the second denotes a concept
which is a term. But in this latter hypothesis, there must be propo-
sitions concerning one as term, and we shall still have to maintain
propositions concerning one as adjective as opposed to one as term;
yet all such propositions must be false, since a proposition about one
as adjective makes one the subject, and is therefore really about one
as term. In short, if there were any adjectives which could not be
made into substantives without change of meaning, all propositions
concerning such adjectives (since they would necessarily turn them into
substantives) would be false, and so would the proposition that all
such propositions are false, since this itself turns the adjectives into
substantives. But this state of things is self-contradictory.

The above argument proves that we were right in saying that terms
embrace everything that can occur in a proposition, with the possible
exception of complexes of terms-of the kind denoted by any and cognate
words*. For if 4 occurs in a proposition, then, in this statement,
A is the subject; and we have just seen that, if 4 is ever not the
subject, it is exactly and numerically the same 4 which is not subject
in one proposition and is subject in another. Thus the theory that
there are adjectives or attributes or ideal things, or whatever they may
be called, which are in some way less substantial, less self-subsistent,
less self-identical, than true substantives, appears to be wholly erroneous,
and to be easily reduced to a contradiction. Terms which are concepts
differ from those which are not, not in respect of self-subsistence, but
in virtue of the fact that, in certain true or false propositions, they
occur in a manner which is different in an indefinable way from the
manner in which subjects or terms of relations occur.

50. Two concepts have, in addition to the numerical diversity
which belongs to them as terms, another special kind of diversity
which may be called conceptual. This may be characterized by the
fact that two propositions in which the concepts occur otherwise than
as terms, even if, in all other respects, the two propositions are identical,

* See the next chapter.
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yet differ in virtue of the fact that the concepts which occur in
them are conceptually diverse. Conceptual diversity implies numerical
diversity, but the converse implication does not hold, since not all
terms are concepts. Numerical diversity, as its name implies, is the
source of plurality, and conceptual diversity is less important to
mathematics. But the whole possibility of making different assertions
about a given term or set of terms depends upon conceptual diversity,
which is therefore fundamental in general logic.

51. It is interesting and not unimportant to examine very briefly
the connection of the above doctrine of adjectives with certain traditional
views on the nature of propositions. It is customary to regard all
propositions as having a subject and a predicate, ie. as having an
immediate this, and a general concept attached to it by way of description.
This is, of course, an a2count of the theory in question which will strike
its adherents as extremely crude; but it will serve for a. general indication
of the view to be discussed. This doctrine develops by internal logical
necessity into the theory of Mr Bradley’s Logic, that all words stand for
ideas having what he calls meaning, and that in every judgment there
is a something, the true subject of the judgment, which is not an idea
and does not have meaning. To have meaning, it seems to me, is a
notion confusedly compounded of logical and psychological elements.
Words all have meaning, in the simple sense that they are symbols
which stand for something other than themselves. But a proposition,
unless it happens to be linguistic, does not itself contain words: it
contains the entities indicated by words. Thus meaning, in the sense
in which words have meaning, is irrelevant to logic. But such concepts
as @ man have meaning in another sense : they are, so to speak, symbolic
in their own logical nature, because they have the property which I call
denoting. That is to say, when a man occurs in a proposition (e.g.
“J met a man in the street”), the proposition is not about the concept
a man, but about something quite different, some actual biped denoted
by the concept. Thus concepts of this kind have meaning in a non-
psychological sense. And in this sense, when we say “this is a man,”
we are making a proposition in which a concept is in some sense
attached to what is not a concept. But when meaning is thus under-
stood, the entity indicated by Jokn does not have meaning, as Mr Bradley
contends* ; and even among concepts, it is only those that denote that
have meaning. The confusion is largely due, I believe, to the notion
that words occur in propositions, which in turn is due to the notion that
propositions are essentially mental and are to be identified with cognitions.
But these topics of general philosophy must be pursued no further in
this work. .

52. It remains to discuss the verb, and to find marks by which
it is distinguished from the adjective. In regard to verbs also, there is

* Logic, Book I, Chap. 1, §§ 17, 18 (pp. 58-60).
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a twofold grammatical form corresponding to a difference in merely
external relations. There is the verb in the form which it has as verb
(the various inflexions of this form may be left out of account), and
there is the verbal noun, indicated by the infinitive or (in English) the
present participle. The distinction is that between ¢ Felton killed
Buckingham ” and « Killing no murder.” By analyzing this difference,
the nature and function of the verb will appear.

It is plain, to begin with, that the concept which occurs in the verbal
noun is the very same as that which occurs as verb. This results from
the previous argument, that every constituent of every proposition must,
on pain of self-contradiction, be capable of being made a logical subject.
If we say “kills does not mean the same as ?o kill,” we have already
made kills a subject, and we cannot say that the concept expressed by
the word Kills cannot be made a subject. Thus the very verb which
occurs as verb can occur also as subject. The question is: What logical
difference is expressed by the difference of grammatical form ? And it
is plain that the difference must be one in external relations. But
in regard to verbs, there is a further point. By transforming the verb,
as it occurs in a proposition, into a verbal noun, the whole proposition
can be turned into a single logical subject, no longer asserted, and no
longer containing in itself truth or falsehood. But here too, there seems
to be no possibility of maintaining that the logical subject which results
is a different entity from the proposition. “Caesar died” and “the
death of Caesar” will illustrate this point. If we ask: What is asserted
in the proposition “ Caesar died”? the answer must be “the death of
Caesar is asserted.” In that case, it would seem, it is the death of Caesar
which is true or false; and yet neither truth nor falsity belongs to
a mere logical subject. The answer here seems to be that the death of
Caesar has an external relation to truth or falsehood (as the case may
be), whereas « Caesar died” in some way or other contains its own truth
or falsehood as an element. But if this is the correct analysis, it is
difficult to see how “Caesar died” differs from “the truth of Caesar’s
death ™ in the case where it is true, or “ the falsehood of Caesar’s death
in the other case. Yet it is quite plain that the latter, at any rate, is
never equivalent to “Caesar died.” There appears to be an ultimate
notion of assertion, given by the verb, which is lost as soon as we
substitute a verbal noun, and is lost when the proposition in question
is made the subject of some other proposition. This does not depend
upon grammatical form; for if I say “Caesar died is a proposition,”
I do not assert that Caesar did die, and an element which is present in
«(Caesar died” has disappeared. Thus the contradiction which was to
have been avoided, of an entity which cannot be made a logical subject,
appears to have here become inevitable. This difficulty, which seems to
be inherent in the very nature of truth and falsehood, is one with which
I do not know how to deal satisfactorily. The most obvious course
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would be to say that the difference between an asserted and an unasserted
proposition is not logical, but psychological. In the sense in which
false propositions may be asserted, this is doubtless true. But there
is another sense of assertion, very difficult to bring clearly before the
mind, and yet quite undeniable, in which only true propositions are
asserted. True and false propositions alike are in some sense entities,
and are in some sense capable of being logical subjects; but when
a proposition happens to be true, it has a further quality, over and
above that which it shares with false propositions, and it is this further
quality which is what I mean by assertion in a logical as opposed to
a psychological sense. 'The nature of truth, however, belongs no more
to the principles of mathematics than to the principles of everything
else. I therefore leave this question to the logicians with the above
brief indication of a difficulty.

53. It may be asked whether everything that, in the logical sense
we are concerned with, is a verb, expresses a relation or not. It seems
plain that, if we were right in holding that “Socrates is human” is a
proposition having only one termt, the is in this proposition cannot
express a relation in the ordinary sense. In fact, subject-predicate
propositions are distinguished by just this non-relational character.
Nevertheless, a relation between Socrates and humanity is certainly
implied, and it is very difficult to conceive the proposition as expressing
no relation at all. We may perhaps say that it is a relation, although
it is distinguished from other relations in that it does not permit itself
to be regarded as an assertion concerning either of its terms indifferently,
but only as an assertion concerning the referent. A similar remark may
apply to the proposition “ 4 is,” which holds of every term without
exception. The is here is quite different from the és in “Socrates is
human”; it may be regarded as complex, and as really predicating
Being of 4. In this way, the true logical verb in a proposition may be
always regarded as asserting a relation. But it is so hard to know
exactly what is meant by relation that the whole question is in danger
of becoming purely verbal.

64. The twofold nature of the verb, as actual verb and as verbal
noun, may be expressed, if all verbs are held to be relations, as the
difference between a relation in itself and a relation actually relating.
Consider, for example, the proposition “4 differs from B.” The
constituents of this proposition, if we analyze it, appear to be only 4,
difference, B. Yet these constituents, thus placed side by side, do not
reconstitute the proposition. The difference which occurs in the
proposition actually relates 4 and B, whereas the difference after
analysis is a notion which has no connection with 4 and B. It may
be said that we ought, in the analysis, to mention the relations which
difference has to 4 and B, relations which are expressed by s and from
when we say “4 is different from B.” These relations consist in the
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fact that 4 is referent and B relatum with respect to difference. But
« 4, referent, difference, relatum, B is still merely a list of terms, not
a proposition. A proposition, in fact, is essentially a unity, and when
analysis has destroyed the unity, no enumeration of constituents will
restore the proposition. The verb, when used as a verb, embodies the
unity of the proposition, and is thus distinguishable from the verb con-
sidered as a term, though I do not know how to give a clear account of
the precise nature of the distinction.

55. It may be doubted whether the general concept difference
occurs at all in the proposition “4 differs from B,” or whether there is
not rather a specific difference of 4 and B, and another specific difference
of C and D, which are respectively affirmed in “4 differs from B> and
«( differs from D.” In this way, difference becomes a class-concept of
which there are as many instances as there are pairs of different terms;
and the instances may be said, in Platonic phrase, to partake of the
nature of difference. As this point is quite vital in the theory of
relations, it may be well to dwell upon it. And first of all, I must
point out that in “ 4 differs from B™ I intend to consider the bare
numerical difference in virtue of which they are two, not difference in
this or that respect.

Let us first try the hypothesis that a difference is a complex notion,
compounded of difference together with some special quality distinguishing
a particular difference from every other particular difference. So far as
the relation of difference itself is concerned, we are to suppose that
no distinction can be made between different cases; but there are to be
different associated qualities in different cases. But since cases are
distinguished by their terms, the quality must be primarily associated
with the terms, not with difference. If the quality be not a relation, it
can have no special connection with the difference of 4 and B, which it
was to render distinguishable from bare difference, and if it fails in this
it becomes irrelevant. On the other hand, if it be a new relation
between 4 and B, over and above difference, we shall have to hold that
any two terms have two relations, difference and a specific difference, the
latter not holding between any other pair of terms. This view is a
combination of two others, of which the first holds that the abstract
general relation of difference itself holds between 4 and B, while the
second holds that when two terms differ they have, corresponding to
this fact, a specific relation of difference, unique and unanalyzable and
not shared by any’ other pair of terms. Either of these views may be
held with either the denial or the affirmation of the other. Let us see
what is to be said for and against them.

Against the notion of specific differences, it may be urged that, if
differences differ, their differences from each other must also differ, and
thus we are led into an endless process. Those who object to endless
processes will see in this a proof that differences do not differ. But in
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the present work, it will be maintained that there are no contradictions
peculiar to the notion of infinity, and that an endless process is not to
be objected to unless it arises in the analysis of the actual meaning of a
proposition. In the present case, the process is one of implications, not
one of analysis; it must therefore be regarded as harmless.

Against the notion that the abstract relation of difference holds
between 4 and B, we have the argument derived from the analysis of
“ 4 differs from B,” which gave rise to the present discussion. It is to
be observed that the hypothesis which combines the general and the
specific difference must suppose that there are two distinct propositions,
the one affirming the general, the other the specific difference. Thus if
there cannot be a general difference between 4 and B, this mediating
hypothesis is also impossible. And we saw that the attempt to avoid
the failure of analysis by including in the meaning of “ A differs from B
the relations of difference to 4 and B was vain. This attempt, in fact,
leads to an endless process of the inadmissible kind ; for we shall have to
include the relations of the said relations to 4 and B and difference, and
so on, and in this continually increasing complexity we are supposed
to be only analyzing the meaning of our original proposition. This
argument establishes a point of very great importance, namely, that
when a relation holds between two terms, the relations of the relation to
the terms, and of these relations to the relation and the terms, and so
on ad infinitum, though all implied by the proposition affirming the
original relation, form no part of the meaning of this proposition.

But the above argument does not suflice to prove that the relation
of 4 to B cannot be abstract difference: it remains tenable that, as
was suggested to begin with, the true solution lies in regarding every
proposition as having a kind of unity which analysis cannot praserve,
and which is lost even though it be mentioned by analysis as an element
in the proposition. This view has doubtless its own difficulties, but the
view that no two pairs of terms can have the same relation both contains
difficulties of its own and fails to solve the difficulty for the sake of which
it was invented. For, even if the difference of 4 and B be absolutely
peculiar to 4 and B, still the three terms 4, B, difference of 4 from B,
do not reconstitute the proposition “4 differs from B,” any more than
A4 and B and difference did. And it seems plain that, even if differences
did differ, they would still have to have something in common. But
the most general way in which two terms can have something in common
is by both having a given relation to a given term. Hence if no two
pairs of terms can have the same relation, it follows that no two terms
can have anything in common, and hence different differences will not
be in any definable sense instances of difference*. I conclude, then, that

* The above argument appears to prove that Mr Moore’s theory of universals
with numerically diverse instances in his paper on Identity (Proceedings of the
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the relation affirmed between 4 and B in the proposition “ 4 differs
from B™ is the general relation of difference, and is precisely and
numerically the same as the relation affirmed between C and D in
« ¢ differs from D.” And this doctrine must be held, for the same
reasons, to be true of all other relations; relations do not have instances,
but are strictly the same in all propositions in which they occur.

We may now sum up the main points elicited in our discussion of
the verb. The verb, we saw, is a concept which, like the adjective, may
occur in a proposition without being one of the terms of the proposition,
though it may also be made into a logical subject. One verb, and one
only, must occur as verb in every proposition; but every proposition,
by turning its verb into a verbal noun, can be changed into a single
logical subject, of a kind which I shall call in future a propositional
concept. Every verb, in the logical sense of the word, may be regarded
as a relation; when it occurs as verb, it actually relates, but when it
occurs as verbal noun it is the bare relation considered independently of
the terms which it relates. Verbs do not, like adjectives, have instances,
but are identical in all the cases of their occurrence. Owing to the way
in which the verb actually relates the terms of a proposition, every
proposition has a unity which renders it distinct from the sum of its
constituents. All these points lead to logical problems, which, in a
treatise on logic, would deserve to be fully and thoroughly discussed.

Having now given a general sketch of the nature of verbs and
adjectives, I shall proceed, in the next two chapters, to discussions
arising out of the consideration of adjectives, and in Chapter vu to
topics connected with verbs. Broadly speaking, classes are connected
with adjectives, while propositional functions involve verbs. It is for
this reason that it has been necessary to deal at such length with a

subject which might seem, at first sight, to be somewhat remote from
the principles of mathematics.

Aristotelian Society, 1900—1901) must not be applied to all concepts. The relation of
an instance to its universal, at any rate, must be actually and numerically the same
in all cases where it occurs.



CHAPTER V.

DENOTING.

56. THe notion of denoting, like most of the notions of logic, has
been obscured hitherto by an undue admixture of psychology. There is
a sense in which we denote, when we point or describe, or employ words
as symbols for concepts; this, however, is not the sense that I wish to
discuss. But the fact that description is possible—that we are able, by
the employment of concepts, to designate a thing which is not a concept
—is due to a logical relation between some concepts and some terms, in
virtue of which such concepts inherently and logically denote such terms.
It is this sense of denoting which is here in question. This notion lies
at the bottom (I think) of all theories of substance, of the subject-
predicate logic, and of the opposition between things and ideas,
discursive thought and immediate perception. These various develop-
ments, in the main, appear to me mistaken, while the fundamental fact
itself, out of which they have grown, is hardly ever discussed in its
logical purity. .

A concept denotes when, if it occurs in a proposition, the proposition
is not about the concept, but about a term connected in a certain
peculiar way with the concept. If I say “I met a man,” the proposition
is not about @ man: this is a concept which does not walk the streets,
but lives in the shadowy limbo of the logic-books. What I met was a
thing, not a concept, an actual man with a tailor and a bank-account or
a public-house and a drunken wife. Again, the proposition “any finite
number is odd or even” is plainly true; yet the concept “any finite
number " is neither odd nor even. It is only particular numbers that are
odd or even; there is not, in addition to these, another entity, any
number, which is either odd or even, and if there were, it is plain that it
could not be odd and could not be even. Of the concept «any number,”
almost all the propositions that contain the phrase «any number” are
false. If we wish to speak of the concept, we have to indicate the fact by
italics or inverted commas. People often assert that man is mortal;
but what is mortal will die, and yet we should be surprised to find in the
“Times” such a notice as the following: Died at his residence of
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Camelot, Gladstone Road, Upper Tooting, on the 18th of June 19—,
Man, eldest son of Death and Sin.” Man, in fact, does not die; hence
if “man is mortal ™ were, as it appears to be, a proposition about man,
it would be simply false. The fact is, the proposition is about men;
and here again, it is not about the concept men, but about what this
concept denotes. The whole theory of definition, of identity, of classes,
of symbolism, and of the variable is wrapped up in the theory of
denoting. The notion is a fundamental notion of logic, and, in spite
of its difficulties, it is quite essential to be as clear about it as possible.
57. 'The notion of denoting may be obtained by a kind of logical
genesis from subject-predicate propositions, upon which it seems more or
less dependent. The simplest of propositions are those in which one
predicate occurs otherwise than as a term, and there is only one term of
which the predicate in question is asserted. Such propositions may be
called subject-predicate propositions. Instances are: 4 is, 4 is one,
A is human. Concepts which are predicates might also be called class-
concepts, because they give rise to classes, but we shall find it necessary
to distinguish between the words predicate and class-concept. Propositions
of the subject-predicate type always imply and are implied by other propo-
sitions of the type which asserts that an individual belongs to a class.
Thus the above instances are equivalent to: 4 is an entity, 4 is a unit,
4 is a man. These new propositions are not identical with the previous
ones, since they have an entirely different form. To begin with, is is now
the only concept not used as a term. 4 man, we shall find, is neither
a concept nor a term, but a certain kind of combination of certain terms,
namely of those which are human. And the relation of Socrates to
a man is quite different from his relation to humanity ; indeed “Socrates
is human” must be held, if the above view is cotrect, to be not, in the
most usual sense, a judgment of relation between Socrates and humanity,
since this view would make Zuman occur as term in “Socrates is human.”
It is, of course, undeniable that a relation to humanity is implied by
*Socrates is human,” namely the relation expressed by “Socrates has
humanity ”; and this relation conversely implies the subject-predicate
proposition.  But the two propositions can be clearly distinguished, and
it is important to the theory of classes that this should be done. Thus
we have, in the case of every predicate, three types of propositions
which imply one another, namely, “Socrates is hu;nan,” “Socrates has
humanity,” and “Socrates is a man.” The first contains a term and
a predicate, the second two terms and a relation (the second term being
identical with the predicate of the first proposition)*, while the third
contains a term, a relation, and what I shall call a disjunction (a term
which will be explained shortly)t+. The class-concept differs little, if at

* Cf. § 49.

. + I‘hcre' are two allied propositions expressed by the same words, namely
Socrates is a-man™ and “Socrates is-a man.” The above remarks apply to the
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all, from the predicate, while the class, as opposed to the class-concept, is
the sum or conjunction of all the terms which have the given predica’te.
The relafiion which occurs in the second type (Socrates has humanity) is
characterized completely by the fact that it implies and is implied by a
proposition with only one term, in which the other term of the relation
has become a predicate. A class is a certain combination of terms, a
class-concept is closely akin to a predicate, and the terms whose com-
bination forms the class are determined by the class-concept. Predicates
are, in a certain sense, the simplest tvpe of concepts, since they oceur in
the simplest type of proposition. i

58. There is, connected with everv predicate, a great variety of
closely allied concepts, which, in so far as they are distinct, it is
important to distinguish. Starting, for example, with kuman, we have
man, men, all men, every man, any man, the human race, of which all
except the first are twofold, a denoting concept and an object denoted ;
we have also, less closely analogous, the notions “a man™ and “some
man,” which again denote objects* other than themselves. 'This vast
apparatus connected with every predicate must be borne in mind, and
an endeavour must be made to give an analysis of all the above notions.
But for the present, it is the property of dcnoting, rather than the
various denoting concepts, that we are concerned with.

The combination of concepts as such to form new concepts, of greater
complexity than their constituents, is a subject upon which writers on
logic have said many things. But the combination of terms as such,
to form what by analogy may be called complex terms, is a subject
upon which logicians, old and new, give us only the scantiest discussion.
Nevertheless, the subject is of vital importance to the philosophy of
mathematics, since the nature both of numnber and of the variable tums
upon just this point. Six words, of constant occurrence in daily life,
are also characteristic of mathematics: these are the words all, every,
any, a, some and the. For correctness of reasoning, it is essential that
these words should be sharply distinguished one from another; but
the subject bristles with difficulties, and is almost wholly neglected by
logicians+.

It is plain, to begin with, that a phrase containing one of the above

former ; but in future, unless the contrary is indicated by a hyphensar otherwise,
the latter will always be in question. The former expresses the identiy of Socrates
with an ambiguous individual ; the latter expresses a relation of Socrates to the
class-concept man.

* 1 shall use the word ohject in a wider sense than ferm, to cover hoth singular
and plural, and also cases of ambiguity, such as ““a man.” The fact that a word can
be framed with a wider meaning than ferm raises grave logical problems. Cf. § 47.

+ On the indefinite article, some good remarks are made by Meinong,
¢ Abstrahiren und Vergleichen,” Zeitschrift fiir Pxychologic und DPhysiologie der
Sinnesorgane, Vol. xx1v, p. 63.
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six words always denotes. It will be convenient, for the present
discussion, to distinguish a class-concept from a predicate: I shall call
human a predicate, and man a class-concept, though the distinction is
perhaps only verbal. The characteristic of a class-concept, as distin-
guished from terms in general, is that “ is a «” is a propositional
function when, and only when, « is a class-concept. It must be held that
when u is not a class-concept, we do not have a false proposition, but
simply no proposition at all, whatever value we may give to . This
enables us to distinguish a class-concept belonging to the null-class, for
which all propositions of the above form are false, from a term which is
not a class-concept at all, for which there are no propositions of the
above form. Also it makes it plain that a class-concept is not a term
in the proposition “x is a u,” for u has a restricted variability if the
formula is to remain a proposition. A denoting phrase, we may now say,
consists always of a class-concept preceded by one of the above six words
or some synonym of one of them.

59. The question which first meets us in regard to denoting is
this: Is there one way of denoting six different kinds of objects, or are
the ways of denoting different? And in the latter case, is the object
denoted the same in all six cases, or does the object differ as well as the
way of denoting it? In order to answer this question, it will be first
necessary to explain the differences between the six words in question.
Here it will be convenient to omit the word ke to begin with, since this
word is in a different position from the others, and is liable to limitations
from which they are exempt.

In cases where the class defined by a class-concept has only a finite
number of terms, it is possible to omit the class-concept wholly, and
indicate the various objects denoted by enumerating the terms and
connecting them by means of and or or as the case may be. It will
help to isolate a part of our problem if we first consider this case,
although the lack of subtlety in language renders it difficult to grasp the
difference between objects indicated by the same form of words.

Let us begin by considering two terms only, say Brown and Jones.
tl‘he objects denoted by all, cvery, any, a and some* are respectively
involved in the following five propositions. (1) Brown and Jones are
two of Miss Smith’s suitors; (2) Brown and Jones are paving court to
Miss Smith; (8) if it was Brown or Jones you met, it was a very ardent
lover; (4) if it was one of Miss Swith’s suitors, it must have been
Brown or Jones; (5) Miss Smith will marry Brown or Jones. Although
?nly two forms of words, Brown and Joncs and Brown or Jones, arve
involved in these propositions, I maintain that five different combinations
are involved. The distinctions, some of which are rather subtle, may be

I intend to distinguish between a and some in a way not warranted by language ;

the.dxs?mctinu of a/l and every is also a straining of usage. Both are necessary to
avoid circumlocution. ’



58, 59] Denoting 57

brought out by the following considerations. In the first proposition, it
is Brown and Jones who are two, and this is not true of either separately;
nevertheless it is not the whole composed of Brown and Jones which is
two, for this is only one. The two are a genuine combination of Brown
with Jones, the kind of combination which, as we shall see in the next
chapter, is characteristic of classes. In the second proposition, on the
contrary, what is asserted is true of Brown and Jones severally; the
proposition is equivalent to, though not (I think) identical with, “Brown
is paying court to Miss Smith and Jones is paying court to Miss Smith.”
Thus the combination indicated by and is not the same here as in the
first case: the first case concerned all of them collectively, while the
second concerns all distributively, i.c. each or every one of them. For
the sake of distinction, we may call the first a numerical conjunction,
since it gives rise to number, the second a propositional conjunction,
since the proposition in which it occurs is equivalent to a conjunction of
propositions. (It should be observed that the conjunction of propo-
sitions in question is of a wholly different kind from any of the com-
binations we are considering, being in fact of the kind which is called
the logical product. The propositions are combined qud propositions,
not quéd terms.)

The third proposition gives the kind of conjunction by which any is
defined. There is some difficulty about this notion, which seems half-way
between a conjunction and a disjunction. This notion may be further
explained as follows. Let a and & be two different propositions,
each of which implies a third proposition ¢. Then the disjunction
“a or b” implies ¢. Now let @ and & be propositions assigning the
same predicate to two different subjects, then there is a combination
of the two subjects to which the given predicate may be assigned so
that the resulting proposition is equivalent to the disjunction “a or 5.”
Thus suppose we have «if you met Brown, you met a very ardent lover,”
and “if you met Jones, you met a very ardent lover.” Hence we infer
“if you met Brown or if you et Jones, you met a very ardent lover,”
and we regard this as equivalent to “if you met Brown or Jones, etc.”
The combination of Brown and Jones here indicated is the same as that
indicated by either of them. It differs from a disjunction by the fact
that it implies and is implied by a statement concerning bdoth ; but in
some more complicated instances, this mutual implication fails. The
method of combination is, in fact, different from that indicated by &ot,
and is also different from both forms of disjunction. I shall call it th.e
variable conjunction. 'The first form of disjunction is given by (4): this
is the form which I shall denote by a suitor. Here, although it must
have been Brown or Jones, it is not true that it must have been Brown,
nor yet that it must have been Jones. Thus the proposition is not
equivalent to the disjunction of propositions it must have been Brown
or it must have been Jones.” The proposition, in fact, is not capable of
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statement either as a disjunction or as a conjunction of propositions,
except in the very roundabout form: ¢if it was not Brown, it was
Jones, and if it was not Jones, it was Brown,” a form which rapidly
becomes intolerable when the number of terms is increased beyond two,
and becomes theoretically inadmissible when the number of terms is
infinite. Thus this form of disjunction denotes a variable term, that
is, whichever of the two terms we fix upon, it does not denote this term,
and vet it does denote one or other of them. This form accordingly I
shall call the variable disjunction. Finally, the second form of disjunction
is given by (5). This is what I shall call the constant disjunction, since
here either Brown is denoted, or Jones is denoted, but the alternative
is undecided. That is to say, our proposition is now equivalent to a
disjunction of propositions, namely “Miss Smith will marry Brown, or
she will marry Jones.” She will marry some one of the two, and the
disjunction denotes a particular one of them, though it may denote
either particular one. Thus all the five combinations are distinct.

It is to be observed that these five combinations yield neither terms
nor concepts, but strictly and only combinations of terms. The first
yields many terms, while the others yield something absolutely peculiar,
which is neither one nor many. The combinations are combinations of
terms, effected without the use of relations. Corresponding to each
combination there is, at least if the terms combined form a class, a
perfectly definite concept, which denotes the various terms of the combi-
nation combined in the specified manner. To explain this, let us repeat
our distinctions in a case where the terms to be combined are not
enumerated, as above, but are defined as the terms of a certain class.

60. When a class-concept @ is given, it must be held that the
various terins belonging to the class are also given. That is to say, any
term being proposed, it can be decided whether or not it belongs to the
class. In this way, a collection of terms can be given otherwise than by
enumeration. Whether a collection can be given -otherwise than by
enumeration or by a class-concept, is a question which, for the present,
I leave undetermined. But the possibility of giving a collection by a
class-concept is highly important, since it enables us to deal with infinite
collections, as we shall see in Part V. For the present, I wish to examine
the meaning of such phrases as all s, every a, any a, an a, and some a.
Al @s, to begin with, denotes a numerical conjunction ; it is definite as
soon as a is given. The concept all «s is a perfectly definite single
concept, which denotes the terms of « taken all together. The terms
so taken have a number, which may thus be regarded, if we choose, as
a property of the class-concept, since it is determinate for any given
class-concept. Ewvery a, on the contrary, though it still denotes all the
s, denotes them in a different way, i.c. severally instead of collectively.
Any a denotes only one «, but it is wholly irrelevant which it denotes,
and what is said will be equally true whichever it may be. Moreover,
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any a denotes a variable g, that is, whatever particular & we may fasten
upon, it is certain that any a does not denote that one; and yet of that
one any proposition is true which is true of any a. 4n a denotes a
variable disjunction: that is to say, a proposition which holds of an a
may be false concerning each particular a, so that it is not reducible to
a disjunction of propositions. For example, a point lies between any
point and any other point; but it would not be true of any one
particular point that it lay between any point and any other point,
since there would be many pairs of points between which it did not lie.
This brings us finally to some a, the constant disjunction. This denotes
just one term of the class @, but the term it denotes may be any term
of the class. Thus “some moment does not follow any moment ™ would
mean that there was a first moment in time, while “a moment precedes
any moment ” means the exact opposite, namely, that every moment has
redecessors.

61. In the case of a class a which has a finite number of terms—
SAY @y, @y, @, .. &y, We can illustrate these various notions as follows:

(1) A a’s denotes g, and g, and ... and a,.

(2) Every a denotes @, and denotes a, and ... and denotes a,.

(8) A4ny a denotes a, or g, or ... or a,, where or has the meaning
that it is irrelevant which we take.

(4) An a denotes a, or a, or... or a,, where or has the meaning
that no one in particular must be taken, just as in all a’s we must not
take any one in particular.

(5) Some.a denotes a, or denotes a, or ... or denotes a,, where it is
not irrelevant which is taken, but on' the contrary some one particular a
must be taken.

As the nature and properties of the various ways of combining terms
are of vital importance to the principles of mathematics, it may be well
to illustrate their properties by the following important examples.

(a) Let a be a class, and b a class of classes. We then obtain
in all six possible relations of @ to & from various combinations of any,
a and some. AUl and every do not, in this case, introduce anything new.
The six cases are as follows.

(1) Any a belongs to any class belonging to b, in other words, the
class @ is wholly contained in the common part or logical product of
the various classes belonging to b.

(2) Any a belongs to a ), ie. the class a is contained in any
class which contains all the %, or, is contained in the logical sum of
all the &.

(3) Any a belongs to some b, i.e. there is a class belonging to b,
in which the class @ is contained. The difference between this case and
the second arises from the fact that here there is one b to which every
a belongs, whereas before it was only decided that every a belonged to
a b, and different &’s might belong to different &’s.
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(4) An a belongs to any b, i.c. whatever b we take, it has a part
in common with a.

(5) An abelongs to a b, i.c. there is a b which has a part in common
with a. This is equivalent to “some (or an) o belongs to some 5.”

(6) Some a-belongs to any b, i.e. there is an @ which belongs to
the common part of all the &s, or a and all the &’s have a common part.
These are all the cases that arise here.

(8) It is instructive, as showing the generality of the type of
relations here considered, to compare the above case with the following.
Let a, b be two series of real numbers; then six precisely analogous
cases arise.

(1) Any a is less than any b, or, the series a is contained among
numbers less than every b.

(2) Any a is less than a b, or, whatever a we take, there is a &
which is greater, or, the series a is contained among numbers less than
a (variable) term of the series b. It does not follow that some term of
the series b is greater than all the a’s.

(8) Any a is less than some b, or, there is a term of & which is
greater than all the a’s. This case is not to be confounded with (2).

(4) An a is less than any 8, i.e. whatever b we take, there is an
a which is less than it.

(5) An a is less than a b, i.e. it is possible to find an g and a &
such that the a is less than the 5. This merely denies that any a is
greater than any .

(6) Some @ is less than any b, i.e. there is an a which is less than
all the &%s. This was not implied in (4), where the ¢ was variable,
whereas here it is constant.

In this case, actual mathematics have compelled the distinction
between the variable and the constant disjunction. But in other cases,
where mathematics have not obtained sway, the distinction has been
neglected ; and the mathematicians, as was natural, have not investi-
gated the logical nature of the disjunctive notions which they employed.

(v) I shall give one other instance, as it brings in the difference
between any and every, which has not been relevant in the previous
cases. Let a and b be two classes of classes; then twenty different
relations between them arise from different combinations of the terms
of their terms. The following technical terms will be useful. If a be
a class of classes, its logical sum consists of all terms belonging to any
a, i.e. all terms such that there is an a to which they belong, while
its logical product consists of all terms belonging to every g, i.e. to the
common part of all the a’s. We have then the following cases.

(1) Any term of any a belongs to every b, i.e. the logical sum of
a is contained in the logical product of &.

(2) Any term of any a belongs to a b, i.e. the logical sum of &
is contained in the logical sum of 5.
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(8) Any term of any a belongs to some b, i.e. there is a b which
contains the logical sum of a.

(4) Any term of some (or an) a belongs to every b, i.c. there is an
a which is contained in the product of 2.

(5) Any term of some (or an) & belongs to a 3, i.e. there is an a
which is contained in the sum of &.

(6) Any term of some (or an) a belongs to some b, i.c. there is a
b which eontains one class belonging to a.

(7) A term of any a belongs to any &, i.e. any class of a and any
class of b have a common part.

(8) A term of any a belongs to a b, i.e. any class of a has a part
in common with the logical sum of 5.

(9) A term of any & belongs to some b, i.e. there is a b with which
any « has a part in common.

(10) A term of an « belongs to every b, i.e. the loglcal sum of a
and the logical product of b have a common part.

(11) A term of an a belongs to any b, i.. given any 3, an a can
be found with which it has a common part.

(12) A term of an a belongs to a b, i.e. the logical sums of 4 and
of b have a common part.

(18) Any term of every a belongs to every 3, i.e. the logical
product of & is contained in the logical ploduct of .

(14) Any term of every o belongs to a b, 7.e. the logical product
of a is contained in the logu.a] sum of b.

(15) Any term of every a belongs to some b, i.e. there is a term
of b in which the logical product of a is contained.

(16) A (or some) term of every a belongs to every b, i.e. the logical
products of ¢ and of b have a common part.

(17) A (or some) term of every a belongs to a 3, i.c. the logical
product of @ and the logical sum of b have a common part.

(18) Some term of any a belongs to every b, i.e. any a has a part
in common with the logical product of 2.

(19) A term of some a belongs to any b, i.e. there is some term
of & with which any b has a common part.

(20) A term of every a belongs to any &, i.e. any 4 has a part in
common with the logical product of a.

The above examples show that, although it may often happen that
there is a mutual implication (“hlch has not always been stated) of
corresponding propositions concerning some and a, or concerning any
and every, yet in other cases there is no such mutual implication. Thus
the five notions discussed in the present chapter are genuinely distinct,
and to confound them may lead to perfectly definite fallacies.

62. It appears from the above discussion that, whether there are
different ways of denoting or not, the objects denoted by all men, every
man, etc. are certainly distinct. It seems therefore legitimate to say
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that the whole difference lies in the objects, and that denoting itself is
the same in all cases. There are, however, many difficult problems
connected with the subject, especially as regards the nature of the
objects denoted. AZ men, which I shall identify with the class of men,
seems to be an unambiguous object, although grammatically it is plural.
But in the other cases the question is not so simple: we may doubt
whether an ambiguous object is unambiguously denoted, or a definite
object ambiguously denoted. Consider again the proposition “I met
a man” It is quite certain, and is implied by this proposition, that
what I met was an unambiguous perfectly definite man : in the technical
language which is here adopted, the proposition is expressed by I met
some man.” But the actual man whom I met forms no part of the
proposition in question, and is not specially denoted by some man.
Thus the concrete event which happened is not asserted in the proposi-
tion. What is asserted is merely that some one of a class of concrete
events took place. The whole human race is involved in my assertion :
if any man who ever existed or will exist had not existed or been going
to exist, the purport of my proposition would have been different. Or,
to put the same point in more intensional language, if I substitute for
man any of the other class-concepts applicable to the individual whom
I had the honour to meet, my proposition is changed, although the
individual in question is just as much denoted as before. What this
proves is, that some man must not be régarded as actually denoting
Smith and actually denoting Brown, and so on: the whole procession
of human beings throughout the ages is always relevant to every pro-
position in which some man occurs, and what is denoted is essentially
not each separate man, but a kind of combination of all men. This
is more evident in the case of every, any, and a.. There is, then, a
definite something, different in each of the five cases, which must, in
a sense, be an object, but is characterized as a set of terms combined
in a certain way, which something is denoted by all men, every man,
any man, a man or some man; and it is with this very paradoxical
object that propositions are concerned in which the corresponding
concept is used as denoting.

63. It remains to discuss the notion of the. This notion has
been symbolically emphasized by Peano, with very great advantage to
his calculus; but here it is to be discussed philosophically. The use
of identity and the theory of definition are dependent upon this notion,
which has thus the very highest philosophical importance.

The word #he, in the singular, is correctly employed only in relation
to a class-concept of which there is only one instance. We speak of
the King, the Prime Minister, and so on (understanding at the present
time) ; and in such cases there is a method of denoting one single definite
term by means of a concept, which is not given us by any of our other five
words. It is owing to this notion that mathematics can give definitions
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of terms which are not concepts—a possibility which illustrates the
difference between mathematical and philosophical definition. Every
term is the only instance of some class-concept, and thus every term,
theoretically, is capable of definition, provided we have not adopted
a system in which the said term is one of our indefinables. It is a
curious paradox, puzzling to the symbolic mind, that definitions, theo-
retically, are nothing but statements of symbolic abbreviations, irrelevant
to the reasoning and inserted only for practical convenience, while yet,
in the development of a subject, they always require a very large amount
of thought, and often embody some of the greatest achievements of
analysis. This fact seems to be explained by the theory of denoting.
An object may be present to the mind, without our knowing any concept
of which the said object is ke instance; and the discovery of such a
concept is not a mere improvement in notation. The reason why this
appears to be the case is that, as soon as the definition is found, it
becomes wholly unnecessary to the reasoning to remember the actual
object defined, since only concepts are relevant to our deductions. In
the moment of discovery, the definition is seen to be #rue, because the
object to be defined was already in our thoughts; but as part of our
reasoning it is not true, but merely symbolic, since what the reasoning
requires is not that it should deal with that object, but merely that
it should deal with the object denoted by the definition.

In most actual definitions of mathematics, what is defined 1s a class
of entities, and the notion of* #h¢ does not then explicitly appear. But
even in this case, what is really defined is the class satisfying certain
conditions; for a class, as we shall see in the next chapter, is always
a term or conjunction of terms and never a concept. Thus the notion of
the is always relevant in definitions ; and we may observe generally that
the adequacy of concepts to deal with things is wholly dependent upon
the unambiguous denoting of a single term which this notion gives.

64. The connection of denoting with the nature of identity is
important, and helps, I think, to solve some rather serious problems.
The question whether identity is or is not a relation, and even whether
there is such a concept at all, is not easy to answer. For, it may be
said, identity cannot be a relation, since, where it is truly asserted,
we have only one term, whereas two terms are required for a relation.
And indeed identity, an objector may urge, cannot be anything at all:
two terms plainly are not identical, and one term cannot be, for what
is it identical with? Nevertheless identity must be something. We
might attempt to remove identity from terms to relations, and say that
two terms are identical in some respect when they have a given relation
to a given term. But then we shall have to hold either that there is
strict identity between the two cases of the given relation, or that the
two cases have identity in the sense of having a given relation to a given
term ; but the latter view leads to an endless process of the illegitimate
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kind. Thus identity must be admitted, and the difficulty as to the
two terms of a relation must be met by a sheer denial that two different
terms are necessary. There must always be a referent and a relatum,
but these need not be distinct ; and where identity is affirmed, they are
not so*. .

But the question arises: Why is it ever worth while to affirm
identity? This question is answered by the theory of denoting. If
we say “ Edward VII is the King,” we assert an identity; the reason
why this assertion is worth making is, that in the one case the actual
term occurs, while in the other a denoting concept takes its place.
(For purposes of discussion, I ignore the fact that Edwards form a
class, and that seventh Edwards form a class having only one term.
Edward VIL is practically, though not formally, a proper name.) Often
two denoting concepts occur, and the term itself is not mentioned, as
in the proposition *the present Pope is the last survivor of his genera-
tion.” When a term is given, the assertion of its identity with itself,
though true, is perfectly futile, and is never made outside the logic-
books ; but where denoting concepts are introduced, identity is at once
seen to be significant. In this case, of course, there is involved, though
not asserted, a relation of the denoting concept to the term, or of the
two denoting concepts to each other. But the is which occurs in such
propositions does not itself state this further relation, but states pure
identity+.

65. To sum up. When a class-concept, preceded by one of the
six words all, every, any, a, some, the, occurs in a proposition, the
proposition is, as a rule, not about the concept formed of the two words
together, but about an object quite different from this, in general not
a concept at all, but a term or complex of terms. This may be seen by
the fact that propositions in which such concepts occur are in general
false concerning the concepts themselves. At the same time, it is
possible to consider and make propositions about the concepts them-
selves, but these are not the natural propositions to make in employing
the concepts. “ Any number is odd or even ™ is a perfectly natural propo-
sition, whereas “ Any number is a variable conjunction™ is a proposition
only to be made in a logical discussion. In such cases, we say that the
concept in question denotes. We decided that denoting is a perfectly

* On relations of terms to themselves, v. inf. Chap. 1x, § 95.

t The word is is terribly ambiguous, and great care is necessary in order not to
confound its various meanings. We have (1) the sense in which it asserts Being, as
in ‘4 is”; (2) the sense of identity; (3) the sense of predication, in 4 is human”;
(4) the sense of “4 is a-man” (cf. p. 54, note), which is very like identity. In
addition to these there are less common uses, as “to be good is to be happy,” where
a relation of assertions is meant, that relation, in fact, which, where it exists, gives
rise to formal implication. Doubtless there are further meanings which have not
occurred to me. On the meanings of is, ¢f. De Morgan, Formal Logic, pp. 49, 50.
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definite relation, the same in all six cases, and that it is the nature of
the denoted object and the denoting concept which distinguishes the
cases. We discussed at some length the nature and the differences of
the denoted objects in the five cases in which these objects are com-
binations of terms. In a full discussion, it would be necessary also to
discuss the denoting concepts: the actual meanings of these concepts, as
opposed to the nature of the objects they denote, have not been discussed
above. But I do not know that there would be anything further to say
on this topic. Finally, we discussed the, and showed that this notion
is essential to what mathematics calls definition, as well as to the
possibility of uniquely determining a term by means of concepts; the
actual use of identity, though not its meaning, was also found to depend
upon this way of denoting a single term. From this point we can
advance to the discussion of classes, thereby continuing the development
of the topics connected with adjectives.



CHAPTER VI
CLASSES.

66. To bring clearly before the mind what is meant by class, and
to distinguish this notion from all the notions to which it is allied, is
one of the most difficult and important problems of mathematical
philosophy. Apart from the fact that class is a very fundamental
concept, the utmost care and nicety is required in this subject on
account of the contradiction to be discussed in Chapter x. I must
ask the reader, therefore, not to regard as idle pedantry the apparatus
of somewhat subtle discriminations to be found in what follows.

It has been customary, in works on logic, to distinguish two stand-
points, that of extension and that of intension. Philosophers have
usually regarded the latter as more fundamental, while Mathematics
has been held to deal specially with the former. M. Couturat, in his
admirable work on ILeibniz, states roundly that Symbolic Logic can only
be built up from the standpoint of extension®*; and if there really were
only these two points of view, his statement would be justified. But as
a matter of fact, there are positions intermediate between pure intension
and pure extension, and it is in these intermediate regions that Symbolic
Logic has its lair. It is essential that the classes with which we are
concerned should be composed of terms, and should not be predicates or
concepts, for a class must be definite when its terms are given, but
in general there will be many predicates which attach to the given
terms and to no others. We cannot of course attempt an intensional
definition of a class as the class of predicates attaching to the terms
in question and to no others, for this would involve a vicious circle;
hence the point of view of extension is to some extent unavoidable.
On the other hand, if we take extension pure, our class is defined by
enumeration of its terms, and this method will not allow us to deal, as
Symbolic Logic does, with infinite classes. Thus our classes must in
general be regarded as objects denoted by concepts, and to this extent
the point of view of intemsion is essential. It is owing to this con-

* La Logique de Leibniz, Paris, 1901, p. 387,
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sideration that the theory of denoting is of such great importance. In
the present chapter we have to specify the precise degree in which
extension and intension respectively enter into the definition and em-
ployment of classes; and throughout the discussion, I must ask the
reader to remember that whatever is said has to be applicable to infinite
as well as to finite classes.

67. When an object is unambiguously denoted by a concept, I shall
speak of the concept as a concept (or sometimes, loosely, as the concept)
of the object in question. Thus it will be necessary to distinguish the
concept of a class from a class-concept. We agreed to call man a class-
concept, but man does not, in its usual employment, denote anything.
On the other hand, men and all men (which I shall regard as synonyms) do
denote, and I shall contend that what they denote is the class composed
of all men. Thus man is the class-concept, men (the concept) is the
concept of the class, and men (the object denoted by the concept men)
are the class. It is no doubt confusing, at first, to use class-concept and
concept of a class in different senses; but so many distinctions are
required that some straining of language seems unavoidable. In
the phraseology of the preceding chapter, we may say that a class is a
numerical conjunction of terms. This is the thesis which is to be
established.

68. In .Chapter 1 we regarded classes as derived from assertions,
ie. as all the entities satisfying some assertion, whose form was left
wholly vague. I shall discuss this view critically in the next chapter;
for the present, we may confine ourselves to classes as they are derived
from predicates, leaving open the question whether every assertion is
equivalent to a predication. We may, then, imagine a kind of genesis
of classes, through the successive stages indicated by the typical propo-
sitions “Socrates is human,” “Socrates has humanity,” “Socrates is a
man,” “Socrates is one among men.” Of these propositions, the last
only, we should say, explicitly contains the class as a constituent; but
every subject-predicate proposition gives rise to the other three equivalent
propositions, and thus- every predicate (pravided it can be sometimes
truly predicated) gives rise to a class. This is the genesis of classes from
the intensional standpoint.

On the other hand, when mathematicians deal with what they call a
manifold, aggregate, Menge, ensemble, or some equivalent name, it is
common, especially where the number of terms involved is finite, to regard
the object in question (which is in fact a class) as defined by the enumera-
tion of its terms, and as consisting possibly of a single term, which in
that case is the class. Here it is not predicates and denoting that are
relevant, but terms connected by the word and, in the sense in which
this word stands for a numerical conjunction. Thus Brown and Jones
are a class, and Brown singly is a class. This is the extensional genesis
of classes.
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69. The best formal treatment of classes in existence is .that of
Peano*. But in this treatment a number of distinctions of great
philosophical importance are overlooked. Peano, not I think quite
consciously, identifies the class with the class-concept; thus the relation
of an individual to its class is, for him, expressed by is a. For him,
“2 is a number ™ is a proposition in which a term is said to belong to
the class number. Nevertheless, he identifies the equality of classes,
which consists in their having the same terms, with identity—a pro-
ceeding which is quite illegitimate when the class is regarded as the
class-concept. In order to perceive that wman and featherless biped are
not identical, it is quite unnecessary to take a hen and deprive the poor
bird of its feathers. Or, to take a less complex instance, it is plain that
even prime is not identical with integer neat after 1. Thus when we
identify the class with the class-concept, we must admit that two classes
may be equal without being identical. Nevertheless, it is plain that
when two class-concepts are equal, some identity is involved, for we say
that they have the same terms. Thus there is some object which is
positively identical when two class-concepts are equal; and this object,
it would seem, is more properly called the class. Neglecting the plucked
hen, the class of featherless bipeds, every one would say, is the swme as
the class of men; the class of even primes is the same as the class of
integers mext after 1. Thus we must not identify the class with the
class-concept, or regard “ Socrates is a man” as expressing the relation
of an individual to a class of which it is a member. This has two
consequences (to be established presently) which prevent the philosophical
acceptance of certain points in Peano’s formalism. The first consequence
is, that there is no such thing as the null-class, though there are null
class-concepts. The second is, that a class having only one term is to
be identified, contrary to Peano’s usage, with that one term. I should
not propose, however, to alter his practice or his notation in consequence
of either of these points; rather I should regard them as proofs that
Symbolic Logic ought to concern itself, as far as notation goes, with
class-concepts rather than with classes.

70. A class, we have seen, is neither a predicate nor a class-
concept, for different predicates and different class-concepts may corre-
spond to the same class. A class also, in one sense at least, is distinct
from the whole composed of its terms, for the latter is only and essentially
one, while the former, where it has many terms, is, as we shall see later,
the very kind of object of which many is to be asserted. The distinction
of a class as many from a class as a whole is often made by language :
space and points, time and instants, the army and the soldiers, the navy
and the sailors, the Cabinet and the Cabinet Ministers, all illustrate the
distinction. The notion of a whole, in the sense of a pure aggregate

* Neglecting Frege, who is discussed in the Appendix.
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which is here relevant, is, we shall find, not always applicable where the
notion of the class as many applies (see Chapter x). In such cases,
though terms may be said to belong to the class, the class must not be
treated as itself a single logical subject®*. But this case never arises
where a class can be generated by a predicate. Thus we may for the
present dismiss this complication from our minds. In a class as many,
the component terms, though they have some kind of unity, have less
than is required for a whole. They have, in fact, just so much unity
as is required to make them many, and not enough to prevent them from
remaining many. A further reason for distinguishing wholes from
classes as many is that a class as one may be one of the terms of itself
as many, as in “classes are one among classes™ (the extensional equi-
valent of “class is a class-concept ™), whereas a complex whole can never
be one of its own constituents.

71. Class may be defined either extensionally or intensionally.
That is to say, we may define the kind of object which is a class, or the
kind of concept which denotes a class: this is the precise meaning of
the opposition of extension and intension in this connection. But
although the general notion can be defined in this two-fold manner,
particular classes, except when they happen to be finite, can only be
defined intensionally, i.e. as the objects denoted by such and such con-
cepts. I believe this distinction to be purely psychological: logically,
the extensional definition appears to be equally applicable to infinite
classes, but practically, if we were to attempt it, Death would cut short
our laudable endeavour before it had attained its goal. Logically,
therefore, extension and intension seem to be on a par. I will begin
with the extensional view.

When a class is regarded as defined by the enumeration of its terms,
it is more naturally called a collection. I shall for the moment adopt
this name, as it will not prejudge the question whether the objects
denoted by it are truly classes or not. By a collection I mean what is
conveyed by “4 and B” or “4 and B and C,” or any other enumeration
of definite terms. The collection is defined by the actual mention of
the terms, and the terms are connected by and. It would seem that
and represents a fundamental way of combining terms, and that just
this way of combination is essential if anything is to result of which a
number other than 1 can be asserted. Collections do not presuppose
numbers, since they result simply from the terms together with and:
they could only presuppose numbers in the particular case where the
terms of the collection themselves presupposed numbers. There is a
grammatical difficulty which, since no method exists of avoifling it,
must be pointed out and allowed for. A collection, grammatically, is

* A plurality of terms is not the logical subject when a number is asserted of it:
such propositions have not one subject, but many subjects. See.end of § 74
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singular, whereas 4 and B, 4 and B and C, etc. are essentially plural.
This grammatical difficulty arises from the logical fact (to be discussed
presently) that whatever is many in general forms a whole which is
one; it is, therefore, not removable by a better choice of technical
terms.

The notion of and was brought into prominence by Bolzano*. In
order to understand what infinity is, he says, “ we must go back to one
of the-simplest conceptions of our understanding, in order to reach an
agreement concerning the word that we are to use to denote it. This is
the conception which underlies the conjunction and, which, however, if
it is to stand out as clearly as is required, in many cases, both by the
purposes of mathematics and by those of philosophy, I believe to be best
expressed by the words: ‘A system (Inbegriff) of certain things,’ or
‘a whole consisting of certain parts’ But we must add that every
arbitrary object 4 can be combined in a system with any others
B, C, D, ..., or (speaking still more correctly) already forms a system
by itself T, of which some more or less important truth can be enunciated,
provided only that each of the presentations 4, B, C, D,... in fact
represents a different object, or in so far as none of the propositions
¢4 is the same as B, ‘4 is the same as C, ¢4 is-the same as D, etc.,
is true. For if e.g. 4 is the same as B, then it is certainly unreasonable
to speak of a system of the things 4 snd B.”

The above passage, good as it is, neglects several distinctions which
we have found necessary. First and foremost, it does not distinguish
the many from the whole which they form. Secondly, it does not appear
to observe that the method of enumeration is not practically applicable
to infinite systems. Thirdly, and this is connected with the second point,
it does not make any mention of intensional definition nor of the notion
of a class. What we have to consider is the difference, if any, of a class
from a collection on the one hand, and from the whole formed of the
collection on the other. But let us first examine further the notion
of and.

Anything of which a finite number other than 0 or 1 can be asserted
would be commonly said to be many, and many, it might be said, are
always of the form “4 and B and C and ....” Here 4, B, C, ... are
each one and are all different. To say that A4 is one seems to amount
to much the same as to say that 4 is not of the form ¢ 4, and 4, and
Asand ...." To say that 4, B, C, ... are all different seems to amount
only to a condition as regards the symbols: it should be held that
“4 and 4™ is meaningless, so that diversity is implied by and, and need
not be specially stated.

A term A which is one may be regarded as a particular case of a

* Paradoxien des Unendlichen, Leipzig, 1854 (2ud ed., Berlin, 1889), § 3.
t i.e. the combination of 4 with B, (), D, ... already forms a system.
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collection, namely as a collection of one term. Thus every collection
which is many presupposes many collections which are each one: 4 and
B presupposes 4 and presupposes B. Conversely some collections of
one term presuppose many, namely those which are complex: thus
“ 4 differs from B™ is one, but presupposes 4 and difference and B.
But there is not symmetry in this respect, for the ultimate presupposi-
tions of anything are always simple terms.

Every pair of terms, without exception, can be combined in the
manner indicated by 4 and B, and if neither 4 nor B be many, then
A4 and B are two. 4 and B may be any conceivable entities, any
possible objects of thought, they may be points or numbers or true or
false propositions or events or people, in short anything that can be
counted. A teaspoon and the number 8, or a chimaera and a four-
dimensional space, are certainly two. Thus no restriction whatever is
to be placed on 4 and B, except that neither is to be many. It should
be observed that 4 and B need not exist, but must, like anything that
can be mentioned, have Being. The distinction of Being and existence
is important, and is well illustrated by the process of counting. What
can be counted must be something, and must certainly Je, though it
need by no means be possessed of the further privilege of existence.
Thus what we demand of the terms of our collection is merely that each
should be an entity.

The question may now be asked: What is meant by 4 and B?
Does this mean anything more than the juxtaposition of 4 with B?
That is, does it contain any element over and above that of 4 and that
of B? Is and a separate concept, which occurs besides 4, B? To
either answer there are objections. In the first place, and, we might
suppose, cannot be a new concept, for if it were, it would have to be
some kind of relation between 4 and B; 4 and B would then be a
proposition, or at least a propositional concept, and would be one, not
two. Moreover, if there are two concepts, there are two, and no third
mediating concept seems necessary to make them two. Thus and would
seem meaningless. But it is difficult to maintain this theory. To begin
with, it seems rash to hold that any word is meaningless. When we use
the word and, we do not seem to be uttering mere idle breath, but some
idea seems to correspond to the word. Again some kind of combination
seems to be implied by the fact that 4 and B are two, which is not true
of either separately. When we say “4 and B are yellow,” we can replace
the proposition by “ 4 is yellow” and “B is yellow™; but this cannot
be done for 4 and B are two™; on the contrary, 4 is one and B is one.
Thus it seems best to regard and as expressing a definite unique kind of
combination, not a relation, and not combining 4 and B into a whole,
which would be one. This unique kind of combination will in future be
called addition of individuals. It is important to observe that it applies
to terms, and only applies to numbers in consequence of their being
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terms. Thus for the present, 1 and 2 are two, and 1 and 1 is
meaningless.

As regards what is meant by the combination indicated by and, it is
indistinguishable from what we before called a numerical conjunction.
That is, 4 and B is what is denoted by the concept of a class of which
A and B are the only members. If » be a class-concept of which the
propositions “ 4 is & u” “B is a u” are true, but of which all other
propositions of the same form are false, then “all «’s™ is the concept of
a class whose only terms are 4 and B; this concept denotes the terms
A, B combined in a certain way, and “ 4 and B™ are those terms com-
bined in just that way. Thus “4 and B™ are the class, but are distinct
from the class-concept and from the concept of the class.

The notion of and, however, does not enter into the meaning of a
class, for a single term is a class, although it is not a numerical
conjunction. If u be a class-concépt, and only one proposition of the
form “z is a u” be true, then “all ¥’s” is a concept denoting a single
term, and this term is the class of which “all «’s™ is a concept. Thus
what seems essential to a class is nof the notion of and, but the being
denoted by some concept of a class. This brings us to the intensional
view of classes.

72. We agreed in the preceding chapter that there are not
different ways of denoting, but only different kinds of denoting concepts
and correspondingly different kinds of denoted objects. We have
discussed the kind of denoted object which constitutes a class; we have
now to consider the kind of denoting concept.

The consideration of classes which results from denoting concepts
is more general than the extensional consideration, and that in two
respects. In the first place it allows, what the other practicaily
excludes, the admission of infinite classes; in the second place it
introduces the null concept of a class. But, before discussing these
matters, there is a purely logical point of some importance to be
examined.

If u be a class-concept, is the concept “all ws™ analyzable into two
constituents, all and w, ar is it a new concept, defined by a certain
relation to u, and no more complex than u itself? We may observe,
to begin with, that “all «’s” is synonymous with *“#’s,” at least according
to a very common use of the plural. Our question is, then, as to the
meaning of the plural. The word all has certainly some definite
meaning, but it seems highly doubtful whether it means more than
the indication of a relation. “All men” and “all numbers” have in
common the fact that they both have a certain relation to a class-
concept, namely to man and number respectively. But it is very difficult
to isolate any further element of all-ness which both share, unless we
take as this element the mere fact that both are concepts of classes.
It would seem, then, that “all +s™ is not validly analyzable into all
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and v, and that language, in this case as in some others, is a misleading
guide. The same remark will apply to every, any, some, a, and the.

It might perhaps be thought that a class ought to be considered,
not merely as a numerical conjunction of terms, but as a numerical
conjunction denoted by the concept of a class. This complication
however, would serve no useful purpose, except to preserve Peano’
distinction between a single term and the class whose only term it is—
a distinction which is easy to grasp when the class is identified with the
class-concept, but which is inadmissible in our view of classes. It is
evident that a numerical conjunction considered as denoted is either
the same entity as when not so considered, or else is a complex of
denoting together with the object denoted ; and the object denoted is
plainly what we mean by a class.

With regard to infinite classes, say the class of numbers, it is to be
observed that the concept all numbers, though not itself infinitely
complex, yet denotes an infinitely complex object. This is the inmost
secret of our power to deal with infinity. An infinitely complex
concept, though there may be such, can certainly not be manipulated
by the human intelligence; but infinite collections, owing to the notion
of denoting, can be manipulated without introducing any concepts of
infinite complexity. Throughout the discussions of infinity in later
Parts of the present work, this remark should be borne in mind: if
it is forgotten, there is an air of magic which causes the results obtained
to seem doubtful.

73. Great difficulties are associated with the null-class, and
generally with the idea of nothing. It is plain that there is such a
concept as nothing, and that in some sense nothing is something. In
fact, the proposition “nothing is not nothing” is undoubtedly capable
of an interpretation which makes it true—a point which gives rise to
the contradictions discussed in Plato’s Sophist. In Symbolic Logic
the null-class is the class which has no terms at all; and symbolically
it is quite necessary to introduce some such notion. We have to
consider whether the contradictions which naturally arise can be
avoided.

It is necessary to realize, in the first place, that a concept may
denote although it does not denote anything. This occurs when there
are propositions in which the said concept occurs, and which are not
about the said concept, but all such propositions are false. Or rather,
the above is a first step towards the explanation of a denoting concept
which denotes nothing. It is not, however, an adequate explanation.
Consider, for example, the proposition chimaeras are animals™ or
“even primes other than 2 are numbers.” These propositions appear
to be true, and it would seem that they are not concerned with the
denoting concepts, but with what these concepts denote; yet that is
impossible, for the concepts in question do not denote anything.
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Symbolic Logic says that these concepts denote the nullclass, and that
the propositions in question assert that the null-class is contained in
certain other classes. But with the strictly extensional view of classes
propounded above, a class which has no terms fails to be anything at
all : what is merely and solely a collection of terms cannot subsist when
all the terms are removed. Thus we must either find a different
interpretation of classes, or else find a method of dispensing with
the null-class.

The above imperfect definition of a concept which denotes, but
does not denote anything, may be amended as follows. All denoting
concepts, as we saw, are derived from class-concepts; and a is a class-
concept when “z is an & is a propositional function. The denoting
concepts associated with a4 will not denote anything when and only
when “z is an a” is false for all values of . This is a complete
definition of a denoting concept which does not denote anything; and
in this case we shall say that @ is a null class-concept, and that “all a’s™
is a null concept of a class. Thus for a system such as Peano’s, in
which what are called classes are really class-concepts, technical difficulties
need not arise ; but for us a genuine logical problem remains.

The proposition “chimaeras are animals ” may be easily interpreted
by means of formal implication, as meaning “=z is a chimaera implies
z is an animal for all values of z.” But in dealing with classes we
have been assuming that propositions containing all or any or every,
though equivalent to formal implications, were yet distinct from them,
and involved ideas requiring independent treatment. Now in the case
of chimaeras, it is easy to substitute the pure intensional view, according
to which what is really stated is a relation of predicates: in the case in
question the adjective animal is part of the definition of the adjective
chimerical (if we allow ourselves to use this word, contrary to usage,
to denote the defining predicate of chimaeras). But here again it is
fairly plain that we are dealing with a proposition which implies that
chimaeras are animals, but is not the same proposition—indeed, in the
present case, the implication is not even reciprocal. By a negation
we can give a kind of extensional interpretation: nothing is denoted
by a chimaera which is not denoted by an animal. But this is a very
roundabout interpretation. On the whole, it seems most correct to
reject the proposition altogether, while retaining the various other
propositions that would be equivalent to it if there were chimaeras.
By symbolic logicians, who have experienced the utility of the null-
class, this will be felt as a reactionary view. But I am not at present
discussing what should be done in the logical caleulus, where the
established practice-appears to me the best, but what is the philo-
sophical truth concerning the null-class. We shall say, then, that,
of the bundle of normally equivalent interpretations of logical symbolic
formulae, the class of interpretations considered in the present chapter,
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which are dependent upon actual classes, fail where we are concerned
with null class-concepts, on the ground that there is no actual null-class.

We may now reconsider the proposition “nothing is not nothing ™—
a proposition plainly true, and yet, unless carefully handled, a source of
apparently hopeless antinomies. Nothing is a denoting concept, which
denotes nothing. The concept which denotes is of course not nothing,
i it is not denoted by itself. The proposition which looks so para-
doxical means no more than this: Nothing, the denoting concept, is
not nothing, i.c. is not what itself denotes. But it by no means follows
from this that there is an actual null-class : only the null class-concept
and the null concept of a class are to be admitted.

But now a new difficulty has to be met. The equality of class-
concepts, like all relations which are reflexive, symmetrical, and transitive,
indicates an underlying identity, i.e. it indicates that every class-concept
has to some term a relation which all equal class-concepts also have to
that term—the term in question being different for different sets of
equal class-concepts, but the same for the various members of a single
set of equal class-concepts. Now for all class-concepts which are not
null, this term is found in the corresponding class; but where are we
to find it for null class-concepts? To this question several answers may
be given, any of which may be adopted. For we now know what a
class is, and we may therefore adopt as our term the class of all null
class-concepts or of all null propositional functions These are not null-
classes, but genuine classes, and to either of them all null class-concepts
have the same relation. If we then wish to have an entity analogous
to what is elsewhere to be called a class, but corresponding to null
class-concepts, we shall be forced, wherever it is necessary (as in counting
classes) to introduce a term which is identical for equal class-concepts,
to substitute everywhere the class of class-concepts equal to a given
class-concept for the class corresponding to that class-concept. The
class corresponding to the class-concept remains logically fundamental,
but need not be actually employed in our symbolism. The null-class,
in fact, is in some ways analogous to an irrational in Arithmetic: it
cannot be interpreted on the same principles as other classes, and if
we wish to give an analogous interpretation elsewhere, we must substitute
for classes other more complicated entities—in the present case, certain
correlated classes. The object of such a procedure will be mainly
technical ; but failure to understand the procedure will lead to in-
extricable difficulties in the interpretation of the symbolism. A very
closely analogous procedure occurs constantly in Mathematics, for
example with every generalization of number; and so far as I know,
no single case in which it occurs has been rightly interpreted either by
philosophers or by mathematicians. So many instances will meet us
in the course of the present work that it is unnecessary to linger longer
over the point at present. Only one possible misunderstanding must
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be guarded against. No vicious circle is involved in the above account
of the null-class; for the general notion of class is first laid down, is
found to involve what is called existence, is then symbolically, not
philosophically, replaced by the notion of a class of equal class-concepts,
and is found, in this new form, to be applicable to what corresponds to
null class-concepts, since what corresponds is now a class which is not
null. Between classes simpliciter and classes of equal class-concepts
there is a one-one correlation, which breaks down in the sole case of the
class of null class-concepts, to which no null-class corresponds ; and this
fact is the reason for the whole complication.

74. A question which is very fundamental in the philosophy of
Arithmetic must now be discussed in a more or less preliminary fashion. Is
a class which has many terms to be regarded as itself one or many? Taking
the class as equivalent simply to the numerical conjunction “ 4 and B
and C and etc.,” it seems plain that it is many; yet it is quite necessary
that we should be able to count classes as one each, and we do habitually
speak of @ class. Thus classes would seem to be one in one sense and
many in another.

There is a certain temptation to identify the class as many and the
class as one, e.g., all men and the human race. Nevertheless, wherever
a class consists of more than one term, it can be proved that no such
identification is permissible. A concept of a class, if it denotes a class
as one, is not the same as any concept of the class which it denotes.
That is to say, classes of all rational animals, which denotes the human
race as one term, is different from men, which denotes men, i.e. the
human race as many. But if the human race were identical with men,
it would follow that whatever denotes the one must denote the other,
and the above difference would be impossible. We might be tempted
to infer that Peano’s distinction, between a term and a class of which
the said term is the only member, must be maintained, at least when the
term in question is a class*. But it is more correct, I think, to infer an
ultimate distinction between a class as many and a class as one, to
hold that the many are only many, and are not also one. The class as
one may be identified with the whole composed of the terms of the class,
i.e., in the case of men, the class as one will be the human race.

But can we now avoid the contradiction -always to be feared,
where there is something that cannot be made a logical subject?
I do not myself see any way of eliciting a precise contradiction in this
case. In the case of concepts, we were dealing with what was plainly
one entity; in the present case, we are dealing with a complex essentially
capable of analysis into units. In such a proposition as “4 and B are
two,” there is no logical subject: the assertion is not about 4, nor

* This conclusion is actually drawn by Frege from an analogous argument:
Archiv fiir syst. Phil. 1, p. 444. See Appendix.
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about B, nor about the whole composed of both, but strictly and only
about 4 and B. Thus it would seem that assertions are not necessarily
about single subjects, but may be about many subjects ; and this removes
the contradiction which arose, in the case of concepts, from the im-
possibility of making assertions about them unless they were turned
into subjects. This impossibility being here absent, the contradiction
which was to be feared does not arise.

75. We may ask, as suggested by the above discussion, what is to be
said of the objects denoted by a man, every man, some man, and any man.
Are these objects one or many or neither? Grammar treats them all as
one. But to this view, the natural objection is, which one? Certainly
not Socrates, nor Plato, nor any other particular person. Can we
conclude that no one is denoted? As well might we conclude that
every one is denoted, which in fact is true of the concept every man.
I think one is denoted in every case, but in an impartial distributive
manner. 4ny number is neither 1 nor 2 nor any other particular number,
whence it is easy to conclude that any number is not any one number,
a proposition at first sight contradictory, but really resulting from an
ambiguity in any, and more correctly expressed by “any number is not
some one number.” There are, however, puzzles in this subject which
I do not yet know how to solve.

A logical difficulty remains in regard to the nature of the whole
composed of all the terms of a class. Two propositions appear self-
evident: (1) Two wholes composed of different terms must be different ;
(2) A whole composed of one term only is that one term. It follows
that the whole composed of a class considered as one term is that class
considered as one term, and is therefore identical with the whole
composed of the terms of the class ; but this result contradicts the
first of our supposed self-evident principles. The answer in this case,
however, is not difficult. The first of our principles is only universally
true when all the terms composing our two wholes are simple. A given
whole is capable, if it has more than two parts, of being analyzed in a
plurality of ways; and the resulting constituents, so long as analysis
is not pushed as far as possible, will be different for different ways of
analyzing. This proves that different sets of constituents may constitute
the same whole, and thus disposes of our difficulty.

76. Something must be said as to the relation of a term to a class
of which it is a member, and as to the various allied relations. One of
the allied relations is to be called ¢, and is to be fundamental in Symbolic
Logic. But it is to some extent optional which of them we take as
symbolically fundamental.

Logically, the fundamental relation is that of subject and predicate,
expressed in “Socrates is human "—a relation which, as we saw in
Chapter v, is peculiar in that the relatum cannot be regarded as a term
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predicated of themselves, though, by introducing negative predicates,
it will be found that there are just as many instances of predicates which
are predicable of themselves. One at least of these, namely predicability,
or the property of being a predicate, is not negative: predicability, as
is evident, is predicable, i.e. it is a predicate of itself. But the most
common instances are negative : thus non-humanity is non-human, and
so on. 'The predicates which are not predicable of themselves are,
therefore, only a selection from among predicates, and it is natural to
suppose that they form a class having a defining predicate. But if so,
let us examine whether this defining predicate belongs to the class or
not. If it belongs to the class, it is not predicable of itself, for that is
the characteristic property of the class. But if it is not predicable
of itself, then it does not belong to the class whose defining predicate
it is, which is contrary to the hypothesis. On the other hand, if it
does not belong to the class whose defining predicate it is, then it is not
predicable of itself, i.e. it is one of those predicates that are not pre-
dicable of themselves, and therefore it does belong to the class whose
defining predicate it is—again contrary to the hypothesis. Hence from
either hypothesiy we can deduce its contradictory. I shall return to
this contradiction in Chapter x; for the present, I have introduced
it merely as showing that no subtlety in distinguishing is likely to be
excessive.

79. To sum up the above somewhat lengthy discussion. A class,
we agreed, is essentially to be interpreted in extension; it is either
a single term, or that kind of combination of terms which is indicated
when terms are connected by the word and. But practically, though
not theoretically, this purely extensional method can only be applied
to finite classes. All classes, whether finite or infinite, can be obtained
as the objects denoted by the plurals of class-concepts—men, numbers,
points, ete. Starting with predicates, we distinguished two kinds of
proposition, typified by “Socrates is human™ and ¢“Socrates has
humanity,” of which the first uses human as predicate, the second
as a term of a relation. These two classes of propositions, though
very important logically, are not so relevant to Mathematics as their
derivatives. Starting from human, we distinguished (1) the class-concept
man, which differs slightly, if at all, from hwman; (2) the various
denoting concepts all men, every man, any man, @ man and some man ;
(3) the objects denoted by these concepts, of which the one denoted by
all men was called the class as many, so that all men (the concept) was
called the concept of the class; (4) the class as one, i.e. the human race.
We had also a classification of propositions about Socrates, dependent
upon the above distinctions, and approximately parallel with them :
(1) “Socrates is-a man ™ is nearly, if not quite, identical with  Socrates
has humanity ”; (2) “Socrates is a-man” expresses identity between
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Socrates and one of the terms denoted by @ man; (3) “Socrates is one
among men,” a proposition which raises difficulties owing to the plurality
of men; (4) “Socrates belongs to the human race,” which alone expresses
a relation of an individual to its class, and, as the possibility of relation
requires, takes the class as one, not as many. We agreed that the null-
class, which has no terms, is a fiction, though there are null class-concepts.
It appeared throughout that, although any symbolic treatment must
work largely with class-concepts and intension, classes and extension are
logically more fundamental for the principles of Mathematics; and this
may be regarded as our main general conclusion in the present chapter.



CHAPTER VIL

PROPOSITIONAL FUNCTIONS.

80. In the preceding chapter an endeavour was made to indicate
the kind of object that is to be called a class, and for purposes of
discussion classes were considered as derived from subject-predicate
propositions. This did not affect our view as to the notion of class
itself; but if adhered to, it would greatly restrict.the extension of
the notion. It is often mecessary to recognize as a class an object
not defined by means of a subject-predicate proposition. The explana-
tion of this necessity is to be sought in the theory of assertions and
such that.

The general notion of an assertion has been already explained in
connection with formal implication. In the present chapter its scope
and legitimacy are to be critically examined, and its connection with
classes and such that is to be investigated. The subject is full of
difficulties, and the doctrines which I intend to advocate are put forward
with a very limited confidence in their truth.

The notion of suchk that might be thought, at first sight, to be
capable of definition; Peano used, in fact, to define the notion by the
proposition “the a’s such that # is an & are the class a.” Apart from
further objections, to be noticed immediately, it is to be observed that
the class as obtained from such that is the genuine class, taken in
extension and as many, whereas the @ in “z is an a™ is not the class,
but the class-concept. Thus it is formally necessary, if Peano’s pro-
cedure is to be permissible, that we should substitute for “2’s such that
so-and-so” the genuine class-concept “z such that so-and-so,” which
may be regarded as obtained from the predicate such that so-and-so”
or rather, “being an z such that so-and-so,” the latter form being
necessary because so-and-so is a propositional function containing .
But when this purely formal emendation has been made the point
remains that such that must often be put before such propositions as
azRa, where R is a given relation and a a given term. We cannot
reduce this proposﬂ:lon to the form “z is an o' ™ without using such that ;
for if we ask what &' must be, the answer is: & must be such that each
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of its terms, and no other terms, have the relation R to a. To take
examples from daily life: the children of Israel are a class defined by
a certain relation to Israel, and the class can only be defined as the
terms such that they have this relation. Such that is roughly equivalent
to who or which, and represents the general notion of satisfying a
propositional function. But we may go further: given a class a, we
cannot define, in terms of a, the class of propositions “z is an ¢ for
different values of x. It is plain that there is a relation which each
of these propositions has to the z which occurs in it, and that the
relation in question is determinate when a is given. Let us call the
relation RB. Then any entity which is a referent with respect to R
is a proposition of the type “2 is an a.” But here the notion of
such that is already employed. And the relation R itself can only be
defined as the relation which holds between “z is an ™ and z for all
values of x, and does not hold between any other pairs of terms. Here
such that again appears. The point which is chiefly important in these
remarks is the indefinability of propositional functions. When these
have been admitted, the general notion of one-valued functions is easily
defined. Every relation which is many-one, i.e. every relation for which
a given referent has only one relatum, defines a function: the relatum
is that function of the referent which is defined by the relation in
question. But where the function is a proposition, the notion involved
is presupposed in the symbolism, and cannot be defined by, means of it
without a vicious circle: for in the above general definition of a function
propositional functions already occur. In the case of propositions of
the type “x is an a,” if we ask what propositions are of this type,
we can only answer “all propositions in which a term is said to be a™;
and here the notion to be defined reappears.

81. Can the indefinable element involved in propositional fune-
tions be identified with assertion together with the notion of every
proposition containing a given assertion, or an assertion made concerning
every term? 'The only alternative, so far as I can see, is to accept the
general notion of a propositional function itself as indefinable, and for
formal purposes this course is certainly the best; but philosophically,
the notion appears at first sight capable of analysis, and we have to
examine whether or not this appearance is deceptive.

We saw in discussing verbs, in Chapter 1v, that when a proposition
is completely analyzed into its simple constituents, these constituents
taken together do not reconstitute it. A less complete analysis of
propositions into subject and assertion has also been considered ; and
this analysis does much less to destroy the proposition. A subject and
an assertion, if simply juxtaposed, do not, it is true, constitute a
proposition; but as soon as the assertion is actually asserted of the
subject, the proposition reappears. The assertion is: everything that
remains of the proposition when the subject is omitted: the verb
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remains an asserted verb, and is not turned into a verbal noun; or at
any rate the verb retains that curious indefinable intricate relation to
the other terms of the proposition which distinguishes a relating relation
from the same relation abstractly considered. It is the scope and
legitimacy of this notion of assertion which is now to be examined.
Can every proposition be regarded as an assertion concerning any term
occurring in it, or are limitations necessary as to the form of the
proposition and the way in which the term enters into it?

In some simple cases, it is obvious that the analysis into subject
and assertion is legitimate. In “Socrates is a man,” we can plainly
distinguish Socrates and something that is asserted about him; we
should admit unhesitatingly that the same thing may be said about
Plato or Aristotle. Thus we can consider a class of propositions
containing this assertion, and this will be the class of which a typical
number is represented by “a is a man.” It is to be observed that the
assertion must appear as assertion, not as term: thus “to be a man
is to suffer” contains the same assertion, but used as term, and this
proposition does not belong to the class considered. In the case of
propositions asserting a fixed relation to a fixed term, the analysis
seems equally undeniable. To be more than a yard long, for example,
is a perfectly definite assertion, and we may consider the class of
propositions in which this assertion is made, which will be represented
by the propositional function “2 is more than a yard long.” In such
phrases as “snakes which are more than a yard long,” the assertion
appears very plainly; for it is here explicitly referred to a variable
subject, not asserted of any one definite subject. Thus if R be a fixed
relation and « a fixed term, ... Ra is a perfectly definite assertion.
(I place dots before the R, to indicate the place where the subject
must be inserted in order to make a proposition.) It may be doubted
whether a relational proposition can be regarded as an assertion con-
cerning the relatum.  For my part, I hold that this can be done except
in the case of subject-predicate propositions ; but this question is better
postponed until we have discussed relations *,

82. More difficult questions must now be considered. Is such
a proposition as “Socrates is a man implies Socrates is a mortal,” or
“Socrates has a wife implies Socrates has a father,” an assertion con-
cerning Socrates or not? It is quite certain that, if we replace Socrates
by a variable, we obtain a propositional function; in fact, the truth
of this function for all values of the variable is what is asserted in the
corresponding formal implication, which does not, as might be thought
at first sight, assert a relation between two propositional functions.
Now it was our intention, if possible, to explain propositional functions
by means of assertions; hence, if our intention can be carried out, the

* See § 96.
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above propositions must be assertions concerning Socrates. There is,
however, a very great difficulty in so regarding them. An assertion was
to be obtained from a proposition by simply omitting one of the terms
occurring in the proposition. But when we omit Socrates, we obtain
“...is a man implies...is a mortal” In this formula it is essential
that, in restoring the proposition, the same term should be substituted
in the two places where dots indicate the necessity of a term. It does
not matter what term we choose, but it must be identical in both places.
of th_ls requisite, however, no trace whatever appears in the would-be
assertion, and no trace can appear, since all mention of the term to be
1nserted: is necessarily omitted. When an z is inserted to stand for
the variable, the identity of the term to be inserted is indicated by the
repetition of the letter # ; but in the assertional form no such method is
available. And yet, at first sight, it seemns very hard to deny that the
proposition in question tells us a fact about Socrates, and that the same
fact is true about Plato or a plum-pudding or the number 2. It is
.certainly undeniable that “Plato is a man implies Plato is a mortal”
1s, in some sense or other, the sume function of Plato as our previous
proposition is of Socrates. The natural interpretation of this statement
would be that the one proposition has to Plato the same relation as the
other has to Socrates. But this requires that we should regard the
propositional function in question as definable by means of its relation
to the variable. Such a view, however, requires a propositional function
more complicated than the one we are considering. If we represent
“z is a man implies z is a mortal ™ by ¢, the view in question maintains
that ¢a is the term having to  the relation R, where R is some definite
relation. The formal statement of this view is as follows : For all values
of x and y, “y is identical with ¢z ” is equivalent to “y has the relation
Rtox” It is evident that this will not do as an explanation, since it
has far greater complexity than what it was to explain. It would seem
to follow that propositions may have a certain constancy of form, ex-
pressed in the fact that they are instances of a given propositional
function, without its being possible to analyze the propositions into a
constant and a variable factor. Such a view is curious and difficult:
constancy of form, in all other cases, is reducible to constancy of rela-
tions, but the constancy involved here is presupposed in the notion
of constancy of relation, and cannot therefore he explained in the
usual way.

The same conclusion, I think, will result from the case of two
variables. The simplest instance of this case is #Ry, where R is a
constant relation, while # and y are independently variable. It seems
evident that this is a propositional function of two independent variables:
there is no difficulty in the notion of the class of all propositions of the
form zRy. This class is involved—or at least all those members of
the class that are true are involved—in the notion of the classes of
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referents and relata with respect to R, and these classes are unhesita-
tingly admitted in such words as parents and children, masters and
servants, husbands and wives, and innumerable other instances from
daily life, as also in logical notions such as premisses and conclusions,
causes and effects, and so on. All such notions depend upon the class
of propositions typified by Ry, where R is constant while z and y are
variable. Yet it is very difficult to regard zRy as analyzable into the
-assertion R concerning x and g, for the very sufficient reason that this
view destroys the sense of the relation, i.e. its direction from z to y,
leaving us with some assertion which is symmetrical with respect to
z and y, such as “the relation R holds between x and y.” Given a
relation and its terms, in fact, two distinct propositions are possible.
Thus if we take R itself to be an assertion, it becomes an ambiguous
assertion: in supplying the terms, if we are to avoid ambiguity, we
must decide which is referent and which relatum. We may quite
legitimately regard ...Ry as an assertion, as was explained before; but
here y has become constant. We may then go on to vary y, considering
the class of assertions ...Ry for different values of y; but this process
does not seem to be identical with that which is indicated by the
independent variability of # and y in the propositional function 2Ry.
Moreover, the suggested process requires the variation of an element
in an assertion, namely of y in ...Ry, and this is in itself a new and
difficult notion.

A curious point arises, in this connection, from the consideration,
often essential in actual Mathematics, of a relation of a term to itself.
Consider the propositional function zRx, where R is a constant relation.
Such functions are required in considering, e.g., the class of suicides or
of self-made men; or again, in considering the values of the variable
for which it is equal to a certain function of itself, which may often be
necessary in ordinary Mathematics. It seems exceedingly evident, in
this case, that the proposition contains an element which is lost when
it is analyzed into a term 2 and an assertion B. Thus here again, the
propositional function must be admitted as fundamental.

83. A difficult point arises as to the variation of the concept in a
proposition. Consider, for example, all propositions of the type aRb,
where a and b are fixed terms, and R is a variable relation. There
seems no reason to doubt that the class-concept “relation between a
and 47 is legitimate, and that there is a corresponding class ; but this
requires the admission of such propositional functions as aRb, which,
moreover, are frequently required in actual Mathematics, as, for example,
in counting the number of many-one relations whose referents and relata
are given classes. But if our variable is to have, as we normally
require, an unrestricted field, it is necessary to substitute the pro-
positional function “ R is a relation implies aRb.” In this proposition
the implication involved is material, not formal. If the implication were
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fom_lal, the proposition would not be a function of R, but would be
equivalent to the (necessarily false) proposition: ¢ All relations hold
.betw_een @ and 5. Generally we have some such proposition as “aRb
implies .¢(R) provided R is a relation,” and we wish to turn this into a
formal implication. If ¢(R) is a proposition for all values of R, our
object is effected by substituting “If <R is a relation® implies ¢ aRb,’
Fhen'd: (R).” Here R can take all values*, and the if and then is a formal
implication, while the implies is a material implication. If ¢ (R) is not
a propositional function, but is a proposition only when R satisfies y~(R),
where 4 (R) is a propositional function implied by “ R is a relation ™ for
all v‘alues of R, then our formal implication can be put in the form “If
‘R is a relation’ implies aRb, then, for all values of R, v (R) implies
¢ (&),” where both the subordinate implications are material. As regards
the mate}'ial implication “¢ R is a relation’ implies aRb,” this is always
a. proposition, whereas aRb is only a proposition when R is a relation.
The new propositional function will only be true when R is a relation
which does hold between a and b: when R is not a relation, the ante-
cedent is false and the consequent is not a proposition, so that the
implication is false; when R is a relation which does not hold between
@ and b, the antecedent is true and the consequent false, so that again
the implication is false ; only when both are true is the implication true.
Thus in defining the class of relations holding between a and b, the
formally correct course is to define them as the values satisfying-“R
is & relation implies aRb”™—an implication which, though it contains a
variable, is not formal, but material, being satistied by some only of the
possible values of R. 'The variable R in it is, in Peano’s language, real
and not apparent.

The general principle involved is: If ¢z is only a proposition for
some values of z, then “‘ ¢z implies ¢’ implies ¢z ™ is a proposition
for all values of z, and is true when and only when ¢z is true. (The
implications involved are both material.) In some cases, “ ¢z implies ¢r”
will be equivalent to some simpler propositional function yr (such as“R1is
a relation” in the above instance), which may then be substituted for itt+.

Such a propositional function as “R is a relation implies aRdb”
appears even less capable than previous instances of analysis into & and
an assertion about R, since we should have to assign a meaning to “a...5,”
where the blank space may be filled by anything, not necessarily by a
relation. There is here, however, a suggestion of an entity which has
not yet been considered, namely the couple with sense. It may be
doubted whether there is any such entity, and yet such phrases as

* Tt is necessary to assign some meaning (other than a proposition) to afb when
R is not a relation,

+ A propositional fanction, though for every value of the variable it is true or
false, is not itself true or false, being what is denoted by ‘any proposition of the
type in question,” which is not itself a proposition.
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“R is a relation holding from a to 5" seem to show that its rejection
would lead to paradoxes. This point, however, belongs to the theory
of relations, and will be resumed in Chapter 1x (§ 98).

From what has been said, it appears that propositional functions
must be accepted as ultimate data. It follows that formal implication
and the inclusion of classes cannot be generally explained by means of a
relation between assertions, although, where a propositional function
asserts a fixed relation to a fixed term, the analysis into subject and
assertion is legitimate and not unimportant.

84. It only remains to say a few words concerning the derivation
of classes from propositional functions. When we consider the ’s such
that ¢z, where ¢x is a propositional function, we are introducing a
notion of which, in the calculus of propositionssonly a very shadowy use
is made—I mean the notion of #ruth. We are considering, among
all the propositions of the type ¢x, those that are true: the corre-
sponding values of x give the class defined by the function ¢2. It must
be held, I think, that every propositional function which is not null
defines a class, which is denoted by “a’s such that ¢2.> There is thus
always a concept of the class, and the class-concept corresponding will
be the singular, “ 2 such that ¢2.” But it may be doubted—indeed the
contradiction with which I ended the preceding chapter gives reason for
doubting—whether there is always a defining predicate of such classes.
Apart from the contradiction in question, this point might appear to be
merely verbal: “being an x such that ¢a,” it might be said, may always
be taken to be a predicate. But in view of our contradiction, all
remarks on this subject must be viewed with caution. This subject,
however, will be resumed in Chapter x.

85. It is to be observed that, according to the theory of pro-
positional functions here advocated, the ¢ in ¢ is not a separate and
distinguishable entity: it lives in the propositions of the form ¢z, and
cannot survive analysis. I am highly doubtful whether such a view does
not lead to a contradiction, but it appears to be forced upon us, and it
has the merit of enabling us to avoid a contradiction arising from the
opposite view. If ¢ were a distinguishable entity, there would be a
proposition asserting ¢ of itself, which we may denote by ¢ (¢); there
would also be & proposition not-¢ (¢), denying ¢ (¢). In this Pproposi-
tion we may regard ¢ as variable; we thus obtain a propositional
function. The question arises: Can the assertion in this propositional
function be asserted of itself? The assertion is non-assertibility of self,
hence if it can be asserted of itself, it cannot, and if it cannot, it can.
This contradiction is avoided by the recognition that the functional
part of a propositional function is not an independent entity. As the
contradiction in question is closely analogous to the other, concerning
predicates not predicable of themselves, we may hope that a similar
solution will apply there also.



CHAPTER VIIL

THE VARIABLE.

86. Tue discussions of the preceding chapter elicited the funda-
mental nature of the variable; no apparatus of assertions enables us to
dispense with the consideration of the varying of one or more elements
in a proposition while the other elements remain unchanged. The
variable is perhaps the most distinctively mathematical of all notions;
it is certainly also one of the most difficult to understand. The attempt,
if not the deed, belongs to the present chapter.

The theory as to the nature of the variable, which results from our
previous discussions, is in outline the following. When a given term
occurs as term in a proposition, that term may be replaced by any other
while the remaining terms are unchanged. The class of propositions
so obtained have what may be called constancy of form, and this con-
stancy of form must be taken asa primitive idea. The notion of a class
of propositions of constant form is more fundamental than the general
notion of cluss, for the latter can be defined in terms of the former,
but not the former in terms of the latter. Taking any term, a certain
member of any class of propositions of constant form will contain that
term. Thus z, the variable, is what is denoted by any term, and ¢z,
the propositional function, is what is denoted by ¢he proposition of the
form ¢ in which 2 occurs. We may say that « is the x is any ¢, where
éx denotes the class of propositions resulting from different values of 2.
Thus in addition to propositional functions, the notions of any and of
denoting are presupposed in the notion of the variable. This theory,
which, I admit, is full of difficulties, is the least objectionable that I
have been able to imagine. I shall now set it forth more in detail.

87. Let us observe, to begin with, that the explicit mention of
any, some, etc., need not occur in Mathematics: formal implication wil
express all that is required. Let us recur to an instance already dis-
cussed in connection with denoting, where a is a class and b a class
of classes. We have

“ Any a belongs to any b is equivalent to “‘z is an a’ implies thaf

‘yisa b implies ‘xisa2’”;



90 The Indefinables of Mathematics  [CHAP. VI

% Any a belongs to a b” is equivalent to “‘z is an a’ implies ‘there

is a b, say u, such that x is a 2’ ™*;

“ Any a belongs to some 4” is equivalent to “there is a b, say u, such

that ¢z is an &’ implies ‘z is a »’”;
and so on for the remaining relations considered in Chapter v. The
question arises: How far do these equivalences constitute definitions of
any, a, some, and how far are these notions involved in the symbolism
itself ?

The variable is, from the formal standpoint, the characteristic notion
of Mathematics. Moreover it is the method of stating general theorems,
which always mean something different from the intensional propositions
to which such logicians as Mr Bradley endeavour to reduce them. That
the meaning of an assertion about all men or any man is different from
the meaning of an equivalent assertion about the concept man, appears
to me, I must confess, to be a self-evident truth—as evident as the fact
that propositions about John are not about the name John. This point,
therefore, I shall not argue further. That the variable characterizes
Mathematics will be generally admitted, though it is not generally
perceived to be present in elementary Arithmetic. Elementary Arith-
metic, as taught to children, is characterized by the fact that the numbers
occurring in it are constants; the answer to any schoolboy’s sum is
obtainable without propositions concerning any number. But the fact
that this is the case can only be proved by the help of propositions
about any number, and thus we are led from schoolboy’s Arithmetic to
the Arithmetic which uses letters for numbers and proves general
theorems. How very different this subject is from childhood’s enemy may
be seen at once in such works as those of Dedekindt and Stolzi. Now
the difference consists simply in this, that our numbers have now become
variables instead of being constants. We now prove theorems concern-
ing #, not concerning 3 or 4 or any other particular number. Thus it is
absolutely essential to any theory of Mathematics to understand the
nature of the variable.

Originally, no doubt, the variable was conceived dynamically, as
something which changed with the lapse of time, or, as is said, as some-
thing which successively assumed all values of a certain class. This
view cannot be too soon dismissed. If a theorem-is proved concerning
n, it must not be supposed that » is a kind of arithmetical Proteus,
which is 1 on Sundays and 2 on Mondays, and so on. Nor must it be
supposed that n simultaneously assumes all its values. If » stands for
any integer, we cannot say that % is 1, nor yet that it is 2, nor yet that

* Here ‘““there is a ¢,” where ¢ is any class, is defined as equivalent to ““If p
implies p, and ‘x is a ¢’ implies p for all values of x, then p is true.”

1 Was sind und wus sollen die Zahlen? Brunswiek, 1893.

1 Allgemeine Arithmetik, Leipzig, 1885.
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it is any other particular number. In fact, n just denotes any number,
and this is something quite distinct from each and all of the numbers.
It is not true that 1 is any number, though it is true that whatever
holds of any number holds of 1. The variable, in short, requires the
indefinable notion of any which was explained in Chapter v.

88. We may distinguish what may be called the true or formal
variable from the restricted variable. 4ny term is a concept denoting
the true variable; if » be a class not containing all terms, any u denotes
a restricted variable. The terms included in the object denoted by the
defining concept of a variable are called the values of the variable: thus
every value of a variable is a constant. There is a certain difficulty
about such propositions as “ any number is a number.” Interpreted by
formal implication, they offer no difficulty, for they assert merely that
the propositional function “ is a number implies . is a number ” holds
for all values of 2. But if “any number” be taken to be a definite
object, it is plain that it is not identical with 1 or 2 or 8 or any number
that may be mentioned. Yet these are all the numbers there are, so
that ““any number ™ cannot be a number at all. The fact is that the
concept “any number” does denote one number, but not a particular
one. This is just the distinctive point about any, that it denotes a term
of a class, but in an impartial distributive manner, with no preference
for one term over another. Thus although z is a number, and no one
number is z, yet there is here no contradiction, so soon as it is recognized
that 2 is not one definite term.

The notion of the restricted variable can be avoided, except in regard
to propositional functions, by the introduction of a suitable hypothesis,
namely the hypothesis expressing the restriction itself. But in respect
of propositional functions this is not possible. The « in ¢x, where ¢z
is a propositional function, is an unrestricted variable; but the ¢ itself
is restricted to the class which we may call ¢. (It is to be remembered
that the class is here fundamental, for we found it impossible, without a
vicious circle, to discover any common characteristic by which the class
could be defined, since the statement of any common characteristic is
itself a propositional function.) By making our x always an unrestricted
variable, we can speak of the variable, which is conceptually identical in
Logic, Arithmetic, Geometry, and all other formal subjects. The Zerms
dealt with are always all terms; only the complex concepts that occur
distinguish the various branches of Mathematics.

89. We may now return to the apparent definability of any, some,
and g, in terms of formal implication. Let a and b be class-concepts,
and consider the proposition “any a is 4 . This is to be interpreted
as meaning “z is an a implies x is a 5.7 It is plain that, to begin with,
the two propositions do not mean the same thing: for any a is a concept
denoting only a’s, whereas in the formal implication # need not be an a.
But we might, in Mathematics, dispense altogether with “any a is a 8,
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and content ourselves with the formal implication: this is, in fact,
symbohcally the best course. The question to be examined, therefore,

: How far, if at all, do any and some and a enter into the formal
lmphcatlon? (The fact that the indefinite article appears in “z is
ana” and “x is a b is irrelevant, for these are merely taken as typical
propositional functions.) We have, to begin with, a class of true
propositions, each asserting of some constant term that if it is an a it is
a b. We then consider the restricted variable, “ any proposition of this
class.”* We assert the truth of any term included among the values of
this restricted variable. But in order to obtain the suggested formula,
it is necessary to transfer the variability from the proposition as a whole
to its variable term. In this way we obtain “z is an a implies # is 5.”
But the genesis remains essential, for we are not here expressing a
relation of two propositional functions “z isan a™and “z isa b.” If
this were expressed, we should not require the same « both times. Only
one propositional function is involved, namely the whole formula. Each
proposition of the class expresses a relation of one term of the pro-
positional function “z is an a” to one of “x is a ”; and we may say,
if we choose, that the whole formula expresses a relation of any term of
“z is an a” to sume term of “x is a 5. We do not so much have
an implication containing a variable as a variable implication. Or
again, we may say that the first » is any term, but the second is some
term, namely the first 2. We have a class of implications not containing
variables, and we consider any member of this class. If any member
is true, the fact is indicated by introducing a typical implication con-
taining a variable. This typical implication is what is called a formal
implication: it is any member of a class of material implications. Thus
it would seem that any is presupposed in mathematical formalism, but
that some and a may be legitimately replaced by their equivalents in
terms of formal implications.

90. Although some may be replaced by its equivalent in terms of
any, it is plain that this does not give the meaning of some. There is,
in fact, a kind of duality of any and some: given a certain propositional
function, if all terms belonging to the propositional function are asserted,
we have any, while if one at least is asserted (which gives what is called
an existence-theorem), we get some. The proposition ¢ asserted with-
out comment, as in “ 2 is & man implies x is a mortal,” is to be taken
to mean that ¢a is true for all values of x (or for any value), but it
might equally well have been taken to mean that ¢ is true for some
value of 2. In this way we might construct a caleulus with two kinds
of variable, the conjunctive and the disjunctive, in which the latter
would occur wherever an existence-theorem was to be stated. But this
method does not appear to possess any practical advantages.

91. It is to be observed that what is fundamental is not particular
propositional functions, but the class-concept propositional function. A
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propositional function is the class of all propositions which arise from
the variation of a single term, but this is not to be considered as a
definition, for reasons explained in the preceding chapter.

92. From propositional functions all other classes can be derived
by definition, with the help of the notion of such that. Given a pro-
positional function ¢a, the terms such that, when x is identified with
any one of them, ¢z is true, are the class defined by ¢2. This is the
class as many, the class in extension. It is not to be assumed that every
class so obtained has a defining predicate: this subject will be discussed
afresh in Chapter x. But it must be assumed, I think, that a class in
extension is defined by any propositional function, and in particular
that all terms form a class, since many propositional functions (e.g-
all formal implications) are true of all terms. Here, as with formal
implications, it is necessary that the whole propositional function whose
truth defines the class should be kept intact, and not, even where this
is possible for every value of z, divided into separate propositional
functions. For example, if a and b be two classes, defined by ¢z and Y=
respectively, their common part is defined by the product ¢z . Yz, where
the product has to be made for every value of x, and then z varied
afterwards. If this is not done, we do not necessarily have the same
z in ¢z and Yr2. Thus we do not multiply propositional functions, but
propositions: the new propositional function is the class of products
of corresponding propositions belonging to the previous functions, and
is by no means the product of ¢z and 2. It is only in virtue of
a definition that the logical product of the classes defined by ¢z and Yrz
is the class defined by ¢z .yz. And wherever a proposition containing
an apparent variable is asserted, what is asserted is the truth, for all
values of the variable or variables, of the propositional function corre-
sponding to the whole proposition, and is never a relation of propositional
functions.

93. It appears from the above discussion that the variable is a
very complicated logical entity, by no means easy to analyze correctly.
The following appears to be as nearly correct as any analysis I can make.
Given any proposition (not a propositional function), let a be one of
its terms, and let us call the proposition ¢ (a). Then in virtue of the
primitive idea of a propositional function, if > be any term, we can
consider the proposition ¢ (z), which arises from the substitution of z
in place of a. We thus arrive at the class of all propositions ¢ ().
If all are true, ¢ (z) is asserted simply: ¢(z) may then be called a
Jformal truth. In a formal implication, ¢ (), for every value of z, states
an implication, and the assertion of ¢ (z) is the assertion of a class of
implications, not of a single implication. If ¢ () is sometimes true,
the values of & which make it true form a class, which is the class defined
by ¢ (2): the class is said to ezist in this case. If ¢ (z) is false for all
values of =, the class defined by ¢ () is said not to exist, and as a
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matter of fact, as we saw in Chapter vi, there is no such class, if classes
are taken in extension. Thus z is, in some sense, the object denoted by
any term; yet this can hardly be strictly maintained, for different
variables may occur in a proposition, yet the object denoted by any
term, one would suppose, is unique. This, however, elicits a new point
in the theory of denoting, namely that any ferm does not denote,
properly speaking, an assemblage of terms, but denotes one term, only
not one particular definite term. Thus any ferm may denote different
terms in different places. We may say: any term has some relation to
any term; and this is quite a different proposition from: any term has
some relation to itself. Thus variables have a kind of individuality.
This arises, as I have tried to show, from propositional functions.
When a propositional function has two variables, it must be regarded
as obtained by successive steps. If the propositional function ¢ (2, y)
is to be asserted for all values of r and y, we must consider the assertion,
for all values of g, of the propositional function & (a, Y), where a is
a constant. This does not involve y, and may be represented by +(a).
We then vary a, and assert y(x) for all values of 2. The process is
analogous to double integration; and it is necessary to prove formally
that the order in which the variations are made makes no difference
to the result. The individuality of variables appears to be thus ex-
plained. A variable is not any term simply, but any term as entering
into a propositional function. We may say, if ¢z be a propositional
function, that z is the term in any proposition of the class of proposi-
tions whose type is ¢a. It thus appears that, as regards propositional
functions, the notions of class, of denoting, and of any, are fundamental,
being presupposed in the symbolism employed. With this conclusion,
the analysis of formal implication, which has been one of the principal
problems of Part I, is carried as far as I am able to cary it. May
some reader succeed in rendering it more complete, and in answering the
many questions which I have had to leave unanswered,



CHAPTER IX.

RELATIONS.

94. Nexr after subject-predicate propositions come two types of
propositions which appear equally simple. These are the propositions
in which a relation is asserted between two terms, and those in which
two terms are said to be two. The latter class of propositions will be
considered hereafter; the former must be considered at once. It has
often been held that every proposition can be reduced to one of the
subject-predicate type, but this view we shall, throughout the present
work, find abundant reason for rejecting. It might be held, however,
that all propositions not of the subject-predicate type, and not asserting
numbers, could be reduced to propositions containing two terms and
a relation. 'This opinion would be more difficult to refute, but this too,
we shall find, has no good grounds in its favour®*. We may therefore
allow that there are relations having more than two terms ; but as these
are more complex, it will be well to consider first such as have two
terms only.

A relation between two terms is a concept which occurs in a
proposition in which there are two terms not occurring as conceptst,
and in which the interchange of the two terms gives a different pro-
position. This last mark is required to distinguish a relational
proposition from one of the type “a and b are two,” which is identical
with “b and & are two.” A relational proposition may be symbolized
by aRb, where R is the relation and a and b are the terms; and aRb
will then always, provided a and b are not identical, denote a different
proposition from bRa. That is to say, it is characteristic of a relation
of two terms that it proceeds, so to speak, from one to the other. This
is what may be called the sense of the relation, and is, as we shall find,
the source of order and series. It must be held as an axiom that aRb
implies and is implied by a relational proposition dR’a, in which the

* See inf., Part 1V, Chap. xxv, § 200.
+ This description, as we saw above (§ 48), excludes the pseudo-relation of subject
to predicate.
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relation R’ proceeds from b to a, and may or may not be the same
relation as R. But even when aRb implies and is implied by bRa,
it must be strictly maintained that these are different propositions.
We may distinguish the term jfrom which the relation proceeds as the
referent, and the term fo which it proceeds as the relatum. The sense
of a relation is a fundamental notion, which is not capable of definition.
The relation which holds between & and a whenever R holds between
a and b will be called the converse of R, and will be denoted (following

Schroder) by R. 'The relation of R to R is the relation of oppositeness,
or difference of sense; and this must not be defined (as would seem at
first sight legitimate) by the above mutual implication in any single
case, but only by the fact of its holding for all cases in which the given
relation occurs. The grounds for this view are derived from certain
propositions in which terms are related to themselves not-symmetrically,
i.e. by a relation whose converse is not identical with itself. These
propositions must now be examined.

95. There is a certain temptation to affirm that no term can be
related to itself; and there is a still stronger temptation to affirm that,
if a term can be related to itself, the relation must be symmetrical,
i.e. identical with its converse. But both these temptations must be
resisted. In the first place, if no term were related to itself, we should
never be able to assert self-identity, since this is plainly a relation.
But since there is such a notion as identity, and since it seems undeniable
that every term is identical with itself, we must allow that a term may
be related to itself. Identity, however, is still a symmetrical relation,
and may be admitted without any great qualms. The matter becomes
far worse when we have to admit not-symmetrical relations of terms
to themselves. Nevertheless the following propositions seem undeniable ;
Being is, or has being; 1 is one, or has unity; concept is conceptual :
term is a term; class-concept is a class-concept. All these are of one
of the three equivalent types which we distinguished at the beginning of
Chapter v, which may be called respectively subject-predicate proposi-
tions, propositions asserting the relation of predication, and proposmons
asserting membership of a class. What we have to consider is, then,
the fact that a predicate may be predicable of itself. It is necessary, for
our present purpose, to take our propositions in the second form (Socrates
has humanity), since the subject-predicate form is not in the above sense
relational. We may take, as the type of such propositions, “unity has
unity.” Now it is certainly undeniable that the relation of predication
is asvmme’mca] since subjects cannot in general be predicated of their
predlcates Thus “unity has unity ” asserts one relation of unity to
itself, and implies another, namelv the converse relation: unity has
to itself both the relation of subJect to predicate, and the relation of
predicate to subject. Now if the referent and the relatum are identical,
it is plain that the relatum has to the referent the same relation as the
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referent has to the relatum. Hence if the converse of a relation in
a particular case were defined by mutual implication in that particular
case, it would appear that, in the present case, our relation has two
converses, since two different relations of relatum to referent are implied
by “unity has unity.” We must therefore define the converse of a
relation by the fact that aRb implies and is implied by bRa whatever
a and b may be, and whether or not the relation R holds between them.
That is to say, @ and b are here essentially variables, and if we give
them any constant value, we may find that aRb implies and is implied
by bR'a, where R’ is some relation other than R.

Thus three points must be noted with regard to relations of two
terms: (1) they all have sense, so that, provided & and & are not
identical, we can distinguish aRb from bRa; (2) they all have a
converse, i.e. a relation R such that aRb implies and is implied by
bRa, whatever a and b may be; (8) some relations hold between a
term and itself, and such relations are not necessarily symmetrical,
i.e. there may be two different relations, which are each other’s con-
verses, and which both hold between a term and itself.

96. For the general theory of relations, especially in its mathe-
matical developments, certain axioms relating classes and relations are
of great importance. It is to be held that to have a given relation to a
given term is a predicate, so that all terms having this relation to this
term form a class. It is to be held further that to have a given relation
at all is a predicate, so that all referents with respect to a given relation
form a class. It follows, by considering the converse relation, that all
relata also form a class. These two classes I shall call respectively the
domain and the converse domain of the relation; the logical sum of the
two I shall call the field of the relation.

The axiom that all referents with respect to a given relation form a
class seems, however, to require some limitation, and that on account of
the contradiction mentioned at the end of Chapter vi. This contra-
diction may be stated as follows. We saw that some predicates can be
predicated of themselves. Consider now those of which this is not the
case. These are the referents (and also the relata) in what seems like
a complex relation, namely the combination of non-predicability with
identity. But there is no predicate which attaches to all of them and
to no other terms. For this predicate will either be predicable or not
predicable of itself. If it is predicable of itself, it is one of those
referents by relation to which it was defined, and therefore, in virtue
of their definition, it is not predicable of itself. Conversely, if it is not
predicable of itself, then again it is one of the said referents, of all of
which (by hypothesis) it is predicable, and therefore again it is predicable
of itself. This is a contradiction, which shows that all the referents
considered have no exclusive common predicate, and therefore, if defining
predicates are essential to classes, do not form a class.
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The matter may be put otherwise. In defining the would-be class of
predicates, all those not predicable of themselves have been used up.
The common predicate of all these predicates cannot be one of them,
since for each of themn there is at least one predicate (namely itself) of
which it is not predicable. But again, the supposed common predicate
cannot be any other predicate, for if it were, it would be predicable of
itself, i.e. it would be a member of the supposed class of predicates, since
these were defined as those of which it is predicable. Thus no predicate
is left over which could attach to all the predicates considered.

It follows from the above that not every definable collection of
terms forms a class defined by & common predicate. This fact must be
borne in mind, and we must endeavour to discover what properties a
collection must have in order to form such a class. The exact point
established by the above contradiction may be stated as follows: A pro-
position apparently containing only one variable may not be equivalent
to any proposition asserting that the variable in question has a certain
predicate. It remains an open question whether every class must have
a defining predicate.

That all terms having a given relation to a given term form a class
defined by an exclusive common predicate results from the doctrine of
Chapter viz, that the proposition aRb can be analyzed into the subject
a and the assertion Rb. To be a term of which Rb can be asserted
appears to be plainly a predicate. But it does not follow, I think,
that to be a term of which, for some value of 7, Ry can be asserted, is
a predicate. The doctrine of propositional functions requires, however,
that all terms having the latter property should form a class. This
class I shall call the domain of the relation R as well as the class of
referents. The domain of the converse relation will be also called the
converse domain, as well as the class of relata. The two domains
together will be called the field of the relation—a notion chiefly im-
portant as regards series. Thus if paternity be the relation, fathers form
its domain, children its converse domain, and fathers and children
together its field.

It may be doubted whether a proposition aRb can be regarded as
asserting aR of b, or whether only Ra can be asserted of 4. In other
words, is a relational proposition only an assertion concerning the
referent, or also an assertion concerning the relatum? If we take the
latter view, we shall have, connected with (say) “a is greater than 5,
four assertions, namely “is greater than ,” “a is greater than,” “is less
than a” and “d is less than.” T am inclined myself to adopt this view,
but I know of no argument on either side.

97. We can form the logical sum and product of two relations or
of a class of relations exactly as in the case of classes, except that here
we have to deal with double variability. In addition to these ways of
combination, we have also the relative product, which is in general non-



96-99] Relations 99

commutative, and therefore requires that the number of factors should
be finite. If R, .S be two relations, to say that their relative product
RS holds between two terms z, z is to say that there is a term y to
which z has the relation R, and which itself has the relation .§ to . Thus
brother-in-law is the relative product of wife and brother or of sister
and husband: father-in-law is the relative product of wife and father,
whereas the relative product of father and wife is mother or step-mother.

98. There is a temptation to regard a relation as definable in
extension as a class of couples. This has the formal advantage that it
avoids the necessity for the primitive proposition asserting that every
couple has a relation holding between no other pair of terms. But it is
necessary to give sense to the couple, to distinguish the referent from the
relatum : thus a couple becomes essentially distinct from a class of two
terms, and must itself be introduced as a primitive idea. It would seem,
viewing the matter philosophically, that sense can only be derived from
some relational proposition, and that the assertion that a is referent and
b relatum already involves a purely relational proposition in which 2 and
b are terms, though the relation asserted is only the general one of
referent to relatum. There are, in fact, concepts such as greafer, which
occur otherwise than as terms in propositions having two terms (§§ 48, 54);
and no doctrine of couples can evade such propositions. It seems there-
fore more correct to take.an intensional view of relations, and to identify
them rather with class-concepts than with classes. This procedure is
formally more convenient, and seems also nearer to the logical facts.
Throughout Mathematics there is the same rather curious relation of
intensional and extensional points of view: the symbols other than
variable terms (i.e. the variable class-concepts and relations) stand for
intensions, while the actual objects dealt with are always extensions.
Thus in the calculus of relations, it is classes of couples that are relevant,
but the symbolism deals with them by means of relations. This is
precisely similar to the state of things explained in relation to classes,
and it seems unnecessary to repeat the explanations at length.

99. Mr Bradley, in Appearance and Reality, Chapter 1u, has based
an argument against the reality of relations upon the endless regress
arising from the fact that a relation which relates two terms must
be related to each of them. The endless regress is undeniable, if
relational propositions are taken to be ultimate, but it is very doubtful
whether it forms any logical difficulty. We have already had occasion
(§ 55) to distinguish two kinds of regress, the one proceeding merely to
perpetually new implied propositions, the other in the meaning of a
proposition itself; of these two kinds, we agreed that the former, since
the solution of the problem of infinity, has ceased to be objectionable,
while the latter remains inadmissible. We have to inquire which kind
of regress occurs in the present instance. It may be urged that it is
part of the very meaning of a relational proposition that the relation
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involved should have to the terms the relation expressed in saying that
it relates them, and that this is what makes the distinction, which we
formerly (§ 54) left unexplained, between a relating relation and a relation
in itself. It may be urged, however, against this view, that the assertion
of a relation between the relation and the terms, though implied, is no
part of the original proposition, and that a relating relation is dis-
tinguished from a relation in itself by the indefinable element of assertion
which distinguishes a proposition from a concept. Against this it
might be retorted that, in the concept « difference of  and 4,” difference
relates @ and & just as much as in the proposition “a and b differ”: but
to this it may be rejoined that we found the difference of @ and b, except
in so far as some specific point of difference may be in question, to be
indistinguishable from bare difference. Thus it seems impossible to
prove that the endless regress involved is of the objectionable kind.
We may distinguish, I think, between “a exceeds 4™ and “a is greater
than 3,” though it would be absurd to deny that people usually mean
the same thing by these two propositions. On the principle, from which
I can see no escape, that every genuine word must have some meaning,
the is and than must form part of “a is greater than 3,” which thus
contains more than two terms and a relation. The is seems to state
that @ has to greater the relation of referent, while the than states
similarly that  has to greater the relation of relatum. But ©a exceeds
b” may be held to express solely the relation of a to b, without in-
cluding any of the implications of further relations. Hence we shall
have to conclude that a relational proposition aRb does not include
in its meaning any relation of a or b to R, and that the endless regress,
though undeniable, is logically quite harmless. With these remarks,

we may leave the further theory of relations to later Parts of the present
work.



CHAPTER X.
THE CONTRADICTION.

100. Brrore taking leave of fundamental questions, it is necessary
to examine more in detail the singular contradiction, already mentioned,
with regard to predicates not predicable of themselves. Before attempt-
ing to solve this puzzle, it will be well to make some deductions connected
with it, and to state it in various different forms. I may mention that I
was led to it in the endeavour to reconcile Cantor’s proof that there can
be no greatest cardinal number with the very plausible supposition that
the class of all terms (which we have seen to be essential to all formal
propositions) has necessarily the greatest possible number of members*.

Let w be a class-concept which can be asserted of itself, Z.e. such that
“w is a w.” Instances are class-concept, and the negations of ordinary
class-concepts, e.g. not-man. Then (a)if w be contained in another class o,
since w is a w, w is a v; consequently there is a term of v which is
a class-concept that can be asserted of itself. Hence by contraposition,
(B) if u be a class-concept none of whose members are class-concepts
that can be asserted of themselves, no class-concept contained in = can
be asserted of itself. Hence further, () if « be any class-concept what-
ever, and u' the class-concept of those members of # which are not
predicable of themselves, this class-concept is contained in itself, and
none of its members are predicable of themselves; hence by (8) « is not
predicable of itself. Thus 2 is not a «’, and is therefore not a u; for
the terms of u that are not terms of « are all predicable of themselves,
which 2’ is not. Thus (8) if « be any class-concept whatever, there is a
class-concept contained in % which is not a member of #, and is also one
of those class-concepts that are not predicable of themselves. So far, our
deductions seem scarcely open to question. But if we now take the last
of them, and admit the class of those class-concepts that cannot be
asserted of themselves, we find that this class must contain a class-concept
not a member of itself and yet not belonging to the class in question.

We may observe also that, in virtue of what we have proved in (8), the
class of class-concepts which cannot be asserted of themselves, which we

* See Part V, Chap. xuux, § 344 ff.
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will call w, contains as members of itself all its sub-classes, although it' is
easy to prove that every class has more sub-classes than terms. IAga..m,
if y be any term of w, and ' be the whole of w except y, then =/, being
a sub-class of w, is not a »’ but is a w, and therefore is y. Hence ea.ch
class-concept which is a term of w has all other terms of w as its
extension. It follows that the concept dicycle is a teaspoon, and teaspoon
is a bicycle. This is plainly absurd, and any number of similar
absurdities can be proved.

101. Let us leave these paradoxical consequences, and attempt the
exact statement of the contradiction itself. ~We have first the statement
in terms of predicates, which has been given already. If z be a predicate,
z may or may not be predicable of itself. Let us assume that “not-
predicable of oneself” is a predicate. Then to suppose either tha_l’c this
predicate is, or that it is not, predicable of itself, is self-contradictory.
The conclusion, in this case, seems obvious: “not-predicable of oneself”
is not a predicate.

Let us now state the same contradiction in terms of class-concepts.
A class-concept may or may not be a term of its own extension. “Class-
concept which is not a term of its own extension™ appears to be a class-
concept. But if it is a term of its own extension, it is a class-concept
which is not a term of its own extension, and vice versd. Thus we must
conclude, against appearances, that “class-concept which is not a term of
its own extension” is not a class-concept.

In terms of classes the contradiction appears even more extraordinary.
A class as one may be a term of itself as many. Thus the class of all
classes is a class; the class of all the terms that are not men is not a man,
and so on. Do all the classes that have this property form a class? If
S0, is it as one a member of itself as many or not? If it is, then it is
one of the classes which, as ones, are not members of themselves as many,
and vice versé. Thus we must conclude again that the classes which as
ones are not members of themselves as many do not form a class—or
rather, that they do not form a class as one, for the argument cannot
show that they do not form a class as many.

102. A similar result, which, however, does not lead to a contradic-
tion, may be proved concerning any relation. Let R be a relation, and
consider the class w of terms which do not have the relation R to them-
selves. Then it is impossible that there should be any term a to which
all of them and no other terms have the relation R. For, if there were
such a term, the propositional function “z does not have the relation R
to 27 would be equivalent to “z has the relation R to a.” Substituting
a for & throughout, which is legitimate since the equivalence is formal,
we find a contradiction. When in place of R we put ¢, the relation of
a term to a class-concept which can be asserted of it, we get the above
contradiction. The reason that a contradiction emerges here is that
we have taken it as an axiom that any propositional function containing
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only one variable is equivalent to asserting membership of a class defined
by the propositional function. Either this axiom, or the principle that
every class can be taken as one term, is plainly false, and there is no
fundamental objection to dropping either. But having dropped the
former, the question arises: Which propositional functions define classes
which are single terms as well as many, and which do not? And with
this question our real difficulties begin.

Any method by which we attempt to establish a one-one or many-
one correlation of all terms and all propositional functions must omit at
least one propositional function. Such a method would exist if all
propositional functions could be expressed in the form ...ex, since this
form correlates » with ...ew. But the impossibility of any such correla-
tion is proved as follows. Let ¢, be a propositional function correlated
with & ; then, if the correlation covers all terms, the denial of ¢, () will
be a propositional function, since it is a proposition for all values of .
But it cannot be included in the correlation : for if it were correlated
with @, ¢q (x) would be equivalent, for all values of z, to the denial of
¢z () ; but this equivalence is impossible for the value a, since it makes
¢q(a) equivalent to its own denial. It follows that there are more

propositional functions than terms—a result which seems plainly impos-
sible, although the proof is as commcmg as any in Mathematics. We
shall shortly see how the impossibility is removed by the doctrine of
logical types.

103. The first method which suggests itself is to seek an amblgulty
in the notion of e. But in Chapter vi we distinguished the various
meanings as far as any distinction seemed possible, and we have just
seen that with each meaning the same contradiction emerges. Let us,
however, attempt to state the contradiction throughout in terms of
propositional functions. Every propositional function which is not null,
we supposed, defines a class, and every class can certainly be defined by
a propositional function. Thus to say that a class as one is not a
member of itself as many is to say that the class as one does not satisfy
the function by which itself as many is defined. Since all propositional
functions except such as are null define classes, all will be used up, in
considering all classes having the above property, except such as do not
have the above property. If any propositional function were satisfied
by every class having the above property, it would therefore necessarily
be one satisfied also by the class w of all such classes considered as a
single term. Hence the class w does not itself belong to the class w,
and therefore there must be some propositional function satisfied by the
terms of = but not by w itself. Thus the contradiction re-emerges, and
we must suppose, either that there is no such entity as w, or that there
is no propositional function satisfied by its terms and by no others.

It might be thought that a solution could be found by denying the
legitimacy of variable propositional functions. If we denote by Ay, for
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the moment, the class of values satisfying ¢, our propositional function
is the denial of ¢ (¥k4), where ¢ is the variable. The doctrine of
Chapter vi1, that ¢ is not a separable entity, might make such a variable
seem illegitimate; but this objection can be overcome by substitut-
ing for ¢ the class of propositions ¢z, or the relation of ¢z to z.
Moreover it is impossible to exclude variable propositional functions
altogether. Wherever a variable class or a variable relation occurs,
we have admitted a variable propositional function, which is thus
essential to assertions about every class or about every relation. The
definition of the domain of a relation, for example, and all the general
propositions which constitute the calculus of relations, would be swept
away by the refusal to allow this type of variation. Thus we require
so