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PREFATORY STATEMENT OF SYMBOLIC
CONVENTIONS

The purpose of the following observations is to bring together in one

discussion various explanations which are required in applying the theory

of types to cardinal arithmetic. It is convenient to collect these observations,

since otherwise their dispersion throughout the several numbers of Part III

makes it difficult to see what is their total effect. But although we have

placed these observations at the beginning, they are to be read concurrently

with the text of Part III, at least with so much of the text as consists of

explanations of definitions. The earlier portion of what follows is merely a

resume of previous explanations; it is only in the later portions that the

application to cardinal arithmetic is made.

I. General Observations on Types.

Three different kinds of typical ambiguity are involved in our propositions,

concerning

:

(1) the functional hierarchy,

(2) the prepositional hierarchy,

(3) the extensional hierarchy.

The relevance of these must be separately considered.

We often speak as though the type represented by small Latin letters

were not composed of functions. It is, however, compatible with all we have

to say that it should be composed of functions. It is to be observed, further,

that, given the number of individuals, there is nothing in our axioms to show

how many predicative functions of individuals there are, i.e. their number

is not a function of the number of individuals: we only know that their

number ^2NcIndIV
, where "Indiv" stands for the class of individuals.

In practice, we proceed along the extensional hierarchy after the early

numbers of the book. If we have started from individuals, the result of this

is to exclude functions wholly from our hierarchy; if we have started with

functions of a given type, all functions of other types are excluded. Thus

a fresh extensional hierarchy, wholly excluding every other, starts from each

type of function. When we speak simply of "the extensional hierarchy," we

mean the one which starts from individuals.

It is to be observed that when we have the assertion of a propositional

function, say "h <£#," the x must be of some definite type, i.e. we only assert

that <£# is true whatever x may be within some one type. Thus e.g. " \- . x = x"

does not assert more than that this assertion holds for any a? of a given type.

It is true that symbolically the same assertion holds in other types, but other
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types cannot be included under one assertion-sign, because no variable can

travel beyond its type.

The process of rendering the types of variables ambiguous is begun in #8
and *9, where we take the first step in regard to the propositional hierarchy.

Before #8 and #9, our variables are elementary propositions. These are such as

contain no apparent variables. Hence the only functions that occur are matrices,

and these only occur through their values. The assumption involved in the

transition from Section A to Section B (Part I) is that, given "h .fp" where

p is an elementary proposition, we may substitute for p "<f>l (sc, y, z, . . .)," where

cf> is any matrix. Thus instead of " H . fp," which contained one variable p of

a given type, we have "h /{<£! {oc, y, z, ...)}," which contains several variables

of several types (any finite number of variables and types is possible). This

assumption involves some rather difficult points. It is to be remembered

that no valve of <j> contains
<f>

as a constituent, and therefore <p is not a

constituent of fp even if p is a value of
<f).

Thus we pass, above, from an

assertion containing no function as a constituent to one containing one or

more functions as constituents. The assertion "I- .fp" concerns any elemen-

tary proposition, whereas "H •/{</> ! (%, y, z, ...)}" concerns any of a certain set

of elementary propositions, namely any of those that are values of <£.

Different types of functions give different sorts of ways of picking out

elementary propositions.

Having assumed or proved "h .fp" where p is elementary and therefore

involves no ambiguity of type, we thus assert

I- ./I*! <*>y , a, ...)},

where the types of the arguments and the number of them are wholly

arbitrary, except that they must belong to the functional hierarchy including

individuals. (The assumption that propositions are incomplete symbols

excludes the possibility that the arguments to
(f>

are propositions.) The note-

worthy point is that we thus obtain an assertion in which there may be any

finite number of variables and the variables have unlimited typical ambiguity,,

from an assertion containing one variable of a perfectly definite type. All

this is presupposed before we embark on the propositional hierarchy.

It should be observed that all elementary propositions are values of

predicative functions of one individual, i.e. of <j> ! x, where & is individual.

Thus we need not assume that elementary propositions form a type ; we may

replace p by "<j> ! a?" in "h .fp." In this way, propositions as variables wholly

disappear.

In extending statements concerning elementary propositions so as formally

to apply to first-order propositions, we have to assume afresh the primitive

proposition #1"11 (#1*1 is never used), i.e. given "\- ,$x" and " h , <j>x D tyx"

we have "V ,-tyx" which is practically #912. This was asserted in *1*11

for any case in which $x and tyx are elementary propositions. There was
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here already an ambiguity of type, owing to the fact that at need not be

an individual, but might be a function of any order. E.g. we might use

*1*11 to pass from

"I- . <j> I a" and "h .
<f>

I a D cj> ! b" to " h . <j> I b"

where </> replaces the x of #1-1 1, and tf> ! a, (f>lb replace $& and -tysb. Thus
#1*11, even before its extension in #9, already states a fresh primitive propo-

sition for each fresh type of functions considered. The novelty in #9 is that

we allow
<f>

and yjr to contain one apparent variable. This may be of any

functional type (including Indiv); thus we get another set of symbolically

identical primitive propositions. In passing, as indicated at the end of #9,

to more than one apparent variable, we introduce a new batch of primitive

propositions with each additional apparent variable.

Similar remarks apply to the other primitive propositions of #9.

What makes the above process legitimate is that nothing in the treat-

ment of functions of order n presupposes functions of higher order. We can

deal with each new type of functions as it arises, without having to take

account of the fact that there are later types. From symbolic analogy we

"see" that the process can be repeated indefinitely. This possibility rests

upon two things:

(1) A fresh interpretation of our constants—v, <v,
!, (x) ., ([£#) .—at each

fresh stage;

(2) A fresh assumption, symbolically unchanged, of the primitive propo-

sitions which we found sufficient at an earlier stage—the possibility of avoiding

symbolic change being due to the fresh interpretation of our constants.

The above remarks apply to the axiom of reducibility as well as to our

other primitive propositions. If, at any stage, we wish to deal with a class

defined by a function of the 30,000th type, we shall have to repeat our

arguments and assumptions 30,000 times. But there is still no necessity to

speak of the hierarchy as a whole, or to suppose that statements can be made

about "all types."

We come now to the extensional hierarchy. This starts from some one

point in the functional hierarchy. We usually suppose it to start from

individuals, but any other starting-point is equally legitimate. Whatever type

of functions (including Indiv) we start from, all higher types of functions

are excluded from the extensional hierarchy, and also all lower types (if

any). Some complications arise here. Suppose we start from Indiv. Then if

<f>\% is any predicative function of individuals, £(<£ lz) —
<f>

! z. But if we

adopt the theory of #20, as opposed to that suggested in the Introduction

to the second edition, identity between a function and a class does not have

the usual properties of identity ; in fact, though every function is identical

with some class, and vice versa, the number of functions is likely to be
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greater than the number of classes. This is due to the fact that we may have

£ (0 ! z) = sjr ! z .-£
(<f>

! z) = x I $ without having yfr \ £ = x '• z.

In the extensional hierarchy, we prove the extension from classes to

classes of classes, and so on, without fresh primitive propositions (#20, #21)

The primitive propositions involved are those concerning the functional

hierarchy.

From all these various modes of extension we "see" that whatever can

be proved for lower types, whether functional or extensional, can also be

proved for higher types*. Hence we assume that it is unnecessary to know

the types of our variables, though they must always be confined within some

one definite type.

Now although everything that can be proved for lower types can be

proved for higher types, the converse does not hold. In Vol. I only two

propositions occur which can be proved for higher but not for lower types.

These are g ! 2 and g ! 2r . These can be proved for any type except that of

individuals. It is to be observed that we do not state that whatever is true

for lower types is true for higher types, but only that whatever can be proved

for lower types can be proved for higher types. If, for example, Nc* Indiv = v,

then this proposition is false for any higher type; but this proposition,

Nc'Indiv = i>, is one which carfnot be proved logically; in fact, it is only

ascertainable by a census, not by logic. Thus among the propositions which

can be proved by logic, there are some which can only be proved for higher

types, but none which can only be proved for lower types.

The propositions which can be proved in some types but not in others all

are or depend upon existence-theorems for cardinals. We can prove

g ! 0, 3 ! I, universally,

g ! 2, except for Indiv,

3 ! 3, g ! 4, except for Indiv, Cl'Indiv, Rl'Indiv ; and so on.

Exactly similar remarks would apply to the functional hierarchy. In both

cases, the possibility of proving these propositions depends upon the axiom

of reducibility and the definition of identity. Suppose there is only one

individual, x. Then § = x, § 4= so are two different functions, which, by the

axiom of reducibility, are equivalent to two different predicative functions.

Hence there are at least two predicative functions of x, and at least two

classes i
l
x, Ax . This argument fails both for classes and functions if either

we deny the axiom of reducibility or we suppose that there may be two

different individuals which agree in all their predicates, i.e. that the definition

of identity is misleading.

The statement that what can be proved for lower types can be proved for

higher types requires certain limitations, or rather, a more exact formulation.

* But cf. next page for a more exact statement of this principle.
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Taking Indiv as a primitive idea, put

Kl = Cl'Indiv Df, K12 = C1'K1 Df, etc.

Then consider the proposition Nc'Kl = A. We can prove

Nc'Kl rt fIndiv = A . a ! Nc'Kl a t'K\ . g ! Nc'Kl n t'KV . etc.

Thus Nc'Kl = A can be proved in the lowest type in which it is significant,

and disproved in any other. The difficulty, however, is avoided if Indiv is

replaced by a variable a, and Kl by Cl%'«. Then we have

Nc'C\%'ant'a = A,

and this holds whatever the type of a may be. Thus in order that our

principle about lower and higher types may be true, it is necessary that any

relation there may be between two types occurring in a proposition should be

preserved ; in other words, when one constant type is defined in terms of

another (as Kl and Indiv), the definition must be restored before the type is

varied, so that when one type is varied, so is the other. With this proviso,

our principle about higher and lower types holds.

With the above proviso, the truth of our statement is manifest. For we

nave shown that the same primitive propositions, symbolically, which hold

for the lowest type concerned in our reasoning, hold also for subsequent

types; and therefore all our proofs can be repeated symbolically unchanged.

The importance of this lies in the fact that, when we have proved a

proposition for the lowest significant type, we "see" that it holds in any

other assigned significant type. Hence every proposition which is proved

without the mention of any type is to be regarded as proved for the lowest

significant type, and extended by analogy to any other significant type.

By exactly similar considerations we "see" that a proposition which can be

proved for some type other than the lowest significant type must hold for

any type in the direct descent from this. E.g. suppose we can prove a propo-

sition (such as a ! 2) for the type Kl (where Kl = Cl'Indiv); then merely

writing Cl'Indiv for Kl, we have a proposition which is proved concerning

Indiv, namely g!2n i'Cl'Indiv, and here, by what was said before, Indiv

may be replaced by any higher type.

Thus given a typically ambiguous relation JR, such that, if t is a type,

R't is a type (CI or Rl is such a relation), we "see" that, if we can prove

<£ (R'Indiv), we can also prove
<f>

{R't), where r is any type, and <j> is

composed of typically ambiguous symbols. Similarly if we can prove

<f>
(Indiv, 22'Indiv), we can prove (f>(r, R't), where t is any type. But we

cannot in general prove cf> (Indiv, R't) or
<f>

(r, iJ'Indiv), and these may be

in fact untrue. E.g. we have a ! Nc (Kl)'Indiv . ~g ! Nc (Kl)'KK

Thus more generally, when a proposition containing several ambiguities

can be proved for the types .R'Indiv, tf'Indiv, ..., but not for lower types, it
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is to be regarded as'a function of Indiv, and then it becomes true for any

type; that is, given

4> (iZ'Indiv, S'Indiv, ..,),

we shall also have
<£ (R'r, S't, .

.

.),

where r is any type. In this way, all demonstrable propositions are in the

first instance about Indiv, and when so expressed remain true if any other

type is substituted for Indiv.

When a proposition containing typically ambiguous symbols can be proved

to be true in the lowest significant type, and we can "see" that symbolically

the same proof holds in any other assigned type, we say that the proposition

has "permanent truth." (We may also say, loosely, that it is "true in all

types.") When a proposition containing typically ambiguous symbols can be

proved to be false in the lowest significant type, and we can "see" that it is

false in any other assigned type, we say that it has "permanent falsehood."

Any other proposition containing typically ambiguous symbols is said to be

"fluctuating," or to have "fluctuating truth-value," as opposed to "permanent

truth-value," which belongs to propositions that have either permanent truth

or permanent falsehood.

In what follows, ambiguities concerned with the propositional hierarchy

will be ignored, since they never lead to fluctuating propositions. Thus dis-

junction and negation and their derivatives will not receive explicit typical

determination, but only such typical determination as results from assigning

the types of the other typically ambiguous symbols involved.

It is convenient to call the symbolic form of a propositional function

simply a "symbolic form" Thus, if a symbolic form contains symbols of

ambiguous type it represents different propositional functions according as

the types of its ambiguous symbols are differently adjusted. The adjustment

is of course always limited by the necessity for the preservation of meaning.

It is evident that the ideas of "permanent truth-value" and "fluctuating truth-

value" apply in reality to symbolic forms and not to propositions or propo-

sitional functions. Ambiguity of type can only exist in the process of

determination of meaning. When the meaning has been assigned to a

symbolic form and a propositional function thereby obtained, all ambiguity
of type has vanished.

To "assert a symbolic form" is to assert each of the propositional functions

arising for the set of possible typical determinations which are somewhere
enumerated. We have in fact enumerated a very limited number of types
starting from that of individuals, and we "see" that this process can be
indefinitely continued by analogy. The form is always asserted so far as the
enumeration has arrived; and this is sufficient for all purposes, since it is

essentially impossible to use a type which has not been arrived at by succes-
sive enumeration from the lower types.
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The only difficulties which arise in Cardinal Arithmetic in connection

with the ambiguities of type of the symbols are those which enter through

the use of the symbol sm, or of the symbol Nc, which is sm. For it may
happen that a class in one type has no class similar to it in some lower type

(cf. *10272'73). All fallacious reasoning in cardinal or ordinal arithmetic in

connection with types, apart from that due to the mere absence of meaning
in symbols, is due to this fact—in other words to the fact that in some types

g I Nc'a is true, and in other types g I Nc'a may not be true. The fallacy

consists in neglecting this latter possibility of the failure of g I Nc'a for a

limited number of types, that is, in taking the "fluctuating" form g; I Nc'a
as though it possessed a "permanent" truth-value.

A fluctuating form however often possesses what is here termed a

"stable" truth-value, which is as important as the permanent truth-value

of other forms. For example, anticipating our definitions of elementary

arithmetic, consider 2 + 3 = 5. There is no abstract logical proof that there

are two individuals; so suppose 2 and 3 refer to classes of individuals, but

5 refers to classes of a high enough type, then with these determinations

2 +c 3 = 5 cannot be proved. But 2 +c 3 = 5 has a stable truth-value, since

it can always be proved when all the types are high enough. In this case

the fact that our empirical census of individuals (at least of the "relative"

individuals of ordinary life) has outrun the capacity of logical proof, makes

the fluctuation in the truth-value of the form to be entirely unimportant.

In order to make this idea precise, it is necessary to have a convention

as to the order in which the types of symbols in a symbolic form are assigned.

The rule we adopt is that the types of the real variables are to be first

assigned, and then those of the constant symbols. The types of the apparent

variables, if any, will then be completely determinate.

A symbolic form has a stable truth-value if, after any assignment of types

to the real variables, types can be assigned to the constant symbols so that

the truth-value of the proposition thus obtained is the same as the truth-value

of any proposition obtained by modifying it by the assignment of higher types

to some or all of the constant symbols. This truth-value is the stable truth-

value.

II. Formal Numbers.

The conventions, which we shall give below as to the assignment of types,

practically restrict our interpretation of fluctuating symbolic forms to types

in which the forms possess their stable truth-value. The assumption that

these truth-values are stable never enters into the reasoning. But we judge

a truth-value to be stable when any method of raising the types of the

constant symbols by one step leaves it unaltered.

In practice the fluctuation of truth-values only enters into our considera-

tion through a limited number of symbols called "formal numbers."
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Formal numbers may be "constant" or "functional."

A constant formal number is any constant symbol for which there is a

constant « such that, in whatever type the constant svmbol is determined,

it is, in that type, identical with Nc'a. In other words if <r be a constant

symbol, then er is a formal number provided that "truth" is the permanent

truth-value of <r = Nc'a, for some constant a.

The functional formal numbers are defined by enumeration; they are

Nc*«, 2Nc (
a:, nNc'/c, sm"/4, fi +-

c v, fi
-

c v, fi x v, nv
,

where in each formal number the symbols a, k, /h, v occurring in it are called

the arguments of the functional form even when they are complex symbols.

The argument of Nc'(a + /3) is a + /3, and those of fi +„ (v + w) are jj, and

v + ox, and those of 1 +c 2 are 1 and 2.

Thus among the constant formal numbers are

0, 1, 2, ..., K , l+c 2, 2x e K ,
2*.

The references which support this statement are

*101-ll-21-32 . *123:J6 . *1 1042 , #113-23 . #116-23.

Among the functional formal numbers are

Nc'(a + /3), fj,+ (v+ vr), (/A+o^XeW, (jt+ v)".

It will be observed that e.g. 1 + 2 is both a constant and a functional formal

number, so that the two classes are not mutually exclusive. In fact they

possess an indefinite number of members in common.

All the formal numbers, with the exception of sm'V and fi
—

e v, are

members ofNC without any hypothesis [cf. *100'41-01-52 . *110'42 . #112-101

.

#11323. *1141 .#116-23, note to #11912, and #120-4111.

A functional formal number consists of two parts, namely, its argument

or arguments, and the constant "form." An argument of a functional

formal number may be a complex symbol, and may be constant or variable.

Thus fi4-9 v is an argument of (/a +q v) -k p, and of (fi -h v) x e 1 and of

(fj, +e vf ; also 2 +c 3 is an argument of (2 +„ 3) x c 1. The constant form is

constituted by the other symbols which are constants. Two occurrences of

functional formal numbers are only occurrences of the same formal number
if the arguments and also the constant forms are identical in symbolism.

Thus two occurrences of Nc'a are occurrences of the same formal number,
even if they are determined to be in different types; but Nc'a and Nc'# are

different formal numbers. Also /a
1 and fi x c 1 are different formal numbers

because their "forms" are different, though the arguments fi and 1 are the
same and (in the same type) the entity denoted is the same. Thus the
distinction between formal numbers depends on the symbolism and not on
the entity denoted, and in considering them it is symbolic analogy and not
denotation which is to be taken into account. For example two different
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occurrences of the same formal number will not denote the same entity, if in

the two occurrences the ambiguity of type is determined differently.

The functional formal numbers are divided into three sets : (i) the

primary set consisting of the forms Nc'a, SNc'rf, ITNc'k, (ii) the argumental

set consisting only of sm"yx, (iii) the arithmetical set consisting of p, + c v,

p, x v, pv
, and fi —„ v.

A functional formal number has at most two arguments. But an argument

of a functional formal number may itself be a functional formal number, and

will accordingly possess either one or two arguments, which in their turn may
be functional formal numbers, and so on. The whole set of arguments and of

arguments of arguments, thus obtained, is called the set of components of the

original formal number. Thus fi, v, p and p +c v are components of (p. +c v)+o
p-

}

and fi, v and sm"/i are components of v + sm"/i; and fx, a and Nc'a are com-

ponents of m -fc Nc'a. The two arguments of (/n + v) + p are p+c v and p, and

those of v +c sra"|ti are v and sm"/i, and those of ^+ Nc'a are p, and Nc'a.

Addition, multiplication, exponentiation, and subtraction will be called

the arithmetical operations; and in p +Q v, p x c i>, nv
, p, —c v, p and v will each

be said to be subjected to these respective operations. The arithmetical

components of an arithmetical formal number (i.e. one belonging to the

arithmetical set) consist of those of its components which do not appear in

the capacity of components of a component which does not belong to the

arithmetical set. Thus p, t
r, p, p +c v are arithmetical components of (p +c v) +c p;

and v and sm"yn are arithmetical components of v + sm"/i, but p, is not one;

and p, and Nc'a are arithmetical components of p. + Nc'a, but a is not one';

and pi and sm"(i>-f p) are arithmetical components of p +e sm
ti
(v + p), but

v +c p and v and p are components of sm'^ + p) and are therefore not arith-

metical components of u. + c sm"(i> -f- /o). Only arithmetical formal numbers

possess arithmetical components.

A formal number of the arithmetical set having no components which are

formal numbers of the argumental set is called a pure arithmetical formal

number. For example /x+e (v -fc ^)and^, +c Nc'a are pure, bubp + sra"(i' + p)

and /*-i- sm"Nc'a are not pure.

There are many types involved in the consideration of a formal number.

For example, in Nc'a there is the type of Nc'a and of a; in p, + v there is the

type of fi-\- v, the type of ^, and the typp of v, and so on for more complex

formal numbers. The type of a formal number as a whole in any occurrence

is called its actual type. This is the type of the entity which it then repre-

sents.

The other types involved in a formal number in any occurrence are called

its subordinate types.

The actual types are not indicated in the symbolism for the various formal

numbers as stated above. They can be indicated relatively to the type of the
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variable £ by writing Nc (f)<a, am t*% (/* +o*0*, (^ x.*)*. (rt, O -
9 *>)t> by the

notation of #65. Even when the actual type of a complex formal number, such

as /" +0(^+0 °0> ig settled—so for instance that we have {/* +0(^+0 ^Olf—the

meaning of the symbol is not completely determined, for the type of v+e 'a

remains ambiguous. It follows, however, from

*100-511 . *110'23 . *113-26 . *11961-62,

that the subordinate types make no difference to the value of a formal number,

so long as the components are not null.

We can therefore make a formal number definite as soon as its actual

type is definite by securing that its components are not null. This is done by

the convention II T (below) combined with the definitions

*11003()4 . *113-04-05 . *1160304.

When the subordinate types are adjusted in accordance with these definitions

and conventions, they will be said to be normally adjusted.

But in order to state this convention II T we require a definition of what

is here called the adequacy of the actual type of a formal number. The general

idea of adequacy is simple enough, namely that, given the subordinate types

of <r, the actual type of <r should be high enough to enable us logically to

prove g[ ! er when such a proof is possible for types which are not too low. For

example, all types except the lowest for which it has meaning are adequate

for the constant formal number 2. It is rather difficult however to state the

meaning of adequacy with precision in a manner adapted to all formal numbers.

Fortunately the definition of the lowest type which corresponds to this general

idea of adequacy is not important for our purposes. It will be sufficient to

define as adequate some types which certainly do have the property in question.

The method of definition which we adopt is to replace the formal number

a by another one a so related to <r that with the same actual type for both

we can prove g ! a' . D . g ! <r, whenever <r is not equal to A in all types. If a

be functional, we need only consider its argument, or its two arguments, and

can dismiss from consideration the other components; then we replace these

arguments by others so that the </ has the required property. Thus:

(i) The actual types of Nc'a, SNc (
«, IINc'a:, and sm"/i are adequate when

we can logically prove

g!Nc%«a, g!2NcV*, 3 ! IINcV*, and glsm'V/*;

(11) The actual types of fi +c v, (j>—qV, m> x^v, and
fj,

v are adequate when we
can logically prove

3 ! NocVa* +0N cV", 3 I N c%V -
c n £>,

3!N c%V xoN cV^ and g ! N^V/a*00''1 '".

It will be noticed that tja, t '/c, and t^p are the greatest classes of the same
type as a, K) and /* respectively, and that N<>c%^ and N c%V are the greatest
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cardinal numbers of the same type as /* and v respectively. These definitions

hold even when any of a, k, fi, v are complex symbols.

The remaining formal numbers which are not functional must certainly

be constant. The difficulty which arises here is that if a be such a formal

number and tf occurs in its symbolism, we have no logical method of deciding

as to the truth or falsehood of g I

H

Q in any type. But we replace tf by N c%'K
which is the greatest existent cardinal 'of the same type as K in that occur-

rence. Thus:

(iii) If <r be a formal number which is not functional, an adequate actual

type of o- is one for which we can logically prove g ! <r', where <r' is derived

from er by replacing any occurrence of X in a by N c^'^ . Accordingly if X<>

does not occur in <r, an adequate type is any actual type for which we can

logically prove g ! <r.

In the case of members of the primary and argumental groups we have

substituted the V of the appropriate type in the place of each variable. When
the actual type is adequate we have

(a).g!Nc'a, (K).g!2Nc'/c, (*) . g ! IINc'*, (/*) . g ! sm"/*.

In the case of members of the arithmetical group (except in the case of

fi
— v), we have substituted for each argument the largest cardinal number

which can be obtained in the type of that argument, namely the N c'V for

the V of the appropriate type. Accordingly we are sure (except in the case of

/*—Q v) that for all other values of the arguments which are existent cardinal

numbers the formal number is not null.

It will be noticed that normal adjustment only concerns the subordinate

types. For example *1 10*03 secures that in Nc'a + /* the actual type of Nc'a

is adequate, and #110 -23 shows that any adequate actual type of Nc'a will do.

But nothing is said about the actual type of Nc'a + /a. We make the following

definition: When the subordinate types of a formal number are nonuslly

adjusted, and the actual type is adequate, the types of the formal number are

said to be arithmetically adjusted.

We notice that for the primary set, the arithmetical adjustment of types

means the same thing as the adequate adjustment of the actual type. Also if

the arguments of a formal number of the arithmetical set are simple symbols,

the two ideas come to the same thing.

In the case of variable formal numbers of the primary set, it follows from

#1 17-22 -32 that when their types are arithmetically adjusted they are not

equal to A for any values of their variables.

Also in the case of those variable formal numbers which are of the pure

arithmetical set (excluding /i- v) it follows from *1004'52'42 .*11323 .*116"23

that, working from the ultimate components reached by successive analysis

upwards, for all values of such ultimate components which are members

b&wii &
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of NC - t'A they can be reduced to the case of the formal numbers of the

primary group; and that therefore they are not equal to A when their types

are arithmetically adjusted. For example in /n + [v +oO +o <*")}, H>> v
> P> <* are

these ultimate components; let them be existent cardinal numbers. Hence

when the types are arithmetically adjusted, the actual type of p+Q a is

adequate and p+e <r is an existent cardinal; we can therefore substitute N c'a

for it. By the same reasoning we can substitute N c'/3 for v + N c'a, and again

N c<7 for
fj.
+ N c'/3.

A definite standard arithmetical adjustment of types for any formal number

can always be found by making every use of srn, whether explicit or concealed

in Nc or in some other symbol, to be homogeneous. Proofs which apply to any

arithmetical adjustment of types start by dealing with this standard type,

and then by the use of #104-21 .*106-21-211-212-213 the extension is made

to the adjacent higher classical and relational types. We then "see" that by

the analogy of symbolism this extension can always be formally proved at each

stage, so that we are dealing with the stable truth-value. For some constant

formal numbers a lower existential type can be found than that indicated by

this method.

III. Classification of Occurrences of Format Numbers.

A symbolic form of any of the kinds [cf.#117'01-04-05-06]

fl > v, /u<v, p^v, IAK.V,

is called an arithmetical inequality.

These forms only arise when we are comparing cardinal numbers in respect

to the relation of being "greater than" or "less than." It might seem natural

to include equations among these arithmetical inequalities. Their use however,

even as between cardinal numbers, is not so exclusively arithmetical, and it is

convenient to consider them separately under another heading during our

preliminary investigations.

In the arithmetical inequalities as above written, fi and v, or any symbols

replacing fi and v, are called the opposed sides of the inequality, and either of

/n or v is called a side of the inequality.

Symbolic forms of the kinds a = tc and <r$tc, where either <r or tc is a formal

number, will be called equations and inequations respectively; and <r and * are

called the opposed sides of the equation or inequation, and either of them is

simply a side of the equation or inequation.

When we reach the exclusively arithmetical point of view, it will be con-

venient to put together equations, inequations and arithmetical inequalities

as one sort of symbolic form. Their separation here is for the sake of investi-

gations into the exceptions due to the failure of existence theorems in low

types It is unnecessary to consider arithmetical inequalities in this connection.
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The ways in which a symbol a can occur in a symbolic form are named as

follows:

The occurrence of <r in sm"er is called an argurnental occurrence,

The occurrence of a- as an argument of an arithmetical formal number
(which may be a component of another formal number) or as one side of an
arithmetical inequality is called an arithmetical occurrence,

The occurrence of o- as one side of an equation is called an equativnal

occurrence,

The occurrence of a in "£e<r" is called an attributive occurrence,

Any other occurrence of <r is called a logical occurrence, so also is a = A.

It is obvious that a pair of opposed sides of an equation or inequation

must be of the same type. Furthermore, if a be a formal number, and *20'18

is applied so as to give

I- :.<r«*.D :/(*). = ./<*).

the equational occurrence of a must be of the same type as its occurrence

in /(<r), otherwise the inference is fallacious. Accordingly substitution in

arithmetical formulae can only be undertaken when the conventions as to the

relations of ambiguous types secure this identity. This question is considered

later in this prefatory statement, and the result appears in the text as

*118-01.

At this point some examples will be useful; they will also be referred to

subsequently in connection with the conventions limiting ambiguities of type.

*100-35. h:.a!Nc'a.v.g!Nc'/3:D:

Nc'a = Nc'/3 . = . a e Nc'/3 . = . £ e Nc'a . = . a sm fi

Here the formal numbers are Nc'a and Nc'/3, each of which has three

occurrences. The first occurrence of Nc'a is logical, its second is equational,

and its third is attributive.

#10042 ^in the demonstration).

I- : fi, v eNC . a \fi n v . D . (a«,£) • fi = Nc'a . * = Nc'/3 . Nc'a= Nc'£

Here Nc'a and Nc'# are the only formal numbers, and all their occurrences

are equational.

#100*44 (in the demonstration).

I- : /x € NC . a I Nc'a . a e p . D . (a/3) . fi = Nc'/3 . Nc'a = Nc'/3

Here Nc'a and Nc'/3 are the only formal numbers; the first occurrence of

Nc'a is logical, its second is equational ; both the occurrences of Nc'/3 are

equational.

*100"511. I- : a ! Nc'/3 . D . sm"Nc'/3 « Nc'/3

Here the formal numbers are Nc'/3 and sm"Nc'/3. The first occurrence of

Nc'# is logical, the second is argurnental, the third is equational; the only

occurrence of sm"Nc'/3 is equational.

b-2
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#100*521. I- : fi e NC . 3 ! sm"/i . D . sm"sm "> = fi

Here sm"/i and sra"sm"jtt are the only formal numbers; sm"/i has two

occurrences, the first logical, the second argumental; sm"sm"> has one occur-

rence, which is equational.

$10128 (in the demonstration).

h : 7 e sm''1 . = . (ga) . a e 1 . y sm a

Here the formal numbers are 1 and sm"l. The first occurrence of 1 is

argumental, the second is attributive; the occurrence of sm"l is attributive.

#101-38. h: a !2.D.s'Cl"2 = 0ulw2
Here the formal numbers are 0, 1, and 2, and their occurrences are all

logical.

#110 54. h . (Nc'a + Nc</3) + Nc<7 = Nc'(a + £ + 7)

Here the formal numbers are

Nc'a, Nc'/3, Nc'y, Nc'(a + £ + 7), Nc'a

+

Nc</3, (Nc'a+ Nc'/3)+ Nc'y.

The occurrence of Nc'(a + j3 + 7) and that of (Nc'a + c Nc'/3) +c Nc'7 are both

equational, and they must be of the same type since they are opposed sides

of the same equation. The occurrences of the other formal numbers are as

arithmetical components of a more complex arithmetical formal number and

are therefore arithmetical.

*116'63. I- . /4
"x--' = Qiry

The formal numbers are v x or, /a", fi
vX «v,&nd (ia

v
)
w

. Each formal number
occurs once only. The occurrences of v x cr and fi

v are arithmetical, and those

of the other two are equational.

*117108. V :. Nc'a> Nc'/3 . = : Nc'a > Nc<£ . v . Nc'a = Nc</3

The formal numbers are Nc'a and Nc'/?, each with three occurrences.

The first two occurrences of each formal number are arithmetical, the last

occurrence of each is equational.

#120 53 (in the demonstration).

I- : # = 7

+

C S . a ! £ . D . a*» = a? x a*

Here the formal numbers are 7 + 8, a", ay, a*, a? x a*. Each formal number
has one occurrence. Those of 7 +c 8, a? and a? x a* are equational, and those of
ay and a* are arithmetical.

*12053 (in the demonstration).

I" : cfi.' = ay . /3 = 7 +c 8 . g ! a? . D . a* « a* x a*

Here the formal numbers are a3 , a?, a*, a? x a*, 7 + 8. The first occurrence
of a? is equational, its second occurrence is logical ; the first two occurrences of
a* are equational, its third occurrence is arithmetical; the only occurrence of as

is arithmetical; the only occurrences of ay x as and of 7 +e 8 are equational.
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IV. The Conventions IT and IIT.

Two occurrences of a formal number with the same actual type are said to

be bound to each other.

The choice of types for formal numbers, when they are not made definite

in terms of variables by the notation of *G5, is limited by the following con-

ventions, which enable us to dispense largely with the elaboration produced

by the definition of types.

IT. All logical occurrences of the same formal number are in the same

type; argumental occurrences are bound to logical and attributive occurrences;

and, if there are no argumental occurrences, equational occurrences are bound

to logical occurrences.

This rule only applies, so far as meaning permits, to those types which

remain ambiguous after the assignment of types to the real variables.

It will be noticed that if there are no argumental or logical occurrences of

a formal number, IT does not in any way apply to the assignment of types to

the occurrences in the form of that formal number.

The identification of types in argumental and attributive occurrences by

IT is rendered necessary to secure the use of the equivalence

7 e sra"ff . = . (30c) • a e a . 7 sm or,

where a- is a formal number. Without the convention, this application of *37'1

would be fallacious. The only one of our examples to which this part of the

convention applies is #101'28 (demonstration), where it secures that the two

occurrences of 1 are in the same type. It is relevant however to the symbolism

in the demonstration of #100*521.

It will be found in practice that this convention relates the types of

occurrences in the same way as would naturally be done by anyone who was

not thinking of the convention at all. To see how the convention works, we
will run through the examples which have already been given above.

In *100 -

35, IT directs the logical and equational occurrences of Nc'ot to be

in the same type, and similarly for Nc'/3. Also "meaning" secures that the

equational types of Nc'ot and Nc'/9 are the same. Thus these four occurrences

are all in one type, which has no necessary relation to the types of the attri-

butive occurrences of Nc'a and Nc'/3. Thus, using the notation of *65'04 to

secure typical definiteness, *100'35 is to mean

I- : . a; ! Nc (£)'a . v . g ! Nc (f)'$ ; D :

Nc(^a = Nc(f)'/3. = .aeNc(a)'
i
9. = ./5 e Nc(^a. = .asm/3.

The types of these attributive occurrences are settled by the necessity of

'meaning."

In *100'42 (demonstration), since all the occurrences of formal numbers are

equational, IT produces no limitation of types.
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In #100*44 (demonstration), IT secures that the two occurrences of Nc'oc

are in the same type. Also we notice that the first occurrence of Nc'# is really

(cf. #65*04) Nc (a)
f
/S, since "ae/i" occurs, and thus "meaning" requires this

relation of types, and the second occurrence of Nc'/3 is in the type of the

occurrences of Nc'a.

In #100*511, IT directs that the logical and argumental occurrences are to

have the same type. In *100'521, IT directs that the two occurrences of sm"/i

are to have the same type. In #101*28 both occurrences of 1 are to be in the

same type. In *101"38, IT directs that all the occurrences of 2 are to have the

same type.

The convention IT in no way limits the types in #110*54<, nor in #116*63,

nor in #117*108.

In the first example from #120*53 (in the demonstration) convention IT
has no application.

In the second example from #120*53 (in the demonstration) convention

IT directs that the two occurrences of a? shall be in the same type; and the

necessity of "meaning" secures that the first occurrence of a? shall also be in

this type. The same necessity secures that 7 +„ S shall be in the same type as

ft\ and it also secures that in "a? = a? x a5 " the first occurrence of op and that

of a>
, x a* shall have a common type, which is otherwise unfettered; also

nothing has been decided as to the types of a* and as in ay x as
.

We now come to conventions embodying the outcome of arithmetical

ideas. The term "arithmetical" is here used to denote investigations in

which the interest lies in the comparison of formal numbers in respect to

equality or inequality, excluding the exceptional cases—whenever the cases

are exceptional—due to the failure of existence in low types. The thorough-

going arithmetical point of view, which we adopt later in the investigation

on Ratio and Quantity and also in this volume in #117 and #126 and some

earlier propositions, would sweep aside as uninteresting all investigation of

the exact ways in which the failure of existence theorems is relevant to the

truth of propositions, thus concentrating attention exclusively on stable truth-

values. But the logical investigation has its own intrinsic interest among
the principles of the subject. It is obvious however that it should be
restrained to a consideration of the theorems of purely logical interest. In

practice this extrusion of uninteresting cases of the failure of arithmetical

theorems, even amid the logical investigations of the first part of this

volume, is effected by securing that all arithmetical occurrences of formal
numbers have their actual types adequate.

As far as formal numbers of the primary group, i.e. Nc'a, SNc'/c, IHSTc'*:,

are concerned, the arithmetical adjustment of types is secured formally in

the symbolism by the definitions #110*03*04 for addition, and #1 13*04-05 for
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multiplication, and #116 -0304 for exponentiation, and *117'02'03 for arith-

metical inequalities, and #119'02"03 for subtraction.

We save the symbolic elaboration which would arise from the extension

of similar definitions to other formal numbers by the following convention:

II T. Whenever a formal number a- occurs, so thai, if it were replaced by

Nc'a, the actual type of Nc'or would by definition have to be adequate, then the

actual type of u is also to be adequate.

For example in /j, +e (v +c cr), if v -fc «r were replaced by Nc'a, then by
#110"04 the actual type of Nc'a is adequate. Hence by IIT the actual type

of v +c sr is to be adequate : accordingly so long as v and -sr are simple

variables and members of NC — t
lA, we can always assume g ! (v +c w) for the

type of the occurrence of v + to- in /n +c (v +c «r).

It is essential to notice that so long as the argument of an argumental

formal number, or the arguments of an arithmetical formal number, are

adjusted arithmetically, the exact types chosen make no difference. This

follows for argumental formal numbers from #102'862 -87'88, for addition from

*11025, for multiplication from #11326, for exponentiation from #116'26, for

subtraction from #119"61'62. Thus (remembering also #100*511) in any

definite type a formal number has one definite meaning provided that any

subordinate formal number which occurs in its symbolism is determined

existentially. The convention IIT directs us always to take this definite

meaning for any pure arithmetical formal number.

The convention does not determine completely the meaning of an arith-

metical formal number which is not pure. For example, fi +c (v + p) is a

pure arithmetical formal number when ft, v, p are determined in type; and

convention IIT directs that the type of (p+ p) is to be adequate. But

/i+ sm"(j>+cio) is an arithmetical formal number which is not pure, and

convention IIT directs that the type of the domain of sm is to be adequate,

but does not affect the type of v + p. Thus it is easy to see that IIT secures

the adequacy of the actual types of all arithmetical components of any

arithmetical formal numbers which occur, but does not affect the actual type

of a formal number which occurs as the argument of an argumental formal

number. But in this case convention IT will bind the actual type of this

occurrence of the argument to any logical or attributive occurrence of the

same formal number. For example, if g ! v+c p and /*+ sm"(i'+ p) occur

in the same form, then these two occurrences of v+ p must have the same
actual type. In practice argumental formal numbers are useful as com-

ponents of arithmetical formal numbers for the very purpose of avoiding the

automatic adjustment of types directed by IIT.

The meaning of IIT is best explained by examples. Among our previous

examples we need only consider those in which arithmetical formal numbers

occur.
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In *110 ,54 the convention or definitions direct us to determine the types

of Nc r« and Nc'/3 adequately when forming Nc'a +„ Nc'yS, also to determine

Nc'a + Nc'/3 and Nc'7 adequately when forming (Nc'a +c Nc'/3) +c Nc'7.

The convention does not apply to the types of (Nc'a + Nc'£) +c Nc'7 and

Nc'(a + j3 + 7). These types must be identical in order to secure meaning.

In *116'63 the convention directs us to adjust the types of v x c to- and

/x
v adequately; it does not affect the types of ft**-* and (ft*)", which must

be identical to secure meaning. If we replace /-i, v, ts by formal numbers, by

2, N , and 1 for example, we get "h . 2 &toX ° 1 = (2&>)\" The convention now

directs that 1 is to be determined adequately. It so happens that any type

is adequate for it, since g ! 1 can be proved in any type. Then adequate

types for N x e 1 and 2^» are types for which we can prove g ! (Noc%'N ) x c 1

and g ! 2N°c'^Ko. Thus if t is the type of N in both cases, an adequate type

for X x
c 1 is t, and for 2&> is CI't.

In #11 7'108 we find arithmetical occurrences in arithmetical inequalities.

Thus IIT directs us to take the first two occurrences of Nc ra and the first

two of Nc'y3 with adequate actual types. The type of Nc'a and Nc'/I? in

Nc'a = Nc'/3 is not affected by it. It is evident that the conventions IT, IIT

are not sufficient to secure the truth of this proposition as thus symbolized.

It is essential that in the equation the type be adjusted adequately for both

formal numbers. In fact the general arithmetical convention, that types of

equational as well as of arithmetical occurrences are adjusted arithmetically,

is here used.

V. Some Important Principles.

Principle of Arithmetical Substitution. In #120'53, the application of IIT

needs a consideration of the whole question of arithmetical substitution.

Consider the first of the two examples. We have

h : y3 « 7 +c 8 . a ! /3 . D . a8 = a* x c a
s

.

It is obvious that unless we can pass with practical immediateness from

"ft = 7 +o 8 . ae = a?" to "a? = a?***" by #20*18, arithmetic is made practically

impossible by the theory of types. But a difficulty arises from the application

of IIT. Suppose we assign the types of our real variables first. Then the

types of a, /3, 7, 8 can be arbitrarily assigned, and there is no necessary

connection between them which arises from the preservation of meaning.
Thus ft may be in a type which is not an adequate type for 7 +c 8. Assume
that this is the case. But the equational use of 7 +c 8 is in the same type
as ft, and by IIT the arithmetical use of 7 +c 8 in ay+ ° & is in an adequate
type. Thus, on the face of it, the reasoning, appealing to #20 -

18, by which
the substitution was justified, is fallacious; for the two occurrences of 7+c 8
in fact mean different things.

In order to generalize our solution of this difficulty it is convenient to

define the term "arithmetical equation." An arithmetical equation is an
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equation between purely arithmetical formal numbers whose actual types

are both determined adequately. Then it is evident that from "<r=T./(T),"

where a and t are formal numbers and t occurs arithmetically in /(t), we
cannot infer f{a) unless the equation cr = t is arithmetical. For otherwise

the t in the equation cannot be identified with the t in/(r).

When we have "/3 = t./(t)," where t is a formal number and fi is a

number in a definite type, and wish to pass to "/(£)/' or "/3 = T ./(/3)" and
wish to pass to "/(t)," the occurrence of t in /(t) being arithmetical, the

type of )S may not be an adequate type for t. Accordingly the r in "/3= r"

cannot be identified with the r in /(t). The type of the t in the equation

ought to be freed from dependence on that of |8. Accordingly the transition

is only legitimate when we can write instead

'73+c
= t./(t)" or

<c

/3+c = t./(/3),"

where in both cases the equation is arithmetical. For now all the symbols

are subject to the same rules.

If this modification can be made without altering the truth-value of the

asserted propositions, the substitution is legitimate, otherwise it is not.

It is obvious that in the above our immediate passage is to or from

f(/3 +c 0). But it is easy to see that, the occurrence of $ +„ being arith-

metical, we always have

/(£). =
./(£ +.0).

In order to prove this, we have only to prove

«+o 09+a O)«a+cA
ax o (/3+c 0) = ax c /3,

and or>/3+c O. = .a>y8. = .a+c O > /5.

The demonstration of the first of these propositions runs as follows:

h . *110-4 .Dh:./3~eNC.v./3= A::>./3+c O = A.a+ /3 = A.
[*110-4] D.a+c 09+o O) = A = a+o /3 (1)

t-.*110-4.DI-:.a~ eNC . v . « = A : D . a+c (/3+c 0) = A = a+ /3 (2)

h . *110'6 . D h : a, e NC - t'A . D . a +c (0 +c 0) = « +c sm"/3

= a+c /3 (3)

K(1).(2).(3).DI- :«+,(£ +c 0) = «+oy8

In the above demonstration the step to (3) is legitimate since by the

hypothesis ft is a determination of sm"/3 in an adequate type.

Similar proofs hold for the other propositions, using *113 ,204 and #116"204

and *11712 and *10313.

We must also consider the circumstances under which we can pass from

"/3=t" to "J3+e = T," where the latter equation is arithmetical. In other
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words, using *6501 we require the hypothesis necessary for

"We have

K*20-18. Dh:
y
9 = Tf

.D.
/
9+c 0-Tf +o (1)

I- . *110-35 . D I- : a ! Tf . a ! r, . D . tj +c 0= r, +c (2)

h.(l).(2).Dh:. a ! Tf . a !T,.D:/3 = Tf .D./3+o
= T

n +c (3)

h.{3). 3l-:.a!i8.a!T,.D:i3=Tt.D.j8+e
= T1 +,0 (4)

Now in (4) the occurrences of ft +c and t, +c 0, which are in the same

type, may be chosen to be in any type we like. Hence we deduce

h . (4) . *110-6 . D h :. a \ ft . a ! t„ . D : ft = rt . D . (/3

+

0)c
= smf"T„ .

[100-511] 3-(0+cO)tf«Tf

Hence g ! /3 is the requisite condition. Now since £ can be in any type,

we can also choose it in any existential type for t. Thus with IIT applying

to the arithmetical occurrence of t in /(t), we have, where t is a formal

number and ft is a number in a definite type,

h:a!/3./3 = T./(T).D./(£),

h:a!/3./3=r. /(/?). D./(t),

h: a !<t.«t*t./<r).:> ./(*).

In the last proposition by IT the equation o- = t is arithmetical These

equations are summed up in #11801,

These three fundamental theorems embody the principle of arithmetical

substitutioa. The hypothesis a ! /? is really less than is assumed in ordinary

life, the usual tacit assumption being ft e NC - t'A. In fact unless ft e NC,

ft
= t is necessarily false.

Principe of Identification of Types. Suppose we have proved

" h : Hp . D . </>o- " and "\- :<p (<rt) . D . p," where a is a formal number whose

occurrence in "h : Hp . D .<jht" is in an entirely ambiguous type, and o-| is

the same formal number er with its type related to that of £ by #65*01.

Then since the type of the <r in " h : Hp . D . <$>&" is ambiguous, we can write

" h : Hp . D . </) (o-*)," and thence infer " (- .p."

The principle is : An entirely undetermined type in an asserted symbolic

form can be identified with any type ambiguous or otherwise in any other

asserted symbolic form or in the same symbolic form.

For example in 100'42 (demonstration) considered above, since a • p n v

occurs, the first occurrences of Nc'cc and Nc'/3 are of the same type, and so are

their second occurrences in Nc'a = Ncf
ft. But the two types are not deter-

mined by our conventions to have any necessary connection. In fact the type
in Ne'er = Nc'/3 is entirely arbitrary. Accordingly it can be identified with the
other type, and thus the inference to the next line, viz. to " h : Hp . D . /a = v,"

is justified.
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In the case of arithmetical equations, it is important to notice that we
have

h . *100-321-33 . D h :. a ! Nc (£)'« . D : Nc (£)<« =Nc (£)'£ . D . Nc'a = Nc'/3.

Hence if a and t are formal numbers,

f

-
:. a ! o-f . D : o-f = Tf . D . <7 = t.

Thus if we have "h : Hp . a ! a- . 3 . <j = t" and "h : Hp' . o-„ - t„ . D .
p/' we

can infer from the former proposition " h : Hp . g; ! o- . D . o-, = t
T|

" and from

this and the latter proposition, we infer "h : Hp' . Hp . a ! a . D .p" so the

general principle of identification can be employed when the
<f>

(a) in the first

proposition is an arithmetical equation.

For example, in an example given above, #100'44 (demonstration), viz.

h : n e NC . a ! Nc'a . a e /* . D . (a/3) . ^ = Nc'/3 . Nc'a = Nc</9,

the equation Nc'a — Nc'/3 is arithmetical. Accordingly we are justified in

asserting the propositional function

h : fi e NC . a ! Nc'a . « e/* . D . (a/3) . /* = Nc (a)'£ . Nc (a)'a = Nc («)'£,

where Nc (a)'/3 in "/* = Nc (a)'/3" has all along been presupposed by the neces-

sity of meaning.

Thus the inference follows,

h : fi e NC . a I Nc'a . a e /x, . D . Nc (a)'a = /x,

.

D . Nc'a = fi.

This proof loses its point when ft is looked on as a variable with necessarily

the same type throughout. For then the proposition collapses into

I- :./*eNC. 3 :aeju. = .Nc(a)'a = /-i.

But if fx be a formal number necessarily a member of NC, the proposition

is really

V :. a • Nc'a . Z> : a e /* . = . Nc'a = fi.

With this presupposition we should have in the first line of the demon-

stration

"I- : a ! Nc'a . Nc*a«/* . 3 . ae/V'

though with "yu," a single variable, the line is formally correct as it stands in

the text.

Recognition of Particular Cases. It is important to notice the conditions

under which <f>cr can be recognized as a particular case of $f, where £ is a real

variable and a is a formal number. In the first place obviously we must

substitute a n t^f; for a, wherever it occurs in (fxr, and thus obtain <f>(o- r\ tQ
l
%).

Then we may find that by the application of our conventions, we can replace

this by $<7. For example we have

#10042. \-tfj.,u€'NC.^\fjLf\v.'^.fi = u
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Now put Nc'a n tffa for fi, we obtain

I- : Nc*a n to'p, v e NC . g ! (Nc'a n t<,'/x) m/.D. Nc'a n *//* = v (1)

1-
. (1), #100*41 . D (- : v eNC . 3 ! Nc'an tJixn *• 3 Nc'a n *„'/*« i; (2)

Now by IT, even when v is a formal number, the identity of types of the

two occurrences of Nc'a is equally secured in

I" iv e NC .3 ! Nc'a n v . D . Nc'a = v.

Thus this is a particular case of #100"42. Such deductions can be made

in general without any explicit formal statement.

Ambiguity of NC. It follows (cf. *10002 and *103'02) from the typical

ambiguity of Nc that NC is also typically ambiguous. Hence "/aeNC . v e NC

'

according to our methods of interpretation would not necessitate that /x and v

should be of the same type. We shall always interpret "yn, v e NC" as standing

for "fieNC.veNC" and therefore as not necessarily identifying the types

of (x and v. Similarly for N C, NC induct, and NC ind. For example

*110 402. I- : fi, v €N C . D . a ! (/* +c v) n t't'ijL | v)

Here the /x and v need not be of the same type. Again

*110 41. \-zp,veN C . t'fj,
= t'v . D . a I (n +e v) n t'/x

Here the identification of the types of jx and v requires the hypothesis

VI. Conventions AT and Infin T.

General Arithmetical Convention. Conventions IT and IIT are always

applied, but the following convention is not used at first. This convention

limits the remaining ambiguity of type by sweeping away the exceptional

cases in low types, due to the failure of existence theorems. The convention

will be cited as AT.

AT. All equations involving pure arithmetical formal numbers are to be

arithmetical.

We have seen that from an arithmetical equation the analogous equation

in any other type can be deduced. Thus with AT all equations between
formal numbers are so determined in type that their truth in "any type" is

deducible. Thus in the few early propositions where AT is introduced, the

fact is noted by stating that the equations hold "in any type." These
propositions are *103'16, *110-7r72.

The effect of applying A T to other propositions in #100 is to render some
of the hypotheses (usually logical forms affirming existence) unnecessary, but
also materially to limit the scope of the propositions. Take for example

*100'35. h : a ! Nc'a . v . a ! Nc'/3 : D :

Nc'a = Nc'£
.
=

.
a € Nc',3

.
= . £e Nc'a . = . asm /3

If we apply AT to this, we can write

h : Nc'a = Nc'£ . = . ae Nc'/3 . = . /3eNc'a . s . asm £.
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For the equational occurrences of Nc ra and Nc'/3 are by AT and IIT to

be with adequate actual types. But if a is a small class in a high type, an

adequate actual type for Nc'a will be a high type, whereas g; I Nc'a may
hold in a low type. Thus with AT, for the sake of simplicity we abandon
the statement of the minimum of hypothesis necessary for our propositions.

The enunciation of no other proposition in #100 is affected.

The enunciation of no proposition in- #101 is affected by AT, though it

would unduly limit the scope of #101-34. In #110, AT would unduly limit

the scope of such propositions as

*110-22-23-24'25-251'252-3-31-32331'34-35-351-44'51-54

and of many others, without altering their enunciations. There is no

proposition in #110 whose enunciation it would alter. AT is already

applied to #110-71-72; if AT is removed from these propositions, then

g iNc'a must be added as an hypothesis to both of them. The effect of AT
on #113 and #116 is entirely analogous to that on #110; in neither of these

two numbers is there any proposition to which A T is applied in the text.

As regards #117, AT is applied throughout, so that the propositions are

all in the form suitable for subsequent investigations in which the interest is

purely arithmetical. It is important however to analyse the effect of AT on

the enunciations for the sake of logical investigations, especially in connection

with #120. First, AT can only affect propositions in which equations or

inequations occur, and among such propositions it does not affect the enuncia-

tions of those in which both sides of the equations are not formal numbers,

so that the equations are not arithmetical lifter the application of AT. These

propositions are #117'104 ,14'24 ;241'243"31'5.51. These propositions, which

are characterized by the presence of a single letter on one side of any

equation involved, can be recognized at a glance. The propositions involving

arithmetical equations whose enunciations are unaltered by the removal of

AT are #117'21'54 -

592. Propositions involving inequations whose enuncia-

tions are unaltered by the removal of AT are #117'26'27. Finally the only

propositions of #117 whose enunciations are altered by the removal of AT
are #117 108-21 1' 23-25-3.

In #118 and #119 AT is not used.

In #120, which is devoted to those properties of inductive cardinals

which are of logical interest, AT is never used. None of the propositions

#ll7 -108'211*23 ,25-3 are cited in it, except #117*25 in the demonstration of

#120-435 for a use where AT is not relevant. The application of AT to #120

would simplify the hypotheses of #120'31"41*451*53*55, and limit the scopes

of the propositions.

One other convention, which we will call "Infin T," is required in certain

propositions where the hypothesis implies that there are types in which every
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inductive cardinal exists, i.e. in which V is not an inductive class. Among

such hypotheses are Infin ax, g; ! Prog, a ! X„ (or typically definite forms of

these hypotheses), or 12 e Prog or ae# . When such hypotheses occur, we

shall assume that NO induct is, whenever significance permits, to be deter-

mined in a type in which every inductive cardinal exists, i.e. in which the

axiom of infinity holds (cf. *120*03 ,

04). The statement of this convention is

as follows:

Infin T. When the hypothesis of a proposition implies that there is a type

in which every inductive cardinal eorists, every occurrence of "NC induct"

in this proposition is to be taken (if conditions of significance permit) in a

sufficiently high type to insure the existence of every inductive cardinal.

It is to be observed that this convention would be unnecessary if we

confined ourselves to one extensional hierarchy, for in any one such hierarchy

all types are inductive or all are non-inductive, so that if every inductive

cardinal exists in one type in the hierarchy, the same holds for any other

type in the hierarchy. But when we no longer confine ourselves to one

extensional hierarchy, this result may not follow. For example, it may be

the case that the number of individuals is inductive, but the number of

predicative functions of individuals is not inductive; at any rate, no logical

reason can be given against this possibility, which can only be rejected on

empirical grounds, if at all.

The way in which this convention is used may be illustrated by the

demonstration of #122"33. In the second line of this demonstration, we show

that the hypothesis implies

El»a .D.E!(»+,l), (1)

where by *121'04 vR = R^'B'R Df,

and by *1 21-02 Rv = xy {N c'R(x^ y) = v+ c l} Df.

It will be seen that these definitions do not suffice to determine the type

of v. Hence in (1), the v on the left may not be of the same type as the

v+ l on the right. Now the use of #120473, which occurs in the next line

of the demonstration of #1 22*33, requires that the v on the left and the v +c 1

on the right should be of the same type. This requires that the v should

not be taken in a type in which we have g ! i>. v + c l = A. Hence in order

to apply #120*473, we must choose a type in which all inductive cardinals

exist. Since "fieProg" occurs in the hypothesis, we know that all inductive

cardinals exist in the type of ClR. But it is unnecessary to restrict ourselves

to the type of C'R, since any other type in which all inductive cardinals exist

will equally secure the validity of the demonstration. Thus the convention

Infin T secures the restriction required, and no more.

The convention Infin T is often relevant when "Infin ax" without any
typical determination occurs in the hypothesis. Whenever this is the case,
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if "NC induct" occurs in the proposition in a way which leaves its type

undetermined so far as conditions of significance are concerned, it is to be

taken in a type in which all its members exist.

VII. Final Working Rule in Arithmetic.

It is now (whenever AT is used, together with InfinT when necessary)

possible finally to sweep aside all consideration of types in connection with

inductive numbers. For by combining *126121'122 and *1204232-4622, we
see that it is always possible to take the type high enough so that no definitely

determined inductive number shall be null (A), and that all the inductive

reasoning can take place within this type. Furthermore we have already

seen that the arithmetical operations are independent of the types of the

components, so long as they are existential. Thus, as far as the ordinary

arithmetic of finite numbers is concerned, all the conventions (including AT),

and the necessity for hypotheses as to the existence of inductive numbers, are

finally superseded by the following single rule:

Rule of Indefinite Numbers. The type assigned to any symbol which

represents an inductive number is such that the symbol is not equal to A.

We make the definition

*12601. Nc ind = Nc induct - t'A Df

"Wherever this symbol "Nc ind" for the class of "indefinite inductive

cardinal numbers" is used, the above rule is adhered to. In other words,

"/x,eNCind" can always be replaced by "/x, = Nc'a. a e Cls induct," where

Nc'a is a homogeneous or ascending cardinal, and a is the appropriate

constant, or is a variable, as the case may be. In the latter case, a symbolic

form such as

OO./^eNCind,/*)
can be replaced by

(jx, a) . f(fjb = Nc'a . a e Cls induct, fi).

Furthermore by #120-4622 it follows that with this rule the result of

proceeding by induction in one type and then transforming to another type

is the same as that of proceeding by induction in the latter type. Thus

for example there is no advantage to be gained by discriminating between

2f and 2,; for sm/% = 2„ sra*"2, = 2 f , ^

+

2$ = /*

+

a 2„ p x c 2f= /* x c 2„,

ytt
2

i
= fx\, 2^ = 2*, and fx^ 2$ . = . ft^ 2,, and so on.

Hence all discrimination of the types of indefinite inductive numbers
may be dropped; and the types are entirely indefinite and irrelevant.
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SUMMARY OF PART III

In this Part, we shall be concerned, first, with the definition and general

logical properties of cardinal numbers (Section A); then with the operations

of addition, multiplication and exponentiation, of which the definitions and

formal laws do not require any restriction to finite numbers (Section B); then

with the theory of finite and infinite, which is rendered somewhat complicated

by the fact that there are two different senses of "finite," which cannot (so far

as is known) be identified without assuming the multiplicative axiom. The

theory of finite and infinite will be resumed, in connection with series, in

Part V, Section E.

It is in this Part that the theory of types first becomes practically relevant.

It will be found that contradictions concerning the maximum cardinal are

solved by this theory. We have therefore devoted our first section in this

Part (with the exception of two numbers giving the most elementary properties

of cardinals in general, and of and 1 and 2, respectively) to the application

of types to cardinals. Every cardinal is typically ambiguous, and we confer

typical definiteness by the notations of #63, #64, and #65. It is especially where

existence-theorems are concerned that the theory of types is essential. The
chief importance of the propositions of the present part lies, not only, as

throughout the book, in the hypotheses necessary to secure the conclusions,

but also in the typical ambiguity which can be allowed to the symbols con-

sistently with the truth of the propositions in all the cases thereby included.

1—2



SECTION A

DEFINITION AND LOGICAL PROPERTIES OF
CARDINAL NUMBERS

Summary of Section A.

The Cardinal Number of a class a, which we will denote by "Nc'a," is

denned as the class of all classes similar to a, i.e. as ft (ft sm a). This

definition is due to Frege, and was first published in his Grundlagen der

Arithmetih* ; its symbolic expression and use are to be found in his

Grundgesetze der Arithmetikf. The chief merits of this definition are (1) that

the formal properties which we expect cardinal numbers to have result from

it; (2) that unless we adopt this definition or some more complicated and

practically equivalent definition, it is necessary to regard the cardinal number

of a class as an indefinable. Hence the above definition avoids a useless

indefinable with its attendant primitive propositions.

It will be observed that, if x is any object, 1 is not the cardinal number

of x, but that of i'x. This obviates a confusion which otherwise is liable to

arise in dealing with classes. Suppose we have a class a consisting of many
terms; we say, nevertheless, that it is one class. Thus it seems to be at once

one and many. But in fact it is a that is many, and t'ci that is one. In regard

to zero, the analogous point is still clearer. Suppose we say "there are no

Kings of France." This is equivalent to "the class of Kings of France has no

members," or, in our language, "the class of Kings of France is a member of

the class 0." It is obvious that we cannot say "the King of France is a

member of the class 0," because there is no King of France. Thus in the case

of and 1, as more evidently in all other cases, a cardinal number appertains

to a class, not to the members of the class.

For the purposes of formal definition, we subject the formula

Nc'a = /§(£sma)

to some simplification. It will be seen that, according to this formula, "Nc"

is a relation, namely the relation of a cardinal number to any class of which

it is the number. Thus for example 1 has to i'x the relation Nc; so has 2 to
—

>

t'xui'y, provided x^y. The relation Nc is, in fact, the relation sm; for
—

*

*
srn'ct = ft (ft sm a). Hence for formal purposes of definition we put

—

»

Nc = sm Df.

* Breslau, 1884. Cf. especially pp. 79, 80.

t Jena, Vol. i. 1893, Vol. n. 1903. Cf. Vol. i. §§ 40—42, pp. 57, 58. The grounds in favour

of this definition will be found at length in Principles of Mathematics, Part II,
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The class of cardinal numbers is the class of objects which are the cardinal

numbers of something or other, i.e. of objects which, for some a, are equal to

Nc'a. We call the class of cardinal numbers NC; thus we have

NC = ^{(a«)./i=NcH
For purposes of formal definition, we replace this by the simpler formula

NC = D'Nc Df.

In the present section, we shall be concerned with what we may call the
purely logical properties of cardinal numbers, namely those which do not
depend upon the arithmetical operations of addition, multiplication and
exponentiation, nor upon the distinction of finite and infinite*. The chief

point to be dealt with, as regards both importance and difficulty, is the relation

of a cardinal number in one type to the same or an associated cardinal number
in another type. When a symbol is ambiguous as to type, we will call it

typically ambiguous; when, either always or in a given context, it is un-
ambiguous as to type, we will call it typically definite. Now the symbol "sm"
is typically ambiguous; the only limitation on its type is that its domain and
converse domain must both consist of classes. When we have asm/S,a and

ft need not be of the same type, in fact, in any type of classes, there are classes

similar to some of the classes of any other type of classes. For example, we
have t'xsm i'y, whatever types x and y may belong to. This ambiguity of

"sm" is derived from that of 1 —> 1, which in turn is derived from that of 1.

We denote (cf. #65'01) by "1." all the unit classes which are of the same type

as a. Then (according to the definition #70-01) l a —> 1^ will be the class of

those one-one relations whose domain is of the same type as a and whose con-

verse domain is of the same type as ft. Thus "l a ->l3
" is typically definite

as soon as a and ft are given. Suppose now, instead of having merely 7 sm 8,

we have

(3R) . i2 e l a -* 1„ . D<£ = 7 . d'R = 8;

then we know not only that 7 sm 8, but also that 7 belongs to the same type

as a, and 8 belongs to the same type as ft. When the ambiguous symbol

"sm" is rendered typically definite by having its domain defined as being of

the same type as a, and its converse domain defined as being of the same type

as ft, we write it "smWI ," because generally, in accordance with *65'1, if R
is a typically ambiguous relation, we write R ia>P) for the typically definite

relation that results when the domain of R is to consist of terms of the same
type as a, and the converse domain is to consist of terms of the same type as

ft. Thus we have

7 smKW 8 . = . (3jR) . R € l a -> 1„ . 7 = D'R . 8 = CL'R.

Here everything is typically definite if a and ft (or their types) are given.

* The definitions of the arithmetical operations, and of finite and infinite, are really just as
purely logical as what precedes them; but if we are to draw a line between logic and arithmetic

somewhere, the arithmetical operations seem the natural point at which to place the beginning
of arithmetic.
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Passing now to the relation "Nc," it will be seen that it shares the typical

ambiguity of "sm." In order to render it typically definite, we must derive it

from a typically definite "sm." So long as nothing is added to give typical

definiteness/'NcV will mean all the classes belonging to some one (unspecified)

type and similar to 7. If a is a member of the type to which these classes are

to belong, then Nc'7 is contained in the type of a. For this case, it is

convenient to introduce the following two notations, already defined in #65.

When a typically ambiguous relation R is to be rendered typically definite as

to its domain only, by deciding that every member of the domain is to be

contained in the type of a, we write "R(a)" in place of R. When we further

wish to determine R as having members of the converse domain contained in

the type of ft, we write "R(ol, ft)" in place of R; and when we wish members

of the converse domain to be members of the type of ft, we write
<(
R(pip)" in

place of R. Thus

Sg'l^wl = lag'*}M
(cf. *65*2), and in particular, since Nc = sm,

Nc(ap)
= sg <sm (a^ )

.

Thus "Nc(a
/3 )

f7" is only significant when 7 is of the same type as ft, and

then it means "classes of the same type as a and similar to 7 (which is of the

same type as /3)."

"Nc(a)V wiU mean "classes of the same type as a and similar to 7."

As soon as the types of a and 7 are known, this is a typically definite symbol,

being in fact equal to Nc (ay)'y. Hence so long as we only wish to consider

"Nc*7," typical definiteness is secured by writing "Nc(ot)" in place of

''Nc."

When we come to the consideration of NC, "Nc(«)" is no longer a

sufficient determination, although it suffices to determine the type. Suppose

we put
NC^(a) =D (Nc(«p) Df;

we have also, in virtue of the definitions in #65,

NC («) = NC n t"a = D'Nc (a).

Thus NC (a) is definite as to type, but is the domain of a relation whose

converse domain is ambiguous as to type; and it will appear that there are

some propositions about NC (a) whose truth or falsehood depends upon the

determination chosen for the converse domain of Nc (a). Hence if we wish

to have a symbol which is completely definite, we must write "NC^(a)."

This point is important in connection with the contradictions as to the

maximum cardinal. The following remarks will illustrate it further.

Cantor has shown that, if ft is any class, no class contained in ft is similar

to OVft. Hence in particular if ft is a type, no class contained in ft is similar
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to Cl'ft which is the next type above /3. Consequently, if fi = a w _ tt) where
a is any class, we have

^(37) 7Cau-a.7sm Cl'(a <j — a).

Now (cf. #63) we put

£ 'a = a <j — a Df,

and we have t'a = CI '(a u - a). Thus we find

~ (37) 7 CVa 7 sm i'a.

Hence Nc(«
(<a)'*'a= A.

That is to say, no class of the same type as a has as many members as t'a has.
Hence also

AeNC^(a).
But 7 C V« ^ 7 e Nc («a)<7 . D . 3 ! Nc (a.)'?,

and "Nc (aa)
(y" is only significant when yCt 'a; hence

^ e NCa (a).DM . a !^
and A~eNCa

(«).

Now the notation "NC (a)" will apply with equal justice to NC° (a) or to
NCf

'a
(a); but we have just seen that in the first case we shall have

A~eNC(a), and in the second we shall have AeNC(o). Consequently
"NC(o)" has not sufficient definiteness to prevent practically important
differences between the various determinations of which it is capable.

A converse procedure to the above yields similar results. Let a be a
class of classes ; then s'a is of lower type than a. Let us consider NC8

'a (a).

In accordance with #63, we write t^a for the type containing s'a, ie. for

s'a <j - s'a. Then the greatest number in the class NCs'a
(a) will be Nc (a)Va;

but neither this nor any lesser member of the class will be equal to Nc (a)V«>
because, as before,

~(37) 7 C V« 7 sin t 'a.

Hence Nc (a)%'«, which is a member of NCa
(a), is nob a member ofNC8 (a);

but NCa
(a) and NC*'° (a) have an equal right to be called NC (a). Hence

again "NC(a)" is a symbol not sufficiently definite for many of our purposes.

The solution of the paradox concerning the maximum cardinal is evident
in view of what has been said. This paradox is as follows: It results from a
theorem of Cantor's that there is no maximum cardinal, since, for all values of «,

Nc'Cl'a > Nc'a.

But at first sight it would seem that the class which contains everything
must be the greatest possible class, and must therefore contain the greatest

possible number of terms. We have seen, however, that a class a must always
be contained within some one type; hence all that is proved is that there are

greater classes in the next type, which is that of Cl'er. Since there is always
a next higher type, we thus have a maximum cardinal in each type, without
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having any absolutely maximum cardinal. The maximum cardinal in the

type of « is

Nc (a)'(a v - a).

But if we take the corresponding cardinal in the next type, i.e.

Nc (Cl<«)'(« w - «)>

this is not as great as Nc (Cl'a)'Cl'(a u - a), and is therefore not the maximum

cardinal of its type. This gives the complete solution of the paradox.

For most purposes, what we wish to know in order to have a sufficient

amount of typical definiteness is not the absolute types of a and /3, as above,

but merely what we may call their relative types. Thus, for example, a and

/3 may he of the same type; in that case, Nc (ap ) and NC (a) are respectively

equal tc Nc (aa ) and NC" (a). We will call cardinals which, for some a, are

members of the class NO (a), homogeneous cardinals, because the "sm" from

which they are derived is a homogeneous relation. We shall denote the

homogeneous cardinal of a by "N c'a," and we shall denote the class of

homogeaeous cardinals (in an unspecified type) by "N C"; thus we put

N c'« = NcW£'« Df,

N C = D'N c Df.

Almost all the properties of N C are the same in different types. When further

typical definiteness is required, it can be secured by writing N c (a), N C (a)

in place of N c, N C. For although Nc (a) and NC (a) were not wholly definite,

N c (a) and N C (a) are wholly definite. Apart from the fact of being of different

types, the only property in which N C (a) and N C (#) differ when a and /3 are

of different types is in regard to the magnitude of the cardinals belonging to

them. Thus suppose the whole universe consisted (as monists aver) of a single

individual. Let us call the type of this individual "Indiv." Then N C (Indiv)

will consist of and 1, i.e.

N C (Indiv) = t'O u t'l.

But in the next higher type, there will be two members, namely A and Indiv.

Thus
N C (t'Indiv) = t'O v t'l v t'2.

Similarly N C (WIndiv) = t'O u t'l u i<2 u t'3 u t'4,

the members of t't'Indiv being A n Mndiv, t'A, t'Indiv, i
cA u t'Indiv; and

so on. (The greatest cardinal in any except the lowest type is always a

power of 2.)

The maximum of N C (a) is N cVa; but apart from this difference of

maximum and its consequences, N C (a) and N„C (#) do not differ in any

important properties. Hence for most purposes N C and N c have as much

typical definiteness as is necessary.

Among cardinals which are not homogeneous we shall consider three kinds.

The first of these we shall call ascending cardinals. A cardinal NO (a) is
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called an ascending cardinal if the type of j3 is t'a or t't'ct or t't't'a or etc.

We write t
2'a for t't'a, t

s
'a for t't't'a, and so on. We put

NVa = Nc'a * t't'a Df

N 3c'a = Nc'a r. Wa Df

N3c'a = Nc'a n J'fa Df and so on,

and N^D'N^ Df

N 2C = D'N2c Df

N3C = D'N3c Df and so on.

We then have obviously

N*C (t'a) C N C (t'a).

We also have (by what was said earlier)

N c't'a~eWC(t'a).

Hence 3 ! N C (t'a) - NTlC (t'a).

The members of N C (t'a) — N JC (t'a) will be all cardinals which exceed

Nc'£/a but do not exceed Nc't'a.

Let us recur in illustration to our previous hypothesis of the universe

consisting of a single individual. Then NVIndiv will consist of those classes

which are similar to "Indiv" but of the next higher type. These are t'A and

t'Indiv. In our case we had N c'Indiv = 1. This leads to

NVlndiv = 1 . NVIudiv = 1 etc.

or, introducing typical definiteness,

NVIndiv = 1 (t'Indiv) . N2c'Indiv = 1 (f
2'Indiv) etc.

We have then 1 (fIndiv) e N'C (t't'lndiv). Also

1 (fIndiv) e N C (t'fIndiv).

And in the case supposed, 1 (i'lndiv) is the maximum of N*C (tf^Indiv), but

2 (i'lndiv) e N C (t't'Indiv). Hence

N C (t'tfIndiv) - N*C (fi'lndiv) = i'%

Generalizing, we see that WO (t'a) consists of the same numbers as N C (a)

each raised one degree in type. Similar propositions hold of N2C(£"a),

N3C(i3 'a)etc.

It is often useful to have a notation for what we may call "the same

cardinal in another type." Suppose ^ is a typically definite cardinal; then

we will denote by /u
(1

> the same cardinal in the next type, i.e.

sm"^ r\ t'/Jb.

Note that, if /a is a cardinal, sm"^ r, /j, = p; and whether fi is a typically

definite cardinal or not,

9m"^i r\ t'a

is a cardinal in a definite type. If /u is typically definite, then sm"/i r\ t'a is

wholly definite; if /j, is typically ambiguous, sm'V n t'a has the same kind of
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indefiniteness as belongs to NC (a). The most important case is when p is

typically definite and a has an assigned relation of type to p. We then put,

as observed above,

Atw=sm'V ft *V Df

/Jl®=sm"}in?'ti Df etc.

If fi is an N C, /*<*> is an WC and ^ is an N 2C and so on. WC(t'a) will

consist of all numbers which are of the form fi
w for some /i which is a member

ofNoC(a); i.e.

N*C (t'a) = v {(£?) .^N C(a).. = ^}.

The second kind of non-homogeneous cardinals to be considered is called

the class of "descending cardinals." These are such as go into a lower type;

i.e. Nc (a)'£ is a descending cardinal if a is of a lower type than £. We put

N1c
,a=Nc'ani% (a Df

N 2c'a = Nc'a n t't2
(a Df etc.

NxC^D'N^ Df

N 2C=D'N2c Df etc.

yLt(i) = sm"/t r\ tifjb Df

ytt(2 )
= sm tt

/n r\ hjfi Df etc.

We have obviously N c'« = N^Va.

Hence N C («) C N,C (a).

Also 7 e NlC<8 . D . Nfi'B = N c'y,

whence 3 ! NlC'S . D . NlC'S e N C,

whence N.C-t'ACNoC.

Since also A~ e N C (a), we find

NoC-N^-t'A,

this proposition not requiring any further typical definiteness, since it holds

however such definiteness may be introduced, remembering that such definite-

ness is necessarily so introduced as to secure significance. Further, in virtue

of the fact that no class contained in t 'a is similar to t'a, we have

Consequently N XC = N C u t'A.

We can prove in just the same way

N2C = N Cut<A.

Hence N XC = N3C,

and this result can obviously be extended to all descending cardinals.

The third kind of non-homogeneous cardinals to be considered may be

called " relational cardinals." They are those applicable to classes of relations

having a given relation of type to a given class. Consider for example Nc'eA 'tf.

(We shall take this as the definition of the product of the numbers of the
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members of k.) Suppose now that k consists of a single term: we want to be
able to say

Nc'eA '« = Nc'l'/c.

We have in this case, if k = t'a,

e&'<c = l ct"a,

and we know that
J,
a"a sra a. But if we put simply

Nc',i,a"a=Nc<a,

our proposition, though not mistaken, requires care in interpretation. Just
as we put i"a e NVa, so we want a notation giving typical definiteness to the
proposition

J,
ct"a e Ne'er. This is provided as follows.

Using the notation of #64, put

N00c'a = Nc'a n t'tm'a Df

N„ lc'a = Nc'a r. t%ua Df etc.

NooC-D'NooC Df

No^ = D'N./c Df etc.

fim = sm"/x n t'tao'ti'/j, Df etc.

Then we have, for example,

|fl"aCf 1(
a, i.e. la^aet't^'a.

Hence
J,
a"« e NVc'a, where Nokj'a — Nc'a r> *%1(

o.

Similarly # e t'a . 3 .
J,
#"a e N^'a.

Thus the above definitions give us what is required.

In order to complete our notation for types, we should need to be able to

express the type of the domain or converse domain of R, or of any relation

whose domain and converse domain have respectively given relations of type

to the domain and converse domain of H. Thus we might put

d6<R = t '~D'R Df

b <R = t '(I'R Df
("b" appears here as "d" written backwards)

doo'R^t'ido'R^WR) Df
= t'R

dmn'R = t'(t
m'd 'R t t

neWR) Df and so on.

This notation would enable us to deal with descending relational cardinals.

But it is not required in the present work, and is therefore not introduced

among the numbered propositions.

When a typically ambiguous symbol, such as "sm" or "Nc," occurs more
than once in a given context, it must not be assumed, unless required by the

conditions of significance, that it is to receive the same typical determination

in each case. Thus e.g. we shall write "a sm /3 . . fi sm a," although, if a and

/3 are of different types, the two symbols "sm" must receive different typical

determinations.
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Formulae which are typically ambiguous, or only partially definite as to

type, must not be admitted unless every significant interpretation is true.

Thus for example we may admit

"KaeNc'a"

because here "Nc" must mean "Nc (aa )," so that the only ambiguity remaining

is as to the type of a, and the formula holds whatever type a may belong to,

provided "NcV is significant, i.e. provided a is a class. But we must not,

from "aeNc'a," allow ourselves to infer

"3 ! NcV
For here the condition^ of significance no longer demand that "Nc" should

mean "Nc(aa)": it might just as well mean "Nc(/?a)." And as we saw, if

/? is a lower type than a, and a is sufficiently large of its type, we may have

Nc (&)'«= A,

so that "3 !NcV is not admissible without qualification. Nevertheless, as

we shall see in #100, there are a certain number of propositions to be made

about a wholly ambiguous Nc or NC.



*100. DEFINITION AND ELEMENTARY PROPERTIES
OF CARDINAL NUMBERS

Summary q/"#100.

In this number we shall be concerned only with such immediate conse-

quences of the definition of cardinal numbers as do not require typical definite-

ness, beyond what the inherent conditions of significance may bestow. We
introduce here the fundamental definitions:

*100'01. Nc = sm Df

*10002. NC = D'Nc Df

The definition "Nc" is required chiefly for the sake of the descriptive

function Nc'a. We have

*1001. r-.Nc'a = ,3(/3sinV) = /§(asm/3)

This may be stated in various equivalent forms, which are given at the
beginning of this number (*100-1—16). After a few propositions on Nc as

a relation, we proceed to the elementary properties of Nc'a. We have

*100 3. I- . a e Nc'a

*100'31. h:aeNc'/3. = ./3eNc'a.= .osmyS

*100'321. h : a sm /3 . D . Nc'a = Nc'/3

*100-33. I- : a ! Nc'a n Nc'£ . D . a sm /3

We proceed next to the elementary properties of NC. We have

*100-4. h : a* e NC . = . (jja) . /j, = Nc'a

*100 42. h:^j/6NCa!/injf.D./i=jf

*10045. h^eNC.ae/x.D. Nc'a = ^
*100-51. hi^eNC.oe/x.D. sm'V = Nc'a

Observe that when we have such a hypothesis as >eNC," the p, though
it may be of any type, must be of some type; hence the /j, cannot have the
typical ambiguity which belongs to Nc'a. If we put /* = Nc'a, this will hold
only in the type of p\ but "srn"^" is a typically ambiguous symbol, which
will represent in any type the "same" number as /*. Thus "sm"/x = Nc'a"
is an equation which is applicable to all possible typical determinations of

"sm" and"Nc."

*10052. K'/ieNC.alAi.D.sm'VeNC
The hypothesis 3 ! jjl is unnecessary, but we cannot prove this till later

(*102).

We end the number with some propositions (*100"6—•64) stating that

various classes (such as i"a), which have already been proved to be similar

to a, have Nc'a members.
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#100-01. Nc =sni Df

#10002. NC = D'Nc Df

#1001. I" Nc'o = /§ (0 sm a) = /3(a sm /3) [#32-13 . *73'31 . (*100'01)J

#10011. h.Nc'o = £Kafl).#el-*l.D'i2 = o.(l'i2 = /3} [#1001 . #731]

#10012. h . Nc'a = § {(a#) . R e 1 -> 1 a C D'iJ . /3 = R«ol)

[#100-1. #731 1]

#10013. I- - Nc'o = <I"(1 ~> 1 n*D'a) = D"(l -> 1 n a'a)

De?n.

H . #100-11 . #33-6 . D h . Nc'o= /3 {(gB).fl e 1 -> 1 . # eD'a . d'£ = £}

[#22-33.*37-6] = a«(l -» 1 n D'o) (1)

h . #100-1 . #731 . #3361 . D h . Nc'a=£ {(g£) . £ e 1 -> 1 . J? 6 (I'a.D'i2«£}

[*22-33.#376] = D"(l - 1 n a'a) (2)

K(l).(2).DKProp

#10014. h.Nc<a = #{(afl).aCa'i2.#r ael-> I . j3 = R"a]

[#73-15. #100-1]

#100-15. h . Nc'a = /3 {(a/2) : E !! R"a :

x,y ea . R'x = R'y . D^
y

. x = y : ft = R"a}
Bern.

h. #74111. D
\-:.K\lR"a:a: >

yea.R'x = R'y.DXty .cc = y:/3 = R l'ai = :

R[ael^> Cls'. a C d'R .R[ael-*1.0 = R"a (1)

I- . (1) . #4-71 . #100-14 . D K. Prop

#100-16. I- . Nc'a = $ {(g J?) :. a?, y ea . D*
)2/

: R<x= R'y . = . x = y :./3 = R"a]

Dem,

h. #71-59. D
h :: x, y e a . x

, y : £'# = iJ'y . = . x = y :. = . i2 f a e 1 -> 1 . a C (Pi? (1)

h . (1) . #10014 . D h . Prop

#100*2. h . E ! Nc'o [#32-12 . (#100-01)]

#10021. h . d'Nc = Cls

Dem. h. #37-76. (#100-01). Dh.a'NcC Cls (1)

I- . #33-431 . #1002 . D h . Cls C CI'Nc (2)

h . (1) . (2) . D h . Prop

#100-22. h. Nee l-> Cls [#7212 . (#100-01)]

#100-3. h . a e Nc'a [#733 . #1001]

Note that it is fallacious to infer g ! Nc'a, for reasons explained in the

introduction to the present section.
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#100 31. r-:aeNc'/3. = .#e Nc'a. = . asm/3 [#3218 . #73"3I . (*100'01)]

#100 32. h:aeNc^./3eNc'7.D.«eNc (

7 [#100'31 . *73"32]

#100 321. l-:asm/3.D.Nc'a = Nc'/3

Dem.
h . #73*37 . D h :. Hp . D : 7 sm a . =

y
. 7 sm /3 :

[#1001] D : Nc'a = Nc</3 :. D h . Prop

Note that Nc'a = Nc'/3 . D . a sm /3 is not always true. We might be

tempted to prove it as follows:

h . *1001 . D h :. Nc'a = Nc'/3 . = : y sm a .
=

y
. 7 sm f3 :

[#101] D : asm a. = . asni/3 :

[#73'3] D : sm /3

But the use of #101 here is only legitimate when the " sm " concerned is

a homogeneous relation. If Nc'a, Nc'/3 are descending cardinals, we may
have Nc'a = A = Nc'/3 without having asm /3.

#100-33. h : a ! Nc'a n Nc'/3 . D . a sm /3

Dem.
h . #100'1 . D h : Hp . D . (37) . 7 sm a . 7 sm £ .

[#73
-

31] D -(St) -asm 7. 78m/!?

.

[#73-32] D . a sm /3 : D h . Prop

Note that we do not always have

a sm /3 . D . a ! Nc'a n Nc'/3.

For if the Nc concerned is a descending Nc, and a and /3 are sufficiently

great, Nc'a and Nc'/3 may both be A. For example, we have

Cl'(ow-a)smCl'(«u-a).

But Nc (a)'Cl'(a u - a) = A, so that

~3 ! Nc (a)'Cl'(a w - a) n Nc (a)'Cl'(a v - a).

Thus "asm yS . D . g ! Nc'a n Nc'/3" is not always true when it is significant.

#10034. I- : g ! Nc'a n Nc'/3 . D . Nc'a = Nc'/3 [#100"33'321]

#100 35. I- : . 3 ! Nc'a . v . g ! Nc'£ : D :

Nc'a = Nc'/3. = .aeNc'/3.= ./3e Nc'a. = . asm £
Dem.

\- . #22-5 . D h :. Hp . D : Nc'a= Nc'/S . D . a ! Nc'a n Nc'/3 .

[#100-33] D.asm/3 (1)

h . (1) . #100-321 . D h :. Hp . D : Nc'a = Nc'/3 . = . a sm (2)

I- . (2) . #100-31 . Dh.Prop

Thus the only case in which the implications in #100'321*33 ,34 cannot be

turned into equivalences is the case in which Nc'a and Nc'/3 are both A.

#100-36. h :. /3 e Nc'a .D:g!a. = .a!y9 [#100-31 . #73-36]

#100-4. h : fi eNC . = . (go) . p = Nc'a [#37-78-79 . (#100-02-01)]
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#10041. h - Nc'a e NC [#100-4-2 . #14-204]

#10042. h:^,veNC.g!/*ni/.D.j4«i>

Dem.

h . #100-4 . D h : Hp . D . (30, /3) . fi = Nc'a . v = Nc'/3 . 3 ! Nc'a n Nc'/3 .

[#100-34] D . (3o, /3) . fi = Nc'a . v = Nc'/3 . Nc'a = Nc'/3

.

[#14-15] D./x =i/Ol". Prop

#100-43. h.NCeCls2 excl [#100-42 . #84-11]

#10044. I- :.
fjt,

e NC . a ! Nc'a . D : a e p . = . Nc'a = /*

Dem.
H^lOOS.DI-iNc'a^/i.D.oe/i (1)

h . #10-24 . D h : fi e NC . 3 ! Nc'a .ae/i.D.

jm e NC . a ! n . a ! Nc'a .ae/x.

[#100-4] D . (g/3) . /* = Nc'/3 . 3 ! Nc'/3 . g ! Nc'a . o e Nc'/3 .

[#100-35] D . (a/3) /* = Nc'/3 . Nc'a = Nc'/3 .

[#14-15] D.Nc'a = /* (2)

h.(l).(2).Dh.Prop

#100-45. h :/* e NC. a e /*.:>. Nc'a = /* [#1004-31'321]

#100*5. h:/x€ NC. a, ftefi.D. asm /3

Dem.
h . #100-4 . D h : Hp . D . (37) . fi = Nc {

y . a, /3eNc'7 .

[#100-31] 3.(37). asm 7. /3sni7.

[#73-31 -32] D . a sm /3 : D h . Prop

#100-51. h : m e NC . a e p . D . sm"^ = Nc'a

Dem.

h . #100-5 . Fact .DI-:.Hp.D:/3e/x.7sm/3.D.asm/3.7sni/3.

[#73-31-32] D.asm 7 .

[#100-31] D. 7 eNc'a (1)

h . (1) . *10-ll*21-23 . #37-1 . D h : Hp . D . sm"/* C Nc'a (2)

h . #100-31 . D h :. Hp . D : 7 e Nc'a . D . 7 sm a . a e /* .

[#37-1] 0.ry6sm"fjL (3)

r . (2) . (3) . D h . Prop

#100-511. I- : g ! Nc'£ . D . sm"Nc'/3 = Nc'/3

Here the last "Nc'/3" may be of a different type from the others: the

proposition holds however its type is determined.

Dem.
\-

.
#100-51-41

. D h : a e Nc'/3 . D . sm"Nc'/3 = Nc'a

[#100-31 -321] =Nc'/3 (1)

h.(l).*10-ll-23.Dh.Prop
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*100"52. h : fi eNC . 3 ! p . D . sru^/x e NC [*100'51'4]

This proposition still holds when fi = A, but the proof is more difficult,

since it depends upon the proof that every null-class of classes is an NC,
which in turn depends upon the proof that Cl'ct is not similar to a or to any

class contained in a.

#100 521. btfjte NC . g; ! sm'^ . D . sm"sm"/t = p

Dem.

h . #37-29 . Transp . D h :. Hp . D : a ! p :

[*100-52] D:sm"/*eNC:

[#100-51.Hp] D^esm'V.^.sm'WV^Nc'v (1)

h . #87"1 . Fact . D h : Hp . 7 e sm"/* . D . (ga) .aep. fie NC . 7 sm a

.

[#100-45-321] D . (30) . Nc'a= /* . Nc'7 = Nc'a

.

[#1317] D.Nc'7^^ (2)

h.(l).(2). Dr-:.Hp.7esm'V.3.sm"sm"^ = /* (3)

h. (3). #10-11 -23'35. Dh. Prop

*10053. h:.a! /A.a!i/.D: /
*eNC.i/ = sm"/* . = . v e NC . /* = sm'V

Dem.

h. #100-52. Dr-:.Hp.D:/teNC.i/ = sm"/i.D.i/eNC (1)

I- . #100-521 . D h :. Hp . D : /* eNC . v = sm"/x .}./* = sm"i/ (2)

K(l).(2). Dh:.Hp.D:/ieNC.v = sm"At.D.v6NC./i = sm"i/ (3)

h.(3).(3)^.Dh.Prop
p,v

#100 6. I- . t"a e Nc'a [*73'41 . #100-31]

#100-61. h.yS{to).2/ea./3=t'aui^}€Nc<a [#7327 . *54'21 . #100-31]

#100-62. h . x I "a e Nc'a [#7361 . #100-31]

#100 621. h.4ar"aeNc'o [#73-611 . #100-31]

#100 63. h . eAVa e Nc'a [#8341 . #100-31]

#100-631. h.D"eA'i'aeNc'a [#837 . #100-6]

#100-64. \-:k<s Cls2 excl . D . D"e4 '* C Nc'«

Dem.

h . #843 . #8014 . D h : Hp . R e

e

A'« . >. E e 1 -> 1 . a: = d'i2 .

[*73"2.#100'31] D . D'i2 e Nc'« : D h . Prop

R&W II



*101. ON AND 1 AND 2

Summary o/#101.

In the present number, we have to show that and 1 and 2 as previously

defined are cardinal numbers in the sense defined in #100, and to add a few

elementary propositions to those already given concerning them. We prove

(#10112*241) that and 1 are not null, which cannot be proved, with our

axioms, for any other cardinal, except (in the case of finite cardinals) when

the type is specified as a sufficiently high one. Thus we prove (#101*42*43)

that 2Cia
and 2Rel exist; this follows from A=|=V and A=|=V. We prove

(#101*22*34) that and 1 and 2 are all different from each other. We prove

(#10ri5"28) that sm"0 = and sm"l = 1, but we cannot prove sm"2 = 2

unless we assume the existence of at least two individuals, or define the first

2 in
£tsm"2 = 2" as a 2 of some type other than 2IndivJ where "Indiv" stands

for the type of individuals.

It should be observed that, since and 1 and 2 are typically ambiguous,

their properties are analogous to those of "Nc'oc" rather than to those of p,

where /x e NC. For example, we have

#100 511. h : a ! Nc'/3 . D . sm"Nc'/3 = Nc'£

but we shall not have /x eNC . a ! fx . D . sm"/x = /x unless the "sra" concerned

is homogeneous, since in other cases the symbols do not express a significant

proposition. But in #100*511 we may substitute or 1 or 2, and the

proposition remains significant and true. In fact we have (#101*1 '2*31)

h . = Nc'A . 1 = Nc't'# . 2 = Nc'(t't'# u *'A),

where and 1 and 2 have an ambiguity corresponding to that of "Nc."

#1011. K0 = Nc'A [#73*48 . #1001]

#101*11. h . eNC [#101*1 . #100*4]

#101*12. h. a !0 [#51*161 . (#54*01)]

#10113. h.g!0nCl'a.Ae0nCl'a [#5116 . #60*3]

#10114. l-:Nc'7 = 0. = .7=A
Dem.

h . #101112 . D h : Nc'7 = . = . Nc'7 = Nc'A . a ! Nc'A

.

[#13*194] = . Nc'7 = Nc'A . a ! Nc'A . a ! Nc'7 .

[#100*35] = . 7 € Nc'A . a ! Nc'A . a ! Nc'7 .

[*1011.#54102] = . y = A . a ! Nc'A . a ! Nc'7

[*101112.#13194] = . 7 = A : D r . Prop
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#10115. h.sm"0 =

Dem.

V . #371 . D h : y e sm"0 . = . (30) . a e . 7 sm a .

[#54102] = . 7 sm A .

[#73-48] = . 7 e : D h . Prop

#10116. h :. ^ e NC - t'O . D : a e/* . Da • 3 ! a

Dew.

K #100-45. Dh:j*eNC.Ae/*.D./n-Nc'A

[#101-1] =0 (1)

I- . (1) . Transp . D h :. fi e NC - t'O . D : A~ £j[i :

[#24-63] D : a e p . X . g '. :. D h . Prop

#10117. h : A e Nc'a . = . Nc'a = . = . Nc'a = Nc'A . = . a = A
Dem.

\-
. #100-31-321 . D h : A e Nc'a . D . Nc'a = Nc'A

.

[#1011] D.Nc'a = (1)

h. #10113. D h: Nc'a = 0.D.Ae Nc'a (2)

h.(l).(2). Dh:AeNc'a. = .Nc'a = 0. (3)

[#101-1] = . Nc'a = Nc'A

.

(4)

[#10114] = .a=A (5)

I- . (3) . (4) . (5) . D h . Prop

#101-2. h . 1 - NcVs; [#73-45 . #100-1]

#101-21. h . 1 e NC [#101-2 . #1004]

#101-22. h . 1 +

Dem.

h . #52-21 . #10113 . D h . A~ e 1 . A e .

[#1314] Dh.1+0

#101-23. h . 1 n = A
Dem.

h. #52-21. Dh:ael.D.a±A.
[#54102] D.a~e0 (1)

h . (1) . #24-39 .Dr. Prop

#101-24. h: a !a.D. a !l fl Cl'a

Dem.

h . #52-22 . #60-6 .Dhsaieo.D.t'aeln Cl'a CU
h . (1) . #10-11-28 . D h . Prop

2—2
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^101 241. h . a ! 1 [#52-23]

#10125. h:ael.£Ca.£ + a.D./SeO

Bern.

\-
. #5264 . #22-621 .Dh:ael.£Ca.D./3elv0 (1)

h. #52-46. Dh:a J
ySel./3Ca.D.

/
e = a:

[Transp] D h : a e 1
.
/3Ca . £=|=a . Z) . £~e 1 (2)

h.(l).(2).Dh.Prop

#101-26. h.s'Cl"l = 0ul

Dem.

h . #6037 1 . #40*43 . D h . s'Cl"l C u 1 (1)

h . #60-3-34 . D h . A e CIVtf . t'« e CIVa .

[*52-22.#4G-4] D I- . A e s'Cl"l . t'« e s'Cl"l

.

[*51-2.*52-l] D h . C s'Cl"l . 1C s'Cl"l (2)

h . (1) . (2) . D h . Prop

#10127. h . 1 = a {(ga) . «ea . a- t'xeO}

Dem.

h . #54-102 . D

h : (g«) .aecc.a — i'# e . = . (g#) . a e a . a - i'ee = A .

[#243] =
. (g#) .«ca.aC('«.

[#51'2] = . (g#).a = t'a:.

[#521] = . a 6 1 : D I- . Prop

#10128. h . sm"l = 1

Dew.

h . #37-1 .Oh: ye sm"l . = . (ga) . a e 1 . 7 sm a .

[#52'1] = . (g#) . 7 sm l'o: .

[#7345] = .76 1 OH. Prop

#101-29. V-.i'xe Nc'a . = . Nc'a = 1 . = . Nc'a = Nc't'tf . = . a e 1

Dem.

I- . #100-31-321 . Dh:t'*e Nc'a . D . Nc'a = Nc'i/« .

[#101-2] D.Nc'a = l (1)

I- . #52-22 . D h : Nc'a = 1 . D . i'# e Nc'a (2)

h.(l).(2). Dh:t'«eNc'a. = .Nc'a=l. (3)

[#101-2] s . Nc'a = Nc't'a; (4)

h . #101-2 . *52-l . D h : a e 1 . D . Nc'a = 1 (5)

K #100-3. Dh:Nc'a = l.D.ael (6)

I- . (3) . (4) . (5) . (6) . D h . Prop
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#1013. b : x + y . D . 2 = Nc'(i'« u i'y)

i)em.

h . #73'71'43 . *51'231 . D b :. Hp . D : * + w . D . (i'* u i'w) sm (t'a; u I'y) :

[#54101] D : /3 e 2 . D . yS sm (i'« u i'y) :

[#1001] D : 2 C Nc'(i'« u t'y) (1)

I- . #53-32 . #71-163 .D\-:Rel-+l.a},ye 0,'R . D .

R"(i'x u l
f
y) = I'JJ'aj w t'ii^ (2)

I- . #71-56 . Transp . D h : Hp . R e 1 -> 1 . «,y ed'JS . D . R'x^R'y (3)

I- . (2) . (3) . #54-26 . D

h:.Hp.D:Bel~>l.ic,t/6 CPE . £ = R tl
{i

lx u t'y) . D . £ e 2 :

[*10-11-21-23.*51-234]D : (gi2) . i2 e 1 -> 1 . t'a? u i'y C a'iJ . /3=R"(i'xyJi'y).

D./3e2:

[*73-12.#100-l] D : Nc'(i'# u t'y) C 2 (4)

h.(l).(4).3h.Prop

#101-301. b.2 = &{(>&x).xea.a-i<xel} [#54-3]

In comparing #101*31 with #10l'l*2"3
> it should be observed that i

fx

and A are both classes, whereas in #101 1*2-3 there was no typical limitation

beyond what was imposed by the conditions of significance.

#101-31. r . 2 = Nc'(t'i'« u i'A)

Bern,

b. #51-161. Dh.t'as + A (1)

r
. (1) . #101*3 .Dr. Prop

#101-32. r.2 €NC [#101-31 . #100*

#101-33. h:a,/3el.an/3 = A.D.au/3e2 [#54'43]

#101-34. h. 2 + 0. 2 + 1

Bern.

h. #10113. Dh.AeO
1- . #101-301

.

D hae2 . D.gla:

[#24-63] DKA~e2
h . (1) . (2) . #13-14

.

DK2 +

(1)

(2)

(3)

b . #52-22 . #54-26 . #22*56 . D b . i'y e 1 . i'y~e 2 .

[#1314] DK1 + 2 (4)

r . (3) . (4) . D h . Prop

#10135. h.2nO = A.2nl = A [#10042 . Transp . #101\Ll'21*32-34]

#101-36. r:ae2./3Ca.^ + a.D.ySe0ul

Bern.

r.*54'42. Dr:«62./9Ca.a!^.^=|= a.D.
/
Sel (1)

h. #54-102. Dr:~g!£.D./3€0 (2)

I- . (1) . (2) . D b . Prop
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#101-37.

#101-38,

Dem,
\- . #60-3

[#40-4]

[#51-2]

h . *'C1"2 C0ulu2 [#54-411]

h:a!2.D.s'Cl' f2 = 0wlu2

Dh:Hp.D.(aa).ae2.AeCl
fa.

D.Aes'Cl"2.

D.0Cs'Cl"2
h. #60-34. D I- . 2 C s'Cl"2

I- . *54'101 . D h :: Hp . D :. (ga, y) . %%y :.

(1)

(2)

[*13'l7l.Transp]

[*54-26]

[*ll-26.*22-58]

[#40*4]

[#521]

3:.(g«,y):.(s):s=H*.v.s=|=y:.

D :. (g*, y) :. (^) : i^ u t'« e 2 . v . t's ui'jfe2:.

D :. (z) :. (ga, /3):ae 2. t'zeCl'a. v ./3e 2. t'*«Cl'£:.

D :.(*). i'.zes<Cl"2:.

D:.lCs'Cl"2 (3)

I- . (1) . (2) . (3) . #101-37 . D h . Prop

#1014. h: (a* 5
y).«=j=t/.= .3 ! 2

(-.#54-26. Dh:^+2/.D.g!2:
[#1111-35] Dh:(a*,y).* + y.D. a !2 (1)

I- . #54*101 . D h : a e 2 . D . (g«, y).x^yi
[#10-11-23] Dh: a !2.D.(a*J y).* + y (2)

r . (1) . (2) . Z) h . Prop

When we are considering the lowest type occurring in a context, our

premisses do not suffice to prove (3#,#). ®^y- For every other type, this

can be proved. Thus A 4= V and A
=J=
V give the required result for classes

and relations respectively.

#101-41. V : (3*) . i'x + V . = . a I 2

Dem,

#101-42.

Dem.

f- . #24-14 . Transp . D

r-:.(a«).t'a> + V.=
[#51-15] =

[#101-4] =

H.a!2cl8 .t
fAu('V € 2,

(a«) = to)-y~«^s
(a*,3/).* + y :

3 ! 2 :. D h . Prop

'Cls

I- . #20-41 . #24-1 . D r . A, V e Cls . A + V
I-

. (1) . #5426 . Dh.t'Aui'Ve2. 1'A u t'V C Cls .

[#63-371-105] DKt'Aut'Ve2n i'Cls

.

[(#65-01)] Dh.i'Au t'V e 2cls . D h . Prop

#101-43. K a * 2Eel [Proof as in #101'42]

(1)



*102. ON CARDINAL NUMBERS OF ASSIGNED TYPES

Summary o/*102.

In this number, we shall consider a typically definite relation "Nc," i.e. we
shall consider the relation, to a class B which is given as of the same type as

ft, of the class fi of those classes 7 which are similar to 8 and of the same type

as «. We shall then put

ft = Nc («„)'$,

7 eNc («„)'$,

and the class of all such numbers as fi for a given o and ft we shall call

NC? (a), so that

NC (a) = D'Nc (aft).

The notations here introduced for giving typical definiteness to "sm" and

"Nc" are those defined in #65 for any typically ambiguous relation.

By *6301*02 we have, if a is a typically ambiguous symbol,

h . otx = a r\ t'x,

h . a (x) = a n t'l'x.

Thus h . a (x) = a^. If we apply the definitions to 1, "Is" is meaningless

unless x is a class ; we therefore write a Greek letter in place of x, and we have

h.]^=ln^=ln (t'ft u - t'/3>

It x eft, we shall have i'x = ft.v. i
l
x=^ft. Hence

I- ix eft . D . l
lxe lp.

Similarly h :x<**>eft . D . t'#e lp.

Thus r-:areC/8-3-^eljB.

The converse implication also holds, so that

1- zxeto'ft.^E .I'xelp.

Thus lp consists of all unit classes whose sole members 00 either are or are

not members of ft, i.e. for which "xeft" is significant.

In "x eta'ft • 3 I'xelp," the hypothesis renders explicit the condition of

significance; thus "t'xe lp
" is always true when significant, and always signi-

ficant when x e t 'ft. On the interpretation of negative statements concerning

types, see the note at the end of this number.

It should be noted that all the constant relations introduced in this work

are typically ambiguous. Consider e.g. A, sg, D, s, s, I, 1, e, CI, Rl. These

all have more or less typical ambiguity, though all of them have what we will

call relative typical definiteness, i.e. when the type of the relatum is given,

that of the referent is given also. (In regard to D, it is not true that, conversely
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when the type of the referent is given, that of the relatum is also given.) But

"sm" and "Nc" have not even relative definiteness. When the type of the

relatum is given, that of the referent becomes no more definite than before;

the only restrictions are that the relatum for "sm" or "Nc" must be a class,

that the referent for "sm" must be a class, and that the referent for "Nc"

must be a class of classes. When a relation R has relative definiteness, it is

enough to fix the type of the relatum; and if further R e 1 —> Cls, so that R
leads to a descriptive function, "R'y" has complete typical definiteness as soon

as the type of y is given. Now the constant relations hitherto introduced,

with the exception of "sm" and "V," have all been one-many relations, and

have been used almost exclusively in the form of descriptive functions. Hence

no special notation has been required to give typical definiteness, since "R'y"
in these circumstances, has typical definiteness as soon as y is assigned. But

with the consideration of "sm" and "Nc," which do not have even relative

definiteness, an explicit means of giving typical definiteness becomes necessary.

It should be observed, however, that "Nc'5" has typical definiteness, when 8

is known, as soon as the domain of "Nc" has typical definiteness, since 8 must

belong to the converse domain. It is for the sake of this and similar cases that

we introduced the two definitions in *65, which only give typical definiteness

to the domain.

In virtue of the definitions in #65, if R is a typically ambiguous relation,

and x is a referent, R becomes Rx ; if, further, y is a relatum, R becomes

Rix,y)- If oc is a referent for R, we have (gy) . we R'y, and R'y e D'R. Thus
—

>

D'R has a member of the type next above that of x, i.e. of the type of i'x.

Thus _>
h.sg'(Rx)={R){x)

and h . sg<[R (x< y) } = (R) {xy)

as was proved in #65. Hence in particular

Ksg'{sm (a)/S) } = Nc(«p).

It is chiefly for this reason that it is worth while to introduce the defini-

tion of R (xy).

We have, in virtue of the above, as will be proved in #10246,

(- : 7 e Vol . 8 e t'f3 . 7 sm 8 . = . 7 e Nc (<xp)'8.

With regard to "Nc(or)}

" which is to be interpreted by #65*04, some
caution is necessary. This will mean some one of those typically different

relations called "Nc" which have their domains composed of terms of the
same type as a. But it will not mean the logical sum of all such relations,

because these relations are of different types according as their converse
domains differ in type, and therefore their logical sum is meaningless. Thus
for example if the type of /3 is lower than or equal to that of a, we shall have

h. a !Nc(«)</3,
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whence, if "Nc(a)" has its converse domain composed of terms of the same

type as ft,

h.A~eD'Nc(«).

But if ft is of higher type than a, we shall find

h.AeD'Nc(a).

Thus "Nc(a)" is indeterminate in a way that makes a practical difference.

Exactly similar remarks apply to NC (a). We have

h.NC(a) = D'Nc(a);

thus "NC(a)" shares the ambiguity of "Nc(ot)." The question whether

A e NC (a) depends upon the decision of this ambiguity. The difficulty is that

"NC(a)" stands for the domain of any one determination of "Nc" which has

its domain composed of objects of the type of L'a; but it is the domain of only

one such determination of "Nc," because different determinations are of dif-

ferent types, and therefore cannot be taken together, even when their domains

are all of the same type. In consequence of this ambiguity, "NC (a)" is a symbol

which is as a rule better avoided, and "Nc(ee)" is not often useful except as

a descriptive function, in which case the relatum supplies the requisite typical

definiteness.

The peculiarity of "NC(o)" is that it is typically definite, and yet is

capable of different meanings: it is not wholly definite, being defined as the

domain of a relation whose converse domain is typically ambiguous. It results

that we cannot profitably make "NC" half-definite, as "NC (a)" does, but must

make it completely definite, as we do by taking D'Nc (a^). For this we adopt

the notation NC3 (a). We cannot adopt the notation NC (o^), because that

would conflict with #6511, nor NC(a)p, because that would conflict with

#65 '01, nor NCp (a), for the same reason. But NO* («) has no previously defined

meaning. We may if we like regard "NC^" as D'(Nc ft'ft). Then the required

meaning of "NO* (o)" would result from #65-04. But as "NO1 " so defined is

not required, it is simpler to regard "NC^ (a)" as a single symbol. We there-

fore put

#10201. NC^(a) = D fNc(ap) Df

The present number begins with various propositions (#102'2—-27) on a

typically definite relation of similarity, i.e. sm (a> p)
. We then have a set of

propositions (#102-3—'46) on "Nc (0?)'$." This is only significant if ft and 8

are of the same type; it then denotes the class of those classes which are

similar to 8 and of the same type as a. We then have a set of propositions

(#102\5—-64) on NO (a), i.e. on cardinals consisting of classes of the same

type as a which are similar to classes of the same type as ft. We next prove

(#102-71—-75) that no sub-class of a is similar to CI 'a, and therefore

(substituting t 'a for a) no class of the same type as « is similar to t'a, and

therefore

#10274. h.AeNC«'-(a)
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This proves that A is a cardinal, which is a proposition constantly required.

The remaining propositions of #102 are concerned with sm"/i where /u, is a

typically definite cardinal.

The most useful propositions in this number (apart from #102-74) are

#1023. biyBm (aifi&. = .ye'Nc(afly&

#102 46. h : 7 eNc(ae)'S . = . 8 eNc(/3a)<7 . = . 7sm 8 . y e t'a . 5 et'0

#1025. h : fi eNO (a) . = . (aS) . p = Nc (a^'S

#102 6. h . Nc (a)'/3 = Nc (a^)'y3 = $ (7 sm /3 . 7 e i'o) = Nc'£ n «'o

#10272. h : /3 C a . D .~(£ sm Cl'a)

This is used in proving jj, eNC . D . 2^ > p, which is the proposition from

which Cantor deduced that there is no greatest cardinal. (If /i = Nc'o,

2* = Nc'CPa, and thus there is a rise of type.)

#10284. f- : (37) . 7 sm a . 7 e t'a . 8 sm 7 . = . 8 sm a

#102 85. r-.sm'7*n$'£ = s]V/A

#10201. NO (a) = D'Nc (a*) Df

#10211. r- : R e 1- 1 . D . 22^ e 1 (x) -> 1 (y)

Here, if i? is a real variable, the conditions of significance require R = R(x,y) •

But if R is a typically ambiguous constant, such as 7 or A or sg, R(X,y) is a

typically definite constant. It is chiefly for such cases that propositions such

as the above are useful.

Dem.

h . #37-402 . (#651) . D h . D'R<X
, y)
C t'a .

[#3315] D h . {sg'R{x, y)
}'z C t'x

.

[#63-5] D\-.[sg'R iXty) }'zet't'x (1)

h.(l). #71102. DhiHp.-zeCKR^j,) .D. {sg'.R (a ,itf
>}'*e 1 r. mc.

[(#65-02)]
'

0.{sg'R {Xjy) }'zel(a) (2)

Similarly h : Hp . w e D'i?,^, . D . [gs<R {Xiy) }'w e 1 (y) (3)

h . (2) . (3) . #701 .Dr. Prop

#10213. ViRel-*l.?.Rx el(x)->l [Proof as in #10211]

#102-2. h:ysm
{a>fi) 8. = .ysm8.yet'a.8et'/3 [#35102 . (#651)]

*102'21. h : 7 sm (a
, „, 8 . = . (a fi) . R € 1 -> 1 . D'.R e Z'a

.

d'R e t'/3 . B'R = 7 . CPE = 8 [#102-2 . #731]

#102-22. t-:<Ysm(x,y)8.~.ysm8.yCt'a.8Ct'y [#63-5 . (#65-12)]

#102-23. h : ysm{x,y) 8 . ==
. (aJK) . R e 1- 1 . D'.R C «'«

.

CPE C t'y . D'E = 7 . d'R = 8 [#102-22 . #731]
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#102 24. h : 7 sm {x,y) 8 . = . (%R) . Re 1 (ff)-> 1 (y) . D'.R = 7 . Q'JR = S

Dew.

h . #10223 . *405-52-43 . #37'25 . D

h : . 7 sm (^ y) 8 . = : (%R) :i?el->l:we d'-R . Dw . R'w C^ :

^D'ii. D* . -B'^ C t'y : D'.R = 7 . (pi? = 8 :

[*63-5] - : (%R) zRel^l. R"d'R C t't'x . R"D'R C Wy .

V'R = y.<I<R = 8:

[*7l-102.(*65-02)]=:(E[
JB).'5"a <ECl(^).& fD^Cl(2/).D^=7.a f

JR=5:
[#70-1] = : (3.R) . £e 1 (a>) -> 1 (y) . D'i2 = 7 . <J'.R = S :. D 1- . Prop

#10225. b : y sm iaiP) 8 .= .(<&R) . R el a ^>h .TyR = y .d'R = 8

[Proof as in #102'24]

#102'26. h : 7 sm („ift S . 7
' sm K^ S . D . 7 sm (B>fl) 7

'

Dern.

h . #102-2 . D h : Hp . D . 7 sm 8 . y sm S . 7, 7
' e i'a

.

[#73'32] D , 7 sm 7
'

. 7, 7
' e t'a

.

[#102-2] D. 7 smM7'Oh. Prop

#102'27. h : 7 sm („ift 8 . 7' sm (B
'

f
^ S . D . 7 sm (aja') 7

' [Proof as in #102'26]

#102-3. h:7smM S. = .7eNc(«^

h. #3218. D

h: 7 sm (ai 0) S. = . 7 6{sg fsm
(ai
^}'S.

[#65-2] =.ye{(sg'sm)(a
/
,)}'a.

[(#100-01)] = . 7 e Nc fayS Oh. Prop

#102-31. h . Nc foyS - D"{1 -+lnR (D'R e t'a . d'R e i</3 . d'R = 8)}

Dem.

Y . #102-3-21 . D
\-:ye~Nc(a

fiy8. = .(RR).R€l^>l.D'Ret'a.d'Ret'/3.V'R = y-d (R = 8.

[#33-123.#371] = . 7 e D"{1 - 1 n R (D'R e t'a . d'R e t</3 .
d'R = 8)} :

D h . Prop

#102-32. r . Nc (ap)'8 = D"((l„- 1^) ^a '8}

Dem.
h . #102-3-25 . 3
h: 7 €Nc(afi

y8.EE.(RR).Rela -*lfi .WR = v.<I'R = 8.

[#33-61] = . (a-R) • R e l a -» 1* . R € a'8 . ~D'R = y .

[#33-123.#37-l] = .7eD"{(l.^l?)oa'8} : D h . Prop

#102-34. h . Nc (a, /3)*S = D"[1->1^ (D'i2 e <<a . d'R C t'/3 . d'R = 8)}

[Proof as in #102-31]
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#102 35. h . Nc (a, £)<$ = D"[{1.- 1 (£)} n a<8] [Proof as in #102-32]

#102-36. h . E ! Nc (a
fi )

c8 [#102-31 . #14-21]

This proposition is true whenever it is significant, and is significant when-

ever 8 e t'fi. When 8 belongs to some other type, the above proposition is not

significant.

#102'36L h.E!Nc («,#)<£ [#10234 . #14-21]

#10237. h.(FNcte) = <<£

h . #37-402 . (#65-11) . D h . d'Nc (ap) C t'0 (1)

h . #102-36 . #33-43 . D h . (8) . 8 e d'Nc (ap )

.

[#63-14] D h . "Vd'Nc («e) = d'Nc (a*) (2)

h . (1) . #63-21

.

D h . Cd<Nc («e) = «'£ (3)

h . (2) . (3) . h . Prop

#102-4. h : y e Nc («e)<3 . 7
' e Nc (^)'S . D . 7 e Nc (aa)V [#102-3-26]

#102-41. h:7eNc(o^)'S.7'eNc(a^) fS.D.7 6Nc(aa-)V [#102-3-27]

#102-42. 1- . a < Nc (a„)'a [#102 3'2 . #73'3 . #63-103]

#102-43. h . g ! Nc («„)<« [#102-42]

This inference is legitimate because, when o is given, " Nc (aa)V is typically

definite. The inference from "aeNc'a" (which is true) to "g iNc'a" is not

valid, because "^ ! NcV may hold only for some of the possible determinations

of the ambiguity of " Nc."

#102-44 h : asm/3. = . aeNc(«fc)'£ • = • & eNc(j8.)'a

Dew.
1- . #63-102 . D
l-:asm/3. = .asm^.ae^a.^e^ (1)

1-
. (1) . #102-2-3 . D h . Prop

#102*45. h : 7 e Nc fay8 . D . y e Nc (a„) f

7
Dem.

h.#102-3-2.Dh:Hp.D.7e^a (1)

h.#73-3. Dh. 7 sm7 (2)

h. (1). (2). #102-3-2. Dh. Prop

#102-46. h : 7 e Nc fayS . = . 8 eNc(^)'7 . = . 7 sm 5 . y e t'a . 8 et (
j3

[#102-2-3. #73-31]

#102-5. l-:/*eNC'3 (a). = .(3S). /A = NcM<S [#10022. #71-41. (#10201)]

In using propositions, such as those of #100, in which we have a typically

ambiguous "Nc" or "NC," any significant typical definiteness may be added,

since, when a typically ambiguous proposition is asserted, that includes the

assertion of every possible proposition resulting from determining the

ambiguity.
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#102-501. h . Nc fays €NO (a) [#102'536]

#102'51. r : 7 e Nc (a^'S . D . Nc (o^)'S = Nc («a )<7 .

Nc (op)'* eNO (a) . Nc («B)<7 eNO («)
Dem..

h . #102-3-2 . D

h :. Hp . D : 7 sm 8 . 7 e t'a . 8 e t'fi :

[#7337.#4-73] D : fsm 8 . = . £ sm 7 : £ sm 8 . = . £ sm 5 . 8 e *«£ :

£ sm 7 . = . £ sm 7
.
7 e Co

:

[#4-22] D : £ sm 8 . 8 e i',3 . = . f sm 7 . 7 e i'a

:

[Fact] D:£sm8. f e2'a.8e2'£. = .fsm 7 .£ei'a. 7 e('a:

[#102-2-3] D:Nc(ae)'8 = Nc(a tt)<7 (1)

K (1). #102-501. Dh. Prop

#102-52. h : g ! Nc (o^'S . D . Nc (a^'S e NC" (a) [#102-51]

#102-53. h . NO (a) - t'A CNO («)

Dem.

h . #102-52 . D h : p = Nc (a,j)'8 . g ! p . D . ^ eNO (a) (1)

h . (1) . #102-5 . Z) h . Prop

#102-54. h : 8 e Nc (/3a)<7 . D . Nc (a^'S = Nc (aa)<7 [*102"51'46]

#102541. h : 3 ! Nc (#,)'7 . D . Nc (aa)'7 eNC 3
(0) - t'A

Dem.

r . #102-54-501 . D h : 8 e Nc (£a)'7 . 3 . Nc (aa)'7 eNO (a) (1)

I- . #102-46-45 . D h : 8 e Nc (/3a)'7 . D . 7 e Nc (a.) '7 .

[#10-24] D.a!Nc(a.)'7 (2)

h.(l).(2).D

h : 8 e Nc (&)*7 . 3 . Nc (aa)<7 eNC 3
(0) - t<A : D h . Prop

#102-55. h : A~ eNO (/3) . D .NO (a) - 1'A =NO (a)

Dew.

r . #102-5 . D
h:.Hp. D^-Nc^V^y-Hl/*-
[#102-541] D^ y . Nc (a tt

)'7 eNO («) - t'A :

[#10-23] D : (3/*) . ^ = Nc (/3a)'7 . D
y

. Nc (a.)'? eNO (a) - 1'A :

[#102-36] D : (7) . Nc (a.)<7 eNO («) - t'A :

[#13-191] D : 1/ = Nc («.)'7 . D,jy . j; eNO («) - t'A :

[#102-5] D:»/eNO(o).D^.veNO(o)-t'A (1)

h. (1). #102-53. DK Prop

The above proposition shows that, if every class of the same type as fi is

similar to some class of the same type as a, then, given a class 7 of the same

type as «, there is a class 8, of the same type as & such that the classes similar

to 8 and of the same type as a are the same as the classes similar to 7 and of
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the same type as a ; and conversely, given any class 8, of the same type as ft,

and similar to some class of the same type as a, then there is a class 7, of the

same type as a, such that the classes similar to 7 and of the same type as a

are the same as the classes similar to 8 and of the same type as a. We may
express this by saying that, if the cardinals which go from the type of a to the

type of ft are never null, then those that go from the type of ft to the type of

a, with the exception of A (if A is one of them), are the same as those that

begin and end within the type of a. The latter are what we call " homogeneous
"

cardinals. Thus our proposition is a step towards reducing the general study

of cardinals to that of homogeneous cardinals.

#1026. h . Nc (a)'ft = Nc (a?)'ft = 7 (7 sm ft . 7 e t'a) = Nc f
/3 n t'a

Dem.
h.*35-l.(#65-04)O

h :
fj,
= Nc (a)

1

ft . = . m = Nc'/3 v e P'a .

[#635] ~ . ^ = Nc'/3 ./tCi'a.

[#65-13] =
. ^ = Nc'£ n *'a

.

(1)

[#100-1] =.fjb^y{yBmft.y€t'a). (2)

[#63-103] = . p = 7 (7 sm ft . 7 e t'a . ft e t'ft) .

[#102-46] = . fi = Nc («p)'/3 (3)

h . (1) . (2) . (3) . #20-2 . #100-1 Oh. Prop

#102'61. h : 8 e t'ft . D . Nc (a)'8 = Nc (ap)'8

Dem.
h . #4-73 . 3 h : Hp . D . 7 (7 sm 8

.

7 e t'a) = 7 (7 sm 8 . 7 e t'a . 8 e t'ft)

[#102-46] =Nc(«e)'S (1)

h. (1). #102-6. Dh. Prop

#102-62. h . NC e (a) = Nc (a)' 't'ft

Dem.
h . #37-7 . (#100-01) . D
h . Nc (a)"t'ft = p, {(a$) .8€t'ft./j, = Nc (a)'8}

[#102-61] = p. {(38) .8et'ft.fi = ^c (a^)
(

8}

[#102-37] = D'Nc (ap)

[(#102-01)] = NC3 (a)O h . Prop

#102-63. h : fi = Nc'7 .oe/*.D./t = Nc (a)'y

Dem.
1-

. #63-5 . D h : Hp . D . ^ = Nc<7 .fxQt'a.
[#65-13] 3 . M = Nc f7 n *<« .

[#102-6] D . ^ = Nc («)<7 Oh. Prop

#102-64. Hs^eNC.gi^O. (go, 7) . ^ = Nc (a)'7 [#102-63 . *100"4]

The following propositions are part of Cantor's proof that there is no
greatest cardinal. They are inserted here in order to enable us to prove that
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A is a cardinal, namely what we call a " descending" cardinal, i.e. one whose
corresponding "sm" goes from a higher to a lower type.

#10271. h : R e Cls -> 1 . D'R C a . <I'R C Cl'o . D . 3 ! Cl'a- d'R
Dem.

h . #2033 . #4*73 . D

h :: Hp . v = £(a;eD'.R . as/^eJR'a:) . D :.

xeD'R . Dx : xets . = .x^eR'x:

[#5'18] "5
x :r**>{x€iiT . = .xeR'oc] ;

[*20-43.Transp.*7M64] Dx : v ^R'x :.

^l^ll.TranspPr.tsr^eCTiZ (1)

h . #20'33 . #3-26 . D h : Hp (1) . D . «r C T>'R

.

[Hp] 3 . ts C a (2)

h.(l). (2). #13-191. D

h : Hp . D . x (x e D'R . x~ e R'x) e CI 'a - <P£ : D h . Prop

#102-72. h:£Ca.3.~(/3smCl'a)

h. #102-71. D\-:.Kp.D:Rel^>l.D'R = j3.a tRCC\'a.D
It .RlC\<a-(I

(R:

[*24-55.#22-41] D : R e 1 -> 1 . D'.R = £ . DB . <P.R + Cl'a

:

[#10-51] D : ~»(g.R) . i2 e 1 -> 1 . D'i2 = @ . <PE = Cl'a :

[*73'1] Z>:~(/3smCl'a):.Dh.Prop

#10273. h.Nc («)'*<« = A
Dem.

h . #102-6 . D h . Nc (oi)'t'a = 7 (7 sm «'o . 7 e t'a)

[#63-65] - 7 (7 sm CI%'« . 7 C to'a)

[#102-72] =A.Dh.Prop

This proposition proves that no class of the same type as a is similar to

£'«. Now t'a is the greatest class of its type; thus there are classes of the

type next above that of a which are too great to be similar to any class of the

type of a. Thus (as will be explicitly proved later) the maximum cardinal in

one type is less than that in the next higher type. Cantor's proposition that

there is no maximum cardinal only holds when we are allowed to rise to con-

tinually higher types: in each type, there is a maximum for that type, namely

the number of members of the type.

#102-74. h.AeNC^a)
Devi.

h . #102-6-501 . Dh.Nc(a)'*'aeNCt4-(a) (1)

f- . (1) . *102-73 . D f- . Prop
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Note on negative statements concerning types. Statements such as "x~ e t'y"

or "x<^>€ t 'a" are always false when they are significant. Hence when an object

belongs to one type, there is no significant way of expressing what we mean
when we say that it does not belong to some other type. The reason is thafc,

when, for example, t'a and t^a are said to be different, the statement is only

significant if interpreted as applying to the symbols, i.e. as meaning to deny

that the two symbols denote the same class. We cannot assert that they

denote different classes, since "t'a^tja" is not significant, but we can deny

that they denote the same class. Owing to this peculiarity, propositions

dealing, with types acquire their importance largely from the fact that they

can be interpreted as dealing with the symbols rather than directly with the

objects denoted by the symbols. Another reason for the importance of typically

definite propositions is that, when they are implications of which the hypothesis

can be asserted, they can be used for inference, i.e. for the assertion of the

conclusion. Where typically ambiguous symbols occur in implications, on tie

contrary, the conditions of significance may be different for the hypothesis and

the conclusion, so that fallacies may arise from the use of such implications

in inference. E.g. it is fallacy to infer " h . g ! NcV from the (true) propositions

"h : a e Nc'a . D . 3 ! Nc'a" and " 1- . a e Nc'o." (The truth of the first of these

two requires that "Nc'a" should receive the same typical determination in

both its occurrences.) For these two reasons hypotheticals concerning types are

often useful, in spite of the fact that their hypotheses are always true when
they are significant.



#103, HOMOGENEOUS CARDINALS

Summary of #103.

In this number, we shall consider cardinals generated by a homogeneous

relation of similarity, A "homogeneous" cardinal is to mean all the classes

similiar to some class a and of the same type as a. The "homogeneous

cardinal of a" will be defined as Nc'an t'a; we shall denote it by "N c'a.

"

Then the class of homogeneous cardinals is the class of all such cardinals as

" N c'a," i.e. it is D'N c; this we shall denote by "NoC." The symbol "N c'a"

is typically definite as soon as a is assigned; "N C," on the contrary, is

typically ambiguous: it must be a Cls3
, but otherwise its type may vary in-

definitely. Homogeneous cardinals have, however, many properties which do

not require that the ambiguity of "N C" should be determined, and few which

do require this. They are important also as being the simplest kind of cardinals,

and as being a kind to which other kinds can usually be reduced.

The chief advantage of homogeneous cardinals is that they are never null

(*103
,13 ,

22). This enables us to avoid by their means the explicit exclusion

of exceptional cases; thus throughout Section B we shall use homogeneous

cardinals in defining the arithmetical operations: the arithmetical sum of

Nc'a and Nc'/3, for example, will be defined by means of N c'a and N c'/3, in

order to exclude such a determination of the typical ambiguity of Nc'a and

Nc'/3 as would make either of them null. It is true that not only homogeneous

cardinals, but also ascending cardinals (cf. #104), are never null. But homo-

geneous cardinals are much the simplest kind of cardinals that are never null,

and are therefore the most convenient.

The fact that no homogeneous cardinal is null is derived from

#10312. h . a e N c'a

Other important propositions in this number are the following:

#103-2. I- : fi e N C . = . (ga) . fi = Nc'a nt'a.s. faa) . fi =N c'a

#103-26. h :. M e NC . D : a e /x . = . N c'a = fi

The above proposition is used constantly.

#10327. h:
/x
=N c'a. = .

y
tt6NC.a6/x

Thus to say that fi is the homogeneous cardinal of a is equivalent to saying

that p is a cardinal of which a is a member.

#103-301. r . NO (a) =N C (a)

#103-34. KNC-i'ACNoC
#103-4. I- . sm"N c'a = Nc'a

*103-41. h . sm"N c'a n tf/3 = Nc (£)'a

3—2
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#103-01. N c'a = Nc'a n t'a Df

#103 02. N„C = D'N c Df

#1031. b . N c'a = (Nc'a). = Nc (a)'a = Nc (aa)<a [#102-6 . (*103'01)]

#10311. I- : j3 e N c'a . = . £ sm a . £ e t'a . = . £ e Nc'a . £ e t'a

[#1031 . #102-6]

#10312. b . a e

N

c'a [#103-11 . #733 . #63-103]

#10313. I- . a ! N c<« [#103*12 . #1024]

This is a legitimate inference from #103-12 because, when a is given,N c'a

is typically definite.

#103*14. b : N c'a = N c'/3 . = . a e N c<# . = . @ e N c'a . = . a sm £ . a e £</3

Dem.
K #10311. D
h :. N c'a = N c'/3 . ee : y sm a . 7 e i'a .

=
Y . 7 sm £ . 7 e t'/3 : (1)

[#10'1] D : a sm a . a e £'a . = . a sm /3 . a e i</3 :

[#73*3.#63103] D -.asm @. a et'fi (2)

I-. #73-32. #63*17

I- : a sm ft . a e £'/3 . 7 sm a . 7 e £'a . 3 . 7 sm /3 . 7 e i'/3 (3)

h. (3) ^.#73-31. #63-16. 3

h : a sm /3 . a e £'# . 7 sm /3 . 7 e £'/3 . D . 7 sm a . 7 e £'a (4)

K(3).(4).(1).D

H:asm£.aetf'j8.D.N c'a = N c'£ (5)

h . (2) . (5) . #103-11 . #73-31 . #63-16 .Db. Prop

#10315. I- : g ! N c<« n N c'/3 . = . N c<« =N c</3

Dem.

b . #103-13 . D h : N c'a = N c-"/3 . D - 3 ! N c-a n N„c'£ (1)

I- . #103-14 . D h : 7 e N c'a . 7 eN c</3 . D . N c'a = N c
f

7 . N c</3 = N c<7 .

[#14-131-144] D . N c<a = N c'/3 :

[#10-11-23] D h : a ! N c<« n N c</3 . 3 . N c'a = N c</3 (2)

K(l).(2). I) h. Prop

#103-16. b : N„c'a = Nc</3 . = . Nc'a = Nc</3

In this proposition, the equation "Nc'a = Nc'/3" must be supposed to hold
in am/ type for which it is significant. Otherwise, we might find a type for

which Nc'a = A = Nc'& without having N c'a = Nc</3.

Dem.
b . #103-12 .Db: N c<« = Nc</3 . D . a e Nc'/3

.

[#100-31*321] D.Nc<a = Nc'y3 (1)

b . #22-481 . D b : Nc'a = Nc</3 . D . Nc'a n t'a = Nc</3 n £<a .

[#6o-13.(#103-01)] D . N„c'a = Nc</3 (2)

K(l).(2).DKProp
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#103-2. I- : ft e N C . == . (ga) . /* = Nc'a n t'a . = . (ga) . /* = N c'a

[#71-41 . #100-22 . (#103*01-02)]'

#103-21. KNoc<aeNoC.N c'aeNC [#103-2 . #100-2-4 . #14*28 . #65*13]

In adducing a proposition, such as #100-2, which is concerned with an

" Nc" entirely undetermined in type, any degree of typical determination may
be added to our "Nc," since an asserted proposition containing an ambiguous

"Nc" is only legitimate if it is true for every possible determination of the

ambiguity.

#103-22. h:/i£N C.D.a!/x [#103*13-2]

#103*23. KA~eN C [#103*22]

#103-24. h . N C e Cls ex2 excl [#100-43 . *10323 . #84-13]

#103-25. f-:./x,veN C.D:a!^n v . = .
/
ti = p [#103*24. #84135]

#103 26. h:. ffc eNC.D:aeAt . = .N c t a = /i

Dem.
h. #100-45. 3l-:.Hp.D:ae

/
i.D.Nc^=/x (1)

K #63*22. D\-:a€/j,.D.fiCt'a (2)

I- . (1) . (2) . #22*621 . D h :. Hp . D : ae/x . D . Nc (oni'a=/i.

[(#103-01)] D.NoC'a-/* (3)

h. #103*12. Dh:N„c fa = M .3.«e/t (4)

I- . (3) . (4) . D r . Prop

#103-27. h M= N c
(«. = ./xeNC.«6/i

Dem.
h . #103-26 . 3 h : /* e NC . ft = N c<« . = . ^ « NO . a e /* (1)

I- . (1) . #103*21 . D h . Prop

#103-28. h : (g;a) . 7 sm a . ft = N c'a . = . g; ! /i . p = Nc'7

h. #103-27. 3
I- : (ga) . 7 sm a . fi = N c'a . = . (ga) . 7 sm a . // eNC . a e /i

.

[*100*31] = .^ e NC . a ! /* n Nc<7 .

[#100*42-41] = . ^ € NC . 3 ! /a n Nc'7 . /* = Ne'7

.

[#100*41] = . a ! ^ . ^ = Nc'7 : D h . Prop

#103-3. I- : £ e t'a . 3 . N c'/3= Nc (a)'/3 = Nc («.)<£ = Nc'/3 n i'a

Dem.
I- . #63-16 . D h : Hp . 3 . *«£ = £<a

.

[#22-481.(*103-01)] D.N c'/3 = Nc'/3n£<a (1)

[#102-6] =Nc(a)*£ (2)

[#102'61] = Nc(aa)</3 (3)

h . (1)
.
(2)

. (3) . D r . Prop
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#103-301. h.NO(a) = N„C(a)

Note that although "NC(a)" is not definite, "N C(a)" is absolutely

definite as soon as a is assigned,

Dem.
h . #1033 . 3 h : £ 6 t'a . /z = N c</3 . = . £ e t<

a

. /* = Nc («.)'£

.

[#102-37] =.^ = Nc(a.)^ (1)

\- . #63*5 . (#103-01) . 3

h:./x = N c'£.3:/3e£<a. = ./ze£2<a (2)

h . (1) . (2) . 3 h : /xe P'a . p = N C/3 . = . fi = Nc(0'£ (3)

h.(3).#10-ll'281-35.D

[#102-5] = . /a eNO (a) (4)

h . (4) . #103-2 . 3 h : /* e «»a n N C . = . p e NC« (a) (5)

I- . (5) . (#65-02) . 3 h . Prop

#103-31. h : g ! Nc (a^'S . 3 . Nc (a^'S e N C (a)

Item.

h . *102-52 . 3 h : Hp . 3 . Nc (a„)'8 e NC° (a) .

[#103-301] 3 . Nc fay8 eN C (a) : 3 I- . Prop

#103-32. 1- . NO (a) - t'A C N„C (a)

Bern.

h.#103-31.DI-: /Jt=Nc(«^8.a!/i.D.MeN C(a) (1)

I- . (1) . #102-5 . 3 h . Prop

In the above proposition, the "/3" may be omitted, and we may write

(cf. #103-33, below)
h,NC(a)-i fACN C(a).

For the jS is wholly arbitrary, so that any possible determination of NC (a)

makes the above proposition true. We may proceed a step further, and write

(#103-34, below)

h.NC-i'ACNoC.

But although we also haveN C C NC - t'A, provided the "NC " on the right

is suitably determined, we do not have this always. For example, if "NC" is

determined as NCa
(£'a), and "N C" as N C (t'a), then N c'«'a eN C - NC.

#103-33. h . NC (a) - t'A C N C (a)

Dem.
h . #4-2 . (#65-02) . 3

r-:./*eNC(a)-i'A.=

[#100-4.#63-5] =

[*65'13] =

[#102*6] =

[#103-31] 3

/xeNC.^e^a.gJ/x:

fa/3). ti^Nc'P'.fiCt'a. Rip:

(a/3). Ai
= Nc'y3n«'a: a ! /*:

(a/3)./, = Nc(^)^. a ! /i :

/*eN C(a):.Dh.Prop
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#10334. h.NC-i<ACN C
Dem.

K*100'31-321.*63-5.D

h : /i= Nc'a. ft eft . 3 M = Nc'£ n t'ft

[(#103-01)] = N c</3.

[#103*2] D./ieN C (1)

h . (1) . #100*4 . *ll\Ll-35-54 . 3 I- . Prop

Thus every cardinal except A is a homogeneous cardinal in the appropriate

type. Note that although of course every homogeneous cardinal is a cardinal,

yet "N C C NC" must not be asserted, because it is possible to determine the

ambiguity of "NC" in such a way as to make this false. Hence we do not

get NC - t'A = NoC,

#103 35. h : A~eNO (ft) . 3 . NO («) - t'A = N C (a) [#102-55 . #103-301]

The hypothesis of this proposition is satisfied, as will appear later, if the

type of ft is in what we may call the direct ascent from that of a, i.e. if it can

be reached from a by a finite number of steps each of which takes us from a

type t to either CIV or B\ <(t^t). Thus in such a case the cardinals (other

than A) which go from t'ft to t'a are the same as those which begin and end

within t'a. It will also appear that in such a case A always is a member of

NO (a). // two cardinals which are not equal must always be one greater

and the other less, then A eNO (a) is the condition for N c'$'/8 > Nc (ft)'t'a.

In that case, we shall have AeNO(ot). 3 . A~eNO(/3). But there is no

known proof that of two different cardinals one must be the greater, except

by assuming the multiplicative axiom and proving thence (by Zermelo's

theorem) that every class can be well-ordered (cf. #258).

#103-4. h . sm"N e'a= Nc'a

Dem.
r . *37-l . 3
h : 8 e sm"N e'a . = . (g>y) . ysm a . y e £'a . S sm 7 .

[#102'84] = . S sm a : 3 \- . Prop

#103-41. r . sm"N e'a n t'ft = Nc (0)«a

Dem.
h . *103'4 . 3 h . sm"N c'a n t'ft = Ne'a n t'ft

[*l02-6] = Nc (£)'a .Oh. Prop

*103'42. t-:
/
Ssma. = .Nc(/Sya = N c t

/3

Bem.
h . #100-321 . 3 I- : ft sm a . 3 . Ne'a = Nc'£ .

[#22-481] 3 . Nc'a n t'ft = Nc'/9 n t'ft .

[#102-6.(*103-01)] 3 . Ne (ft)'a =N e-"£ (1)

1- . *103'12 . 3 I- : Nc (ft)'a = N c'£ . 3 . ft e Ne (ft)'a

.

[#100-31] 3 . ft sm a (2)

I- . (1) . (2) . 3 h . Prop
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#103 43. I- : /i e NC . 3 . sm"ju, n f '/x = /*

Dew*.

h . *3Y*29 . Dh:/t = A.3.8m"/tn« V = A (1)

I- . *103-27 .Dh:/xeNC.a6^.3.^ = N c'a . t 'ft = *'a

.

[*1 03*41] 3 . sm'V n *oV = Nc (a)'a

[*103-3"27] = /* (2)

h.(l).(2).3r.Prop

*103'44. \-:.fi,ve N C .Dip- sm"v . = . v = sm'V

Dem.

K*10053. Dh.a!/i.a!v./i) ueNC.D:/i = smai;.E. v = sm"/i (1)

h.*103-27-2.3f-:Hp.3.a!/i.a!i;./x, ve NC (2)

h.(l).(2). Dh.Prop

*103*5. K0eN„C
Dem.

h . *101-iri2 . 3 h . e NC . g ! .

[#10'3-34] 3 I- . e N C . 3 r- . Prop

*103'51. KleN C

Bern.

r ,*101-21-241 . 3 f- . 1 e NC . g '. 1

.

[*103-34] 3 r . 1 eN C . 3 h . Prop

and 1 are the only cardinals of which the above property can be proved

universally with our assumptions. If (as is possible so far as our assumptions

go) the lowest type is a unit class, we shall have in that type (though in no

other) 2 = A, so that in that type 2 ~ eN C.



*104. ASCENDING CARDINALS

Summary o/#104.

In this number we have to consider cardinals derived from a relation of

similarity which goes from the type of a to that of t'a, or to that of tf'a. The

propositions to be proved can be extended, by a mere repetition of the proofs,

to P'ct, t
if
a, etc. This extension must, however, be made afresh in each instance

;

we cannot prove that it can be made generally, because mathematical induc-

tion cannot be applied to the series

VM'a, t
2 'a,ts 'a,

Ascending cardinals,though less important than homogeneous cardinals, yet

have considerable importance in arithmetic, because Nc'a x Nc'jS and (Nc fa)No'0

are defined as the cardinals of classes of higher types than those of a and /9,

and the same applies to the product of the cardinals of members of a class of

classes. In these cases, however, we also need cardinals of relational types,

which will be dealt with in #106.

We have to deal, in this number, with three different sets of notions,

namely

*10401. N3e<« = Nc'a n t't'a Df

*10402. N'C^D'N^c Df

*10403. /*« = sm"/t n t'fi Df

with similar definitions of NVa, etc. Thus N^'a consists of all classes similar

to a but ofthe next higher type, i.e. it is the cardinal number ofa in the type next

above that of N c'a; NXC is the class of all such cardinals as Wc% and is a

typically ambiguous symbol, though NVa is typically definite when a is given;

p {1) (if ft is a cardinal which is not null) is the "same" cardinal in the next

higher type, so that, e.g., if ft is 1 determined as consisting of unit classes of

individuals, fx
(1) will be 1 determined as consisting of unit classes of classes of

individuals. (When p is not an existent cardinal, /x,
(1) is unimportant.)

The following are the most useful propositions in the present number:

*10412. t- : j3 e Wc'ct . y e N Jc</3 . D . y eN 2c'a

*104-2. Kt^aeNVa
*104-21. h . a ! N'c'a

*10424. b'mfi = N^'a . D . p = N c<t"a= N„c'$ {(ay) . y e a . £ = i
lx u i'y)

*104.25. h . N*C C N C

*10426. h : p =N c'a . D . /*« =N cVa = N'c'a

*104 265. h./t«-Bm/'/i
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#104-27. h :. fi e NC . D : p =N c'a . ee . /x (1) = N^'a

#104-35. I- . N2C C N»C . N 2C C N C

#104-43. I- : t'a = t'fi . 3 . (g7, S) . 7 e NVa . 8 e NV/3 . 7 ft 8 = A

#104-01. N'c'a= Nc'a ft £<£<a Df

This defines the cardinal number of a in the next type above that ofN ec
c
«;

thus NVa consists of all classes similar to a and of the next type above that

of a.

#104-011. N2c'a = Nc'a ft t'P'a Df

Similar definitions are to be assumed for Nsc'a, etc.

#10402. N*C = D'Nxc Df

NXC, like N C, is typically ambiguous; but N^a) is typically definite.

#104021. N2C = D'N2c Df

Similar definitions are to be assumed for N3C, etc.

#10403. fi® = sm"fjt ft t'fjk Df

Here, if /z is a cardinal, /j,
w is the same cardinal in the next higher type.

For example, if /x is couples of individuals, fi
il) is couples of classes of

individuals.

#104-031. /*<*> = sm' 'ft ft f'fi Df

Similar definitions are to be assumed for /a <3)
, etc.

#1041. h : £ eN'e'a. s . fie Ne'a . fiet't'a . s . /3eNc'a .jSCCa

[#63-5 . (#104-01)]

#104-101. hjSe N'c'a . = . fi sm a . fi C £'a [#1 00-31 . *104\L]

#104-102. h . N'c'a = Nc (Pa)'a = Nc {(*'«)*]'« [*102"6 . (#104-01)]

#104-11. h : fi eN2c'a . = . fi e Nc'a . fi e t't
2ta . = .fie Nc'a . fi C t

ua

[*63'5. (#104-011)]

#104-111. h : fi e NVa . == . fi sm a . fi C £
2
'a [#100-31 . #104-11]

#104-112. h . NVa= Nc(f"a)'«- Nc {(i
2'a)a}'a [*102'6 . (#104-011)]

#104-12. h : fi e NVa . 7 e NV/8 . D . 7 e N 2c<a

Z>em.

r .#104-1 . D h : Hp . D . /SeNc'a . fiet't'a .je^c'fi .yet't'fi .

[#100-32] D . 7 e Ne'a . /8 e tf'i'a . 7 e £'£<£ .

[#63-16] 3 . 7 e Nc'a . £'/3 = t't'a . 7 e t't'fi .

[#13-12] D. 7 e Nc'a. 7e «'*'*'« .

[#104-11] D . 7 e NVa : D r . Prop
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#104-121. h : j3 e N»c«a . 7 eN2c'a . D . 7 e N 1^
Dem.

h . #104102112 . D h : Hp . D . /3 e Nc {(«'o)J'a . 7 e Nc {(*"a).]'a

.

[#102-41] D. 7 eNc{(*"aV.}')9 (1)

h. #104-1. Dh:Hp.D.y3e^'a.
[#63-16] 3.t (

f3 = tH'a.

[(#65-11)] D . Nc {(P'aK] = Ne {(f/8),] (2)

h . (1) . (2) . #104-102 . D h . Prop

#104-122. \-:/3e NVa . D . NV/3 = N2c'a [#104-12-121]

#104-123. h : N c</3 = NVa . D . N'c'/S = N2c<a [#104-122 . #103-26]

#10413. h:/xeN1C.= .(a«). At
=N1c

<a [#100"22 . *71'41 . (#10402)]

#104-14. h : Se/z (1
> .
= . (37) . ye ft . 8 smy.B €t'fi. = . (37) . ye ft . & sm 7. S C t'y

[#37-1 . #63-22 . (#10403)]

#104-141. l-i/xeNC.al/x.D./xWeNC [*100'52]

When the hypothesis "g ! p," is omitted, this proposition is still true, but

with a difference. E.g. let us put

ft = Nc («)'«'«.

Then p = A . /*&' * A. Thus /*<» 4= Nc (£<a)'£'a. But we still have

/*« = Nc (£'a)'£2 'a.

Thus /^W e NC, but fi
{1) is not the same cardinal as ft in a higher type, i.e. there

are classes whose cardinal in one type is /t, but whose cardinal in the next higher

type is not ft
ilK

#104142. h:/*eNC.a!/A.D./*»eNC [#100-52]

#10415. h:/ieN2C. = .(aa). /i =N¥« [*100"22 . #71-41 .
(#104021)]

#104-2. h.i"aeW«
Dem.

h. #63-621 . Dh:iS€a.Ds .i'»ei'a:

[#37-61] Dh.i"aCf'a (1)

I- . (1) . #100-6 . #104-1 . 3 h . Prop

#104-201. h : £ eN c'a . D . *"/S e N'c'a . Nxc'a= NV/S

h . #100-31-321 . D h : Hp . 3 . Nc'a = Nc'£ (1)

h. #103-11. Dh:Hp.D./3c^a.
[#63-16] D. *'« = *'£.

[#30-37] D.Wa-W (2)

I- . (1) . (2) . (#104-01) . D h . N'c'a = Nxc'/8 (3)

h . (3) . #104-2 . D h . Prop
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#104'27. h :. /* e NC . 3 : ^ = N c'a . = . ft™ « NVa
#104-35. h . N2C C N*C . N 2C C N C

#104-43. f- : £'a = *'/8 . 3 . (37, 8) . 7 e NVa . 8 e NV/3 . 7 n S = A

#104-01. NVa = Nc'a n £<£<« Df

This defines the cardinal number of a in the next type above that ofNVa;
thus NVa consists of all classes similar to a and of the next type above that

of a.

#104011. NVa = Nc'art«'£2
'a Df

Similar definitions are to be assumed for NVa, etc.

*10402. N*C = D'Nxc Df

NJC, like N C, is typically ambiguous; but N'C(a) is typically definite.

#104021. N2C = D<N2c Df

Similar definitions are to be assumed for NSC, etc.

#10403. pW = sm"/z n t'fx Df

Here, if /x is a cardinal, /j,
[1) is the same cardinal in the next higher type.

For example, if /x is couples of individuals, /i (1
> is couples of classes of

individuals.

*104031. fj^ = sm'V n f '/* Df

Similar definitions are to be assumed for fi>
{3\ etc.

*1041. h : j8 e NVa . = , j3 e Nc'a . £ 6 t't'a . s . j3 e Nc'a . £ C t'a

[#63-5 . (#104-01)]

*104-101. r : /8 eNVa . = . £ sm a . £ C t'a [#100-31 . *104'1]

*104-102. h . NVa = Nc (t'a)'a = Nc {(£<a)a)

fa [*102'6 . (#104-01)]

#10411. r- : /8 eNVa . = . £ e Nc'a . /8 e £'£2 <a . = . /3 c Nc'a . /3 C F'a

[#63'5 . (#104-011)]

*104111. h : £ e NVa . = . sm a . £ C £
2
'a [*100"31 . #104-11]

#104112. h . NVa= Nc (tf*a)'a= Nc {(i
2
'a) }'a [*102'6 . (*1 04-011)]

*10412. h : j3 e NVa . 7 e NV/3 . D . 7 eNVa
Dew.

r-
. #104-1 . D h : Hp . D . £eNc'a . fie t't'a .yeNc'p .yet'f/3 .

[#100-32] 3 . 7 e Ne'a . /3 e t't'a . 7 e i'<'/3 .

[#63-16] D . 7 e Ne'a . $'£ = t't'a . 7 e t't'/S .

[#13-12] D. 7 eNc'a. 7 em'a.
[#104-11] D . 7 e NVa : I) h . Prop
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#104121. H : £ eNVa . y eNVa . D . y e NV/3

Bern.

f- . #104-102-112 . D h • Hp . D . e Nc {(«'«).}«« . y € Nc {(t*'a\}<a

.

[*102-41] D.yeNc{(^aV }^ (1)

h. #104-1. Dh:Hp.D.^e^«.
[#63-16] D.^ = «Va.

[(#65-11)] D . Nc {(i
2'«W = Nc {(*'£),} (2)

I- . (1) . (2) . #104-102 . D I- . Prop

#104*122. f-:ySe NVa . D . NV/9 = NVa [#10412*121]

#104123. f- : N c'/3 = NVa . 3 . NV/3= NVa [#104-122 . #103-26]

#10413. I- : /t e N*C . = . (ga) . yu. =NVa [*100'22 . #71*41 . (#104-02)]

#10414. h:§e
y
ct

(1>. = .(a7).7e )
a.Ssmy.Se^

(
tf = • (3y) • ?e ^ . Sstny.SO'y

[#37-1. #63-22. (#104-03)]

#104-141. h^NCa^.3. /*» 6 NC [#100-52]

When the hypothesis "g ! /*" is omitted, this proposition is still true, but

with a difference. E.g. let us put

fi = Nc («)'«'a.

Then ^= A . ^ (1! = A. Thus^ =f=
Nc (t'ayt'a. But we still have

^m = Nc (t'ayp'a.

Thus /it
(1) e NC, but fi

{1) is not the same cardinal as /u. in a higher type, i.e. there

are classes whose cardinal in one type is /*, but whose cardinal in the next higher

type is not p®.

#104-142. I- : p eNC . 3 ! p . D . M« e NC [#100-52]

#10415. r : ^ eN2C . = . (a«) . p=NVa [#100*22 . #71-41 . (#104-021)]

#104-2. f- . t"a e NVa

f- . #63-621 .Dhzatea.Dv.i'aset'ai

[#37-61] DKi"aC*'a (1)

I-
.
(1) . #1006 . #104-1 . D f- . Prop

#104-201. f-:/3eN c'a . D . i"& eNVa . NVa= NV/3

Ztem.

I- . #100-31-321 . D f- : Hp . 3 - Nc'a= Nc</3 (1)

h. #103-11. Dr:Hp.:>./9e«'«.

[#6316] D.«'a=*'/9.

[#30-37] D.Wa-W£ (2)

I- . (1) . (2) . (#104-01) . D I- . NVa = NV/3 (3)

f- . (3) . #104-2 . h . Prop
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*10421. Ka!W« [*104-2]

It follows from this proposition that ascending cardinals are never null.

The proof has to be made separately for each kind of ascending cardinal,

i.e. WG, N2C, etc.

#104211. h.alNVanCl'l [*104'2.*52'3]

#10423. I- . $ {(ay) .yea.@ = i'a)v t'y) e NVa
Bern.

V . *51"16 . "^h:yea.0.year\ (i'x u t'y) .

[#63-16] D.6'ui fi/€^ (1)

I- . (1) . *10-ll-23 . 3 h . $ {(%y) . y e a . /3 = i
lx u t'y] C t'a (2)

I- . (2) . *100-61 . *1041 . D h . Prop

*104-231. l-:NV« = NV/3. 3.N„c'a=N c</3

Dew.
h . *104-2 . D r- : HpO . t"/3 e NlC'a

.

[#104-101] D.t^sma.t'^Ci'fl.

[73"41.*63*21-64] D
.
08ma.t'0 = t'a .

[*103-11.*63-16] D./3eN/a.
[*103-14] D . N c'a = N c</9 : 3 f- . Prop

*104*232. r : N 1c ta= N'c'/S . = . N c'a = N c</3 . = . £ € N c'a

[*104-231-201 . *103-14]

*104-24. h : p = Nks'a . D . /* = N„c'i"o= N c</3 ((gy> . y e a . = i'x v t'y]

[*104-2-23 . *103'26]

104'25. KN lCCN C [*104'24\L3]

This proposition holds for each possible determination of the typical

ambiguities, i.e. for every a we have

WC(t'a)CS C(t'a).

We do not have WC (t'a) = K C (t'a),

because N c'«'o eN C (t'a) - N*C («'«)

*104-251. KA^eNMS [*104"25 . #103-23]

#104 252. I- . N'C e Cls ex2 excl [*104"2o . *103'24 . *84"26]

#104 26. I-
: fi=X c<« . D .

^w = N c't"« = N^c'o

J>etn.

r-.*104-14.*103-ll.D

r-s.Hp.D:8e/AW
. = .(37). ?sm a. ye t'a . Ssmy . SC t'y. (1)

[*73'32.#63-16] D . S sm a . S C t'a .

[#104-101] D . 8 € N'c'a (2)
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h.*104-101.D

hrSeNVo. D.8sma.SC*<«.
[*73*3.#63'103] . a sm a . a e t'a . 8 sm a . 8 C t'a „

[*10'24] 3.(g7).7sma.7e^a.Ssm7.SC^7 (3)

K (3). (1) . D f- :. Hp . D : SeN'c'a. D . 8<?^«
(4)

h . (2) . (4) . #104-24 .Dh. Prop

#104-261. h :^ = N'c'a . D . p C N c f«

1- . #1041 4-101 . D

h :. Hp . D : (37) . 7 e ^ . 8 gm 7 . 8 C £'7 . =5 . 8 sm a . 8 C i'a :

[*10-23] D : 7 e p . 8 sm 7 . 8 C ^7 . D7jS . 8 sm a . 8 C J'a

.

[#4'7] D7j8 . 8 sm a . § sm 7 . 8 C t'a . 8 C t'y

.

[*73*32.#63*13] Dy^.ysma.yet'z.

[#103-11] Dy , s
.7eN c'a (1)

I- . (1) . *10*23-35 . #104-101 . D
h:.Hp. D^e^.glN^.^^eNoc'a:
[#104-21] D : yep . D7

. 7eN c (« :. D h . Prop

#104*262. h : ^ e NC . //« = NHj'a . D . ^ = N c'a

Xtem.

r.*104'21.Dr:Hp.D.a V (1)
-

[*37-29.Transp] D . g ! /* (1)

I- . #103-26 . D h : Hp . 7 e/i . D . /i = N c<7 (2)

r . (1) . ( 2) . D h : Hp . D . (37) . ^ = N c<7 .

[*104-26.Hp3 . (37) . p =N c'7 . NVa = NV7

.

[#104-231] D . (37) . it, = N c*7 . N c'a =N c'7

.

[#13-172] D.^ = N c'a:Dr.Prop

#104-263. Hae^.D.^'ae,*"1 *

Dem.
h . #73-41 . *37'1 . D h : Hp . D . t

(i
ct e sm 4V CO

h. #63-64. Dh:Hp.D.t"ae<V (2)

r . (1) . (2) . (#104-03) . D f- . Prop

#104-264. r-:a!/*. = -a!/*w

h . #104263 . D I- : a I
f* . 3 . a !

^w
(1)

h . #37*29 . Transp . (#104-03) . D h : a I f*
w

- 3 - a I ^ (2)

h.(l).(2).Dh.Prop

,*104 265. h . /x
(1

» = sm/

V

[#102-85 . (#104*03)]

#104-27. h :. /* e NC . D : ^= N c<« . = . /*
w = N'c'a [*104-26262]

#104-28. r : /* e NC - t'A . D . /*« e N*C [*104'26 . #103*34]
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*104-29. I-:^NJC. = . (a/A) . p e N C . v = /*<»

h. #104*26. 3f-:
/
a =N c ta.i/ =

/
it

(1) .D.i/ =N1c'a:

[#10-11-28] D h : (ga) . p = N c'a . v =^ . 3 . (g«) . v = NVa

:

[*103"2.*10413] D h : ^ e N C . 1/ = ^w . D . v e N*C (1)

h.*l 04-26. #103-2. D

h :y = NVfl . /t= N c'a . D . v = pP . ^eN C (2)

h . (2) . *10"ll-28-35 . D

h:.i/ = NVa:(3^).^ = N c
ta:D.(aAt).^eN C.^ =^ (3)

K (3). #100-2. #14-204.3

h:v = N 1c'ft.D.(a/*).^6N C.i/«/t« (4)

h. (4). #10-11*23. #104-13. D
h^eN'C.D.^./ieNoC.^/i'1'

(5)

h . (1) . (5) . D h . Prop

#104-3. h.i"l"aeNV«

Dem.
I- . #1042 . D I- . t"a e NVa . i"t"a e NksVa

.

[#104-12] Dh.i"i"fleNVa

#104-31. f- . a ! N2c'a [#104-3]

#104-311. f- . NVa = N c'i"i"a = NJcVa [#104-3-2 . #103'26]

#104-32. hifi = N c'a . D . ^'2
> = N c't"i"a = N^Va = NVa = {^w} w

I- . #104-26 . D f- : Hp . 3 . {,*&>) w = N c't"i"a (1)

[#104-311] =NVa (2)

f- . #103-11 . (#104-031) . D
h :. Hp . D : 8 e /t» . = . (37) . 7 sm a . 7 e t'a . 8 sm 7 . 8 e^2 <

7 .

[#102-84.*63-16] = . S sm a . § e t'f'a .

[#10411] E.SeNVa (3)

f- . (1) . (2) . (3) . #104-24 .31-. Prop

#104-33. h :. p e NC . D : p = N c'a . = .^ = NVa
Bern.

V . #104*27 . h :. Hp . D : ^ = N c'a . = . p® = NVa

.

[*104-24] E.^!=N c'i"a.

[*104-27-141.*103-13] = .
{^w}w =NWa.

[#104-32-24] = .
^w = N2c'a :. D I- . Prop

#104*34. l-:^eN2C.= .(ai;). y eN 1C.^ = ^. = .(a/it).^ e N C.^ =
/
it(

2
»

f- . #104-32 . D
f- :Br =NV«.^ = N c^.D.«r=:y2

> .^eNoC (1)
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f- . (1) . *100-2 . *10-ll-28-35 . D
l-:(aa). Br = N2c ta.D.(a/li). /lt6 N C.-=r =^2)

(2)

K#104-32. Df-i^NoC'a.w^^ .D.ot = N 2c<«.

[*104-15.*103'2] D h : p e N C . « = /t<
2
> . 3 . w e N*C (3)

l-.(2).(3). 3hiireN»0. = .(^)^eN,0.»^». (4)

[#10432] s . (g/i) . /t e N C . 0- = {^)J
p> .

[#13-195] = . (g^, i/) l/4 e N C . v = p® . v = i/W .

[#104-29] = .-(gv) . 1/ e NJC . « = *><»
(5)

h.(4).(5).Dh.Prop

#10435. l-.N'OCN^C.N'CCNoC [*10431M3-15]

#104-36. h : 7 eN2c<« . 7 e NV£ . Z> . £ eNVa . N Jc'a = N c<#

item.

I- . #104111 . 3 h : Hp . D . 7 eNc'a . yet'fa . 7 e Nc</3 . yet't'P .

[*100-34.#63-16] D . Nc'a = Nc</3 . t'P'a=W£ .

[#63-35-15] D . Nc'a = Nc</3 . t*'a= t'p .

[(#104-01 .#103-01)] D.NVa = N*c'0 (1)

h.(l).*103-12.Dh.Prop

#104-37. f- : N2c'a = N>c</9 . = . NVa = N c'/9

f- . #104-21 .Dh: NVa = NV/3 . D . g ! NVa n NV/8 .

[#104-36] D . N'c'a =N c</3 (1)

(-. (1). #104-123. DK Prop

, The following propositions are concerned with the proof that, given any

two cardinals /*, and v, of the same type, we can find two mutually exclusive

classes one of which has p, terms while the other has v terms. The proof

requires that we should raise the types of bo£h p and v one degree above

that in. which they were originally given, i.e. that we should turn /t and v

into yti
(1) and iW. Thus, for example, suppose the total number of individuals

in the universe were finite (a supposition which is consistent with our primi-

tive propositions), and suppose /t were this number. Then unless v = 0, a

class of v individuals will be an existent sub-class of the only class which

consists of ju, individuals, and therefore we shall have

a e /£ . £ e p . Da> . 3 ! a 1 £.

But if we consider classes of fi classes and v classes, we shall always be able

to find a 7 and a S such that

7£/t<1>.Sei/<1>.7nS = A.

The existence of such a 7 and S is important in connection with the

arithmetical operations, and is therefore proved here.
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#1044. Vi.xea.x^y .x^z .y^zi (w) . wt
= ou (a = t'w u i'u) : D .

«c"(a ~ i'x) u 1%'z e N*c'a n C1'2

h. #100-61. Dh:Hp.D.^/'(a-t^)sm(a-t^) (1)

h . #7343 . D f- : Hp . D . ity'* sm i<# (2)

h . #51-232 . Transp . D f- : Hp . D . x~eyfz (3)

h. #51-232. Dh:Hp.7ea?t"(a-t'fl?).D.a?e 7 (4)

h
. (3) . (4) . D f- : Hp . D . y/*~e#t"(a- t'ar)

.

[#51-211] D,^(a-tfa;)nty2 = A (5)

h . #51-21-211

.

D h . (a - i'a?) n I'ar = A (6)

h . (1) . (2) . (5) . (6) . #73-71 . #51-221 . D
f- : Hp . D . xt"(a - l'x) v i'y/« sm a (7)

h. #63-101-16. #51-23216. D
h : Hp .

"5 .t
ix = t

i
y .xea.y e yfz . yfz e #/'(« — i

lx) u t'yfz .

[#83-53-2] D . t
2'x = *'a . <

2'y = </{«*"(« - tV) w t'y/s} . **# = i
3t
y

.

[#13-17] D . *'a = ^'{^"(a - t'x) « iV*}
[#63-105] 3 . a?/'(a - t'a?) w iV* c «'«

(8)

h . #54-26 . D h : Hp . D . at"(a - l'x) u i%'z C 2 (9)

h . (7) . (8) . (9) . #104-101 . D h . Prop

#104-41. h :.i <a = i
t/3:(gfl7, y,z).xea.x^y . x^z .y^z:3 .

(37, 8) . 7 c N'c'a . 8 e NV/3 . 7 n 8 = A
Bern,

h . #104-4-2 . #52-3 . D
h : Hp . Hp #104-4 . D . (g^ y, z) . xt"(a - t'x) u i%*z e N'c'a n C1'2 .

i"/3eNJc'/3nCl'l.

[#13-22] D . (gar, y, 2, 7, S) . 7 = a?,"(«- t'a;) u t'y/s . 8 = i"/3 .

7 e NVa n Cl<2 . 8 e N'c'/S n CI4 -

[#11-55] 3.(37,a).7 6N 1c
<anCl <2.SeN 1c t

y
SnCL4 (1)

h . (1) . #101-35 . D h . Prop

This proposition proves the desired conclusions provided g ! a, and £ 'a

consists of at least three terms. The following propositions deal with the

cases in which this hypothesis is not verified.

#104-411. h'.t'a = t'/3.ae0.v = Aa .8=i"/3.3.yeWc (a.8eN1c<i3.vnh =A
Deru.

h . #73-47 . D h : Hp . D . 7 sm a (1)

#22-43 . (#65-01)

.

Df-:Hp.0. 7 C<'a (2)

K(l). (2). #104-101. DhzHp.D^eN^a (3)

V . (3) . #104-2 . #24-23 . D h . Prop

#104-412. h:t'a=t'/3.a=i'x.y = L
fAx . S = i"/3 . ^ .

7 eNV« . 8 e N 1^ . 7 n S = A

h. #73-43. Dh:Hp.D.7sma (1)

h . *63-61-l03 . D h : Hp . D . a e t
2tx (2)
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h . *22'43 . (*65-01) . 3 h : Hp . f ey . D* . £C t'x .

[*63-5] D$. £ei«a;.

[(2).*6313] D^.fei'a (3)

h . (1) . (3) . *104'101 . D h : Hp . D . 7 eNVa (4)

K*101'23. Dh:Hp.D.7^S = A (5)

K(4).(5).*104-2.DI-.Prop

*104'413. 1- : t 'a = t'& . a = t'x \j i
(

y . a? =J= y . 7 = t
fA o t '((.'# u I'y) . 8 = t"£ , D .

7eN 1c fa.SeN 1c
f/3.7na = A

X>em.

h . *54'26 . h : Hp . D . t'a u t'y e 2 . (l)

[*101-35] D.A+ i'«ui'y.

[*54-26] Z) . t'A u t'(i'a? u t'y) e 2 .

[*101-3] D.i'Aui'(t'fl?ui'y)eNc'(t'*^t'y) (2)

h.*5116. Dh:Hp.D.«e7.
063'5] D . 7 C t'a (3)

J- . (2) . (3) . *104-1 . D h : Hp . D . 7 e N'c'a (4)

h.*52-21'3. Dh.A~ei"/3 (5)

I- . (1) . #62-3 . *54-25 . D h : Hp . D . t'ar u t'y~e i"/3 (6)

K(5).(6). 3h:Hp.D. 7 nS = A (7)

h . (4) . (7) . *104-2 . D f- . Prop

*10442. h : t'a= t'fi . a e u 1 u 2 . Z) . (37, 8). ye NJc'a . S £ NV/3 . 7 n S = A

O104-411-412-413 . *521 . *54101]

*10443. hit'a^t'p.l. (37, 8). ye NVa . Se NV/3 . 7 n S= A
Xtem.

I- . *54-56 . D
f- : Hp. a~eO u 1 u 2 . D . (Qx,y

i
z).x,y

> zea.x^ry.x=^z*y=^z*

0104-41] 3.(ft7,S).7eN 1c'a.SeN1c'/3.7nS=A (1)

K(l).*104-42.Dh.Prop

The above proposition gives the desired result. The following propositions

re-state this result in other forms.

*104'44. h:fi,ve N JC . tV = t'v . D . (37, 8) .7 ep.Sev .7 n £ = A

O104-13-43]

*10445. h : ^ i/eNpC. t'p = t'v.3 . (37, S^e^.Se 1^.7*8 = A
[*104-29'44]

*10446. h : ^, 1/ cNC- t'A . <V =^ - D . (37, S) . ye^ .8ev^ .yn8=A
0104-28-44]

K&W II



*105. DESCENDING CARDINALS

Summary o/*105.

In this number, we consider cardinals generated by a relation of similarity

which goes from a higher to a lower type, i.e. given any class of classes k, we

consider Nc'/c in the type of members of k (which we shall call N^'/c) or in

some lower type. Thus e.g. we shall have

tc—i"a. ^.aeNjc'/c,

where AN1c'«" means "classes similar to tc but of the next lower type."

Similarly

K = t"i"a. D .cteNgC**,

and so on. We shall have generally

/3eN1c
ta. = a«:N1c

t
/3,

/3 e N 2c'a . = a e N 2
c'/3,

and so on. The chief difference between ascending and descending cardinals

is that A is one of the latter, but not one of the former. Otherwise the

propositions of the present number are mostly analogous to corresponding

propositions of *104.

On the analogy of the definitions in *104, we put

N^D'N^ Df,

fi {1)
= sm"/i r\ txfi Df,

with similar definitions for N2C aud /a^

.

No proposition of the present number is ever referred to in the sequel, and

the reader who is not interested in the subject may therefore omit it without

detriment to what follows. The principal propositions proved are the following:

*105-25. f-.N^NiC-i'A
*105-251. r.N C =N2C-t'A

*105-26. f- . Nfl't'a = A
Thus NjC or N2C, in any given type, only differs from N C in that type

by the addition of A.

*105-3. h : fi = N c'a . D .^ = NjC<a

*105-322. h :. 3 ! NlC'a . D : Njc'o = NlC </3 . = . N c'a = N c<£

*105-34. H :. n e NC . a !^ . D : ^ (1)
= NlC'a . = ./* = N c'a

*105'35. h :. /i <?NC . v e N C . 3 : p = v^ . = . fju {Vi
= v

*105-38. H.{/tw Id)-/* (2)
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#105-01. N,c'« = Nc'a n t% fa Df

We might write

N1c
,B=Nc'«ni 'a Df,

which would be equivalent to the above. But we choose the above form for

the sake of uniformity. If s is any suffix, we put, provided ts'a has been defined

and if i is any index for which t
ua has been defined, we put

N*c'« = Nc'an£'f'a Df.

Thus for the sake of uniformity it is better, in the above definition #105-01

to write "£%'«" rather than %'«."

#105-011. N
s
c'a = Ne'er n«Va Df

#105-02. NjC = D'NlC Df

*105-021. N2C = D'N2c Df

#10503. fi w = sm"/* * ftp Df

#105031. pQ =sm'V n t^p Df

#105-1. h . N.c'a = Nc'a n f/a [#63-383 . (#105-01)]

#105101. I- . N2c'a = Nc'a n tfa [#6341 . (#105011)]

#10511. f-:/3eN
1c'a. = ./3eNc'«./9eC«- = -^sma./3£Ca- = -/3smet./3Cf

1'a

[#105-1. #100-31. #63-51]

#105-111. h^eNjc'o.s./SeNc'a.^e^'a.s./Ssmft.^e^'a.s.^sma.^C^'a

[#105-101 .#100-31 .#63*52]

#105-12. f- : /3 eNiC'et . = . /3 eNc'o . a C «<£ • = • /3 sm a . a C £'/3 . = . oeN»c'j3

[#105-11. #63-51. #104-1]

#105-121.. h : /3 e

N

2c'a . = . e Nc'a. aC *
2'/3 . == . /3sm a . a C £

2
</3 . = . a eNV/9

[#105-111 . #63-52 . #104-11]

#105-13. I- . NlC'a = Nc (£/<*)'«= Nc {(*/«)«}'« [#102*6 . (*105'01)]

#105-131. KN2c'a= Nc(*2'a)'a = Nc{(<2'a)a }'a [#102-6 . (#105-011)]

#10514. h : a e C/3 . D . Nac</3 = Nc (a)'/3 - Nc (ap)'/3

X>em.

f- . #63-22 . D h : Hp . D . Vd = tfP .

[#1051] 3 . N,c'/3 = Nc</3 n *'a (1)

f- . (1) . #102-6 . D f- . Prop

#105-141. h : a e «/£ . D . N2c'/9 = Nc (a)'/3 = Nc («p)'£ [Proof as in #105-14]

*105 142. h : /3 C «'a . D . NlC'/3 = Nc (a)'/3 = Nc (a^)'yS [*105'14 . *63'51]

#105143. l-:^C^a.D.N 2c'^ = Nc(a)'/9==Nc(«^ [#105-141 .#63-52]

#105-15. h : fi e NXC . = . (go) . /* =Nxc'a [*100'22 . #71-41 . (#105-02)]

#105151. h :/i eN 2C. = .(aa).^ =N 2c'a

4—2
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#105-16. h : 8 e^ . ~ . (37) . yep. 8 sm y .8 e t^p .

— • ([37) .7ezit.3sm7.Se t 'y .

= . (37) .yep.Samy.yCt'S [*37'1 . *63'51*54]

#105161. h : 8e /j,^ . == . (37) .y e fi . 8smy . 8 e t^fj,

.

— • (37) -j e /j,.8smy .8e t^y

.

= . (37) . 7 e fi . 8 sm 7 .
7 C t

Hh [*37'1 . *63'52-55]

In what follows, propositions concerning N 2c or N2C have proofs exactly

analogous to those of the corresponding propositions concerning NjC or NjC.

1052. h.N c
ta = N

1
c tt"a

Bern.

f- . *10512 . *104-2 . D h . a e N^Va .

[103-26] D h . N c'a = NlC't"a

105201. h . N c'a = N2c't"t"a

10521. h . N C C N aC [*105'2-15]

105211. h.N CCN2C

10522. h: 7 eN J
c<S.:>.N

J
c<S = N c'7 [*103"26J

105 221. h : 7 eN 2c'S . D . N 2c'S = N c<7

10523. h : 3 ! Nxc'$ . D . NlC'S e N C [*105'22]

105231. h : a ! N^'S . D . N2c'S e N C

10524. h.NiC-t'ACNoC [*105-23]

105241. f-.N2C-t'ACN C

105 25. I- . N C = NjC - t<A [105-21-24 . *103*23]

105 251. h . N C = N2C - t'A

105252. h.NlC </3 = N2c't"/3

Dew*.

f-. 105*111 . 3 h : a e N2cV/3 . = . a sm i"/9 . a e ^V/3

.

[73-41 .*63-64'54] = . a sm £ . a e C£

.

[105-11] ee . fteNjc'jSOK Prop

10526. h.N
1c

t^a = A
Dem.

r- - *105-142 . D h . N^'a = Nc («)<£<« (1)
K(l). 102-73. Dh. Prop

105-261. h.N 2cW« = A [105-26-252]

105-27. h.A.N.C [105-26]

105271. l-.A6N
aC

10528. I-
. N,C - N C u t'A [105-25-27]

105-281. I- . N2C = N,C = N C u t'A

105-29. I-
.
NC C N

XC . NC C N2C [*105'281 . 10334]
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*1053.

Dem.

\-ip = N c'a . D . ^ (1)
= Njc'a

1- . #1034 . (#10503) .Dh:/a = N„c'a . D . p h) = Nc'a n^ (1)

h. #103*12. Dh-.^^Noc'a.D.ae/i-.

[#63105] 0. a a ftp.

[#63-54] D . *V« = tfp (2)

h . (1) . (2)

.

D r : /* « N c'a . D . /i
{1)
= Nc<a a *

<a .

[#105-1] D . At (1)
= Njc'a Oh. Prop

#105-301. r

#105-31. r

#105-311. h

#105312. h

#105313. r

#105314. h

#105315. h

[#105-31 5 . #103-2]

p = N(,c
f
a . D . /x

(a
= N2c

fa

yu € N C . D . p ti)
e N 2C

^eN C. I>./i(2)
eN2C

7 e Nxc'a . D . a < N 3c<7 . N'c'y = N c<a [#105*12 . #103'26]

7 e N2c
(a . D . a e N 2c*y . NV7 = Noc'a

N^'a =N c<7 . D . N c<a = N'c'7 [*105'312 . #103*12]

N2c<a = NocV . D . Noc-a = NV7

#105-316. h

Dem.

V . #105-312 . D h : 7 6 Nfi'a . N^'a = NlC^ . D . N1^= N c'a . N1^ =N o^

.

[#13-171]

K (1) . #10-11-23-35 . D h . Prop

D.N,»c'o =N c'j8 (1)

#105-317. h : g ! N2c<« . N2c'a= N2c</3 . D . N c'a= N C/8

#105-32. h : N„c'a = N c (£ . D . N^'a = NlC'0

Dem.
r . #103-41 .DhHp.D.Nc (*/a)'a = Nc (WJ3
r . #103-14 . D I- : Hp . D . £ e £'a

.

[#63*16-36] D.*Va = *V£

h . (1) . (2) . D h : Hp . D . Nc (^'a)'o = Nc (*/0)'0

.

[#105*13] D . Njc'a = NiC/3 : D r . Prop

(1)

(2)

#105321. h

#105 322. r-

#105 323. H

#105324. h

#105-325. h

N c'a = N c<£ . D . N^'a = N2c</3

. g ! NlC'a . D : NlC<a = N^/3 . = • N c'a = N c(
/S [#105*316*32]

. g ! N2c'« . D : N2c<a=N^ . = . N c<a = N c'/S

3 ! p (1)
. D . a ! p [#37*29 . (#105*03)]

a ! A*te) 3 . a ! a*
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#105-326. h /ieNC. /itt) =N c'y . D . fi = NV7

K #10326. Dh:Hp.a €/a.D.^ =N cfa. (1)

[#105-3] D.^-Nxc'a.
[Hp] D.NlC'a =N c'7.

[#105-314] D . N c'a = NVy -

[(1)] D./i =N^7 (2)

(- . (2) . *10'll'23-35 .Dh:Hp-a!/i.D.^ = NVy (3)

J- . (3) . #105-324 . #1031 3 . D h . Prop

#105-327. h : ^ e NC . /i
{2)
= N c<7 . 3 . fi = N 2c'7

#105 33. b : fi e NC . g ! ^ {1)
. jt

ft)
=Nxc

f
a . D . ^ =N c

fa

h . *103'26 . D h : 7 e ^oi .^ « N,c'a . D . N^'a = N„c f

7 .

[#105-314] D . N c'a = NVy (1)

h.(l).*105-326.D

h : 7 e /i (1) . ^w - N^'a . fi e NC . D . fi = N c fa (2)

h . (2) . #10'1 1-23-35 . D h . Prop

#105331. h : ^ e NC . g ! /»w . /i
(2,
= N2c'a . D . ^ = N c'a

#10534. h^eNC.a! /i (I| .D.> (1)
=N1c

(a. = ./i = N cfa [#105-33-3]

#105-341. h : . /* e NC . g ! ^w . D :^ =N2c'a . = . fi = N c'a

*105342. h . ^ e NC . D . fi (1) eN XC
Dem.

K*103-34. Dh:Hp. a ! M .D.^eN C.
[#105-31] D.^eNaC (1)

h . #105-324 . D h : Hp .~g ! /i . D .^g ! ^^ .

[#105-27] D . yu
(1)

e NxC (2)

K(l).(2). Dh.Prop

#105-343. h : fi eNC . D . fi {i)
eN2C

#105-344. h : /i = NV7 . D . pw =N c'7

r- . #104-24 . D r- : Hp . D . p =N c't"7 .

[*105'3] D . ^ (1)
= N 2

c ft"7 .

[#105-2] D . M(1)
= N c f

7 : D h . Prop

#105-345. h: M = NV7.:>.yu
(2 )
= N c'7

#10535.

Dem.

t-:.^eNC.yeN C.D:^ = y(1)
. = ./i

(1)
= p

h. #105-326. #104-26. D
H : /* e NC . v = NoC'7 . /iw - 1/ . D . p =N1^7 . v« = N1^ .

[#13-172] D.jti^w (i)

h . #104-26 . Fact . D
I- : fJi e NC . y = N c*7 . fi = »w . D . p = NV7 . y = N c'7 .
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[105-344] 3.^(i> = N cV.v = N c'7.

[13-172] 3. /*«•=* (2)

h.(l).(2).D(-:.
/, e NC. V = N c^.D: /i = i,^.= . M(1)=z; (3)

h . (3) . #1032 . D h . Prop

105-351. h:./*eNC.veN
oC.D:/a = v ». = .AiW -i'

105-352. h:.^i;eNC.a!i>.D:^a pt"
. = . /tw = * [*105'35 . #103*34]

#105353. h :. w, » e NC . g ! v . D : /t = »« . = . p® = v

105-354. h:yeNG. a !y.D. {*«} (1)
= v [#105-352]

105-355. (- : v eNC . g ! z> . D . {v®} (a)
= z>

#105356. h : ^ e NC . g ! fi ti)
. D . {fi a) }

« = ^ [*105-352]

105-357. H : fi eNC . a ! /*w . D . {^Jw =p
#105 36. h : € N^'a . 7 e

N

lC'£ . D . 7 e N^'a

Bern.

h . *105'11 . D h : Hp . D . £sm a . e^a . 7SI11 . ye ft'jS .

[*73-32.#63'38] D . 7 sm a . 7 e ft'a .

[105111] D. 7 eN^aOh.Prop
105-361. h : e Njc'o . 7 e N2c'a . D . 7 e Njc'jg

Dem.
h . 10511-111 . D h : Hp . D . £ sm a . £ e £„•"« . 7 sm a . 7 e ft'a .

- [#73*31-32] D.yam^.jSeVa-ye^a (1)

h. #63-54. Dh:^eCa.^.W = ^/a (2)

h.(l).(2). Dh:Hp.D.7sm/8-7eC/3-
[#105-11] D . 7 e Nxc'/S : D I- . Prop

#105-362. h : £ e N^'a . D . N^'0 =N2Ca [#105-36'361]

105-37. h : Nac^ *- Nxc'a 3 N^'0 =N2c-« [#105362 . #103-12]

#105-371. h:a!^w .D.a!^ U)

Dem.
h . #63-381 . (#63-05) . D

h :7sma.aeyu.7e t^fx . D . 7 sm a . a e fi . t'7= ftV •

[*73-41.#63-64] D . i"y sm a . a e fi . C*"? = $> •

[#63-57] D . t"7 sm a . a e p . ^"7 = ft*/*

.

[63-103] D . t"7 sm a . a e /i. . t"-7 e ft*>

.

[#105-16] 5 . i«y e fi {1}
.

[#10-24] D.a'./i (1,
C1)

h . (1) . #10-11-23 . D
h : (ga) .Ysma.ae/i.ye tgfi . D . g; ! /*&> (2)

h
.
(2) . #105-161 . D h : y e/iW . D . 3 !/i w (3)

h. (3). 10-11 -23. DH. Prop
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#105372. h : fi {l]
= A . D . Hz) = A [#105-371 . Transp]

#105 38. h.{^
(1) } (1)

=/i
(2)

Dem.

h . #105-16 . D h : 7 e
fr* &( } (l)

. = . (g£) . £ e ^ (1)
. 7 sm £ . 7 e t 'fi

[#10516] =.(aa^).«e^./3sma.j8eCa.7sm/3.7e^. (1)

[*73-32.*63'38] D . (ga) .«e/i .ysma .76^ (2)

h . #7341 . #63-64-53-57 . D

h:aefi.7sm«.7e £/a . D . a e /i . ^'7 sm a . 7 sm i"y . 7 e C^"7 . l'
tf
y eCa

[(1)] 3-7* {/*»}«.» (3)

h.(2).(3). Dh :7« Wild) = (3«) -« € ^ -7sma .yetfa.

[#10516 1] = .ye [i t2) Oh. Prop

#105-4. h : 7 eN2c'a . D . £"7 e N^'a

Dew.

h . #105-111 . #73*41 . #63-64 . D h : Hp . D . t"7 sm a . 7 e tf/a . 7 e Ct"7 •

[#63'41-383'16-55] D . i"y sm a . £/a = V"?

.

[#63-54] 3 . t"7 sm a . i"y € t 'a

.

[#10511] D . i"y eIVa : D h . Prop

#105-41. h : g ! N2c'a . D . g ! N^'a [#105-4]

#105-42. h:N1c'a = A.:>.N2c'a = A [*105"41]

#105-43. (- : /i
(
i,
= Nxc'o . D . pw =N2c'a

h . #105-11

.

Dh:Hp.£e^ 0) .:>.£e Nc'a n tQ'a .

[#63-54.#100-31-321] D . Nc'/3 = Nc'a . C£ = «/a .

[#105-1-101] D . N^'jS =N2c'a (1)

h . #105-3 . #103-26 . D h : Hp . fie^ . D . NlC </3 = {/* (1) } (1>

[#105-38] =fi {2) (2)

K(l).(2). Dh:Hp. a ! At(I) .D. Mw =N9c'a (3)

h . #105-372-42 . D h : Hp. fi {l)
= A . D .

p

m = A .N2c'a = A (4)

h.(3).(4).Dh.Prop

#105-44. h.N2c^a = A
Dem.

h . #105-26 . 3 h . NxcWa =A

.

[#105-42] D (- . NscWa = A . D h . Prop



*106. CARDINALS OF RELATIONAL TYPES

Summary o/*106.

In this number we have to consider the cardinals whose members are

classes of relations which have a given relation of type to some given class.

For example, we have ja:"asma, and |#"a has a given relation of type to

a when x is given. Thus we want a notation for

Nc'a n f I x"a

and all the associated ideas. In this number, we shall deal only with relations

in which the referent and relatum have a relation, as to type, which can be

expressed by the notations of *63, i.e. roughly speaking, when, for suitable

values of a, m, n, our relations are contained in

t
m'a | t

n'a or tm {a f tn'a or t
m
'a f tn'a or tm'a | t

n
'u.

Thus if t^a has been defined, we shall put

NM„c
fa = Nc'a « t%v'a Df,

NM„C = D'NMl,c Df,

^ v)
= sm"£ rx t%„%'g Df,

with analogous definitions for t^'a, t^'a and Hv'ou

Much the most important case is that of t^a. For this case we have

*1061. h : £ e NooCa . = . £ e Nc'a . & e t'tm'a . = . £ sm a . £ e *V(£ 'a f fc'a) .

= . ^ sm a . ^ C £'(« f a)

Thus NooC
fa will be the number of a class of relations whose fields are of

the same type as a, provided this class of relations is similar to a. E.g. the

number of terms such as x I x, where x e a, will be NooC'a.

We have

*106'21. h . a ! NooCa . N^c'a e N C

*10622. b'.Xe No'c'a . = . Cnv"\ e JN c
fa

*10623. h:ySe N ]c'a . D . N"c'a = N„,c'£

*10632. h : £ <a = t 'P . D . (3% 8) . 7 e N^'a . 8 e N«,p')3 . 7 n S = A

*106 4-41411. H : /i =N c'a . D . /»,„,, = N„,c'a . /*<"> = N"c'a . pw = Nuc'o

*JL06 53. h . Nc (a)V« = A
whence it follows that

*106-54. I- . NflC't/a~ e NMC
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T

The propositions of this number, except #106'21, are never referred to

again (except in *154-2o*251'2G2 )
which are themselves never used again), but

they have a somewhat greater importance than the propositions of #105, owing

to the fact that the arithmetical operations are denned by means of classes of

relations, i.e. the sum of two cardinals (for instance) is defined as the cardinal

number of a certain class of relations (cf. #110).

#106-01. Nooc'a * Nc'a n t'tw'a Df

#106011. N 11^ = Nc'a nWa Df

#106 012. N01c'a = Ncfan{%/a Dfetc.

#106 02. NVc'a = Nc'a n t%ua Df etc.

#106021. ^c'a = Nc'a n t<H6<a Dfetc.

#10603. No^D'NooC Dfetc.

#10604. itwi
=Bm"pt\tH„>% tp Df

#106-041. m (11) = sm'V rt tWtSp Df etc.

#1061. h : $ e$wc'a . = . /3 e Ne'a . j3 e t't^a .

= ./3%ma./3e t't'(t 'a t U'a) .

= . /3 sm a./3C t'(a \ a)

[#100-1 . (#106-01 . #64-01) . #64-11]

#106-101. h : /8 e Nnc'a . = . /3 e Nc'a . /3 e ^"'a .

= . sm a . j3 C t'(t'a f i'a)

Similar propositions hold for any other double index mn for which t
mnla

has been defined.

*106'11. h:/3eN01c'a . = . /3 e Nc'a . e t'tm 'a .

= ,/3smot.pe t't'{l 'a | */a) .

= . £ sm a . & C tf'fo'a f t^a)

Similar propositions hold for any other double suffix mn for which tmnOL

has been defined.

#106-12. h : & eN Va . = . € Nc'a . e tf'tf'a .

= ./3sma.^6 W(S 'a | «'a) .

= .£sma.£0'(Ca?*'«)
#106-121. r : /3 eiN cfa . = . $ e Nc'a . $ e £<V« .

= . /3 sm a . £ e ^'(£'a tCa)

= . /3 sm a . £ C t'(t
(a f C«)

Similar propositions hold for any other index and suffix for which tm
nia or

Hmla has been defined.

#10613. h /i6NMC. = .(aa).^ =N00c
f« [#10022 .#71-41]

Similar propositions hold for N !1C'a etc.
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*10614. h : j8 e fim . = . (g«) .a^.^smo.jSeW&V | #/*) .

= . (ga) .ae^./3sma./Se i%„'a

.

= . (go) . a e
a* £ sm a £ C ^(a t «) 064*33-11]

#106141. t"
: £ e fio

1
. = . (ga) . a e m £ sm a . /3 e t't'&'p | Va*) •

= . (ga) .ae/i./3sma.^e £%lfa

.

= . (ga) .ae/A.ftsma.ftC t
l(a f tf'a)

Similar propositions hold for %> A*
11

, pn etc

#106-2. I- : x e tQ'a . D . j #"« e Nooc'et . I x"a e N c< j #"a

Dem.

h . #5515 . D h : R e
J,
*"o . 3 . D'iZ C a . (L'R = t<# :

[#63-105] D I- :. « e fe'a . D : # e j #"a . 3* D'.R C t
e
oi . d'# C £ 'a

.

[#35-83] Djj.BGV«tC«'
[#641613] D* . ii e £'(a t a)

:

[#22-1] D : | #"a C t'(a | a)

h . (1) . #73611 . #1061 . #10312OK Prop

#106-201. hiflet'a.O.l £"« « No'c'a

#106-202. h : £ e £
2
<a . D .

J, /3"a e N Va

#106203. H.,|,a"aeNo1c'a

#106-204. h • 4 (t"a)"a eN Va
#106'21. h . a ! No„c fa . Nooc'a eN C

#106-211. KA~eN00C.N00CCN C.N00CeClsex2 excl [#106-21 . #103-24]

#106-212. h.A^eNo^.N^CCNoC.N^CeClsex'excl [*106"203]

#106-213. h.A~€N 3C.N 2CCN C.Nn
2GeClsex2 excl [#106'204]

#106-22. I- : X e No^'a . = . Cnv"X e^c'a

Dem.

H.#73-4. D h :Xsma. = .Cnv"Xsma

(1)

[#106*201]

[#106-202]

[#106-2 . #63-18]

(1)

ReX.^.Rdt^a^t'at

Re\.OB .RGt'att 'a:

£eCnv"X. Os . Sd Vol \ t 'a :

Cnv"XC*'(t'otC«)

h . #64-16 . D h :. X C *'(* 'a f £'a) .
=

[#35-84] =
[#37-63] =

[#64-16] = : Cnv"X C t'(t'a | C«) (2)

h . (1) . (2) . #106-12 . D I- . Prop

The proof requires, in addition to #10612, its analogue for ^c'o. Such

analogues will be assumed as required.

#106-221. h : X eN 2c'a . == . Cnv"X e 2N c'a

#106-222. h.A~ 6
1N C. 1N CCN C. 1N„CeClsex2 excl [#10622-212]
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#106223. h . A~ e
2N C .

2N C C N C .
2N C e Cls ex2 excl

Other propositions of the same kind as the above may be proved by

observing that, if m and n are indices for which t
mta and t

nta have been

defined, we have

yCtn'a./3e Nme'a . D . I fi"y e N^c'a,

of which the proof is direct and simple. Hence, since we always have

g ! Nmc'a, we also always have

g ! Nmw
c'a,

whence NmnC C N G . NWHC e Cls ex2 excl

.

We have in like manner

a ! N «c'a . a !
mN c'a.

But we do not always have

a ! N^c'a, or g ! NB*Va or g ! ™Nnc'a.

#10623. b:/3e N^'o . 3 . N"c'a = N„c'j9

Bern.

b . *64'33 . *1041 . #63-5 . D h : Hp . D . tf»'a =CS
h . (1) .

(#10601-011) . #100321 . D b . Prop

#106-231. r- : £ e N,c'a . D . N„c'a =NMc'£ [Proof as in #106-23]

#106-24. b : NVa= N„c</3 . D . N»c'a = N„oC</3 [*106'23]

#106-241. h : NlC'a = N c f
/8 . D . Nuc'a =N^

The analogues of the above propositions for other indices or suffixes are

similarly proved.

#106*25. h.N"c fa = NooC
ft"a [*1 06-23. *104'2]

#106251. b . Nooc'a = N„c't"a

#106-31. b : w, y e t*'0L . tQ'a = t '@ . % 4= y . D .

I x"a e NooC^a .
J,
y"£ e NMc^ .

J, #"a n j <r"£ = A
[#106-2 . #55-233]

#106-311. b :. x et 'a . t 'a = t '/3 : a = A . v . /3 = A : D .

4 #"a e NooC'a . | #"£ e Nwc'0 .
J,
#"a n j «"£ = A

[#106-2. #55-232. Transp]

#106-312. h : ta'a = *<# . a = £ = t'x . D .

i'(t'<r f t^eNooC'a. i'(A f ityeNv&'fi.l'il'x f i
f«)"tf(A | t'«0=A

Dem.
b . #73-43 . D h . t'(i

r# t t'x) sm I'a . t'(A f t'a;) sm t'a

.

[#13-12] Dh:Hp.D.t f(t^f I'^smo. l'(Af t^sm^ (1)

b .#6416 . D b : Hp . D . t'x | t'«C« A | t'xet^a (2)

h . (1) . (2) . #106-1 . #51-161 . #24-54 . #55-202 . D b . Prop
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*106 32. h :t
<a = t 'l3 . D .

(a% g) . y e N^c*a . h eN00c'/3 . 7 A $= A
Dem.

I- . *106-31 . D I- :. Hp : (g^y) . x,y et 'a. x^y : D .

(37> S) . 7 e Nooc'a . 8 e N^c^S . 7 rt S = A (1)
1-

.
*52-4 . D f- :~(a«, y).x,ye t

la .x^y.O. tja. e 1 u i<A .

[*63\L8] D.f/ael
(2 )

1-
. (2) . *60-38 . *63'105 .*52'46 . D h :~(g^, y).«, ?/ e $,'« . oo^y . a ! a

. ft !£.D.
a = /3 = Ca- Vael.

[*106-312] D . (a% S) . 7 6 NooC
f
a . S e N„,c'£ . 7 « S - A (3)

h.*106-311.*6318.D
h:.Hp:~(a !a. a i

y
e)O.(a7j 5).7 e N00c

fa.S € N00c
f/3.7na = A (4)

h.(l).(3).(4).Dh.Prop

*1064. h : /* = N c'a . D . ^ (00>
= NooCa

Dent.

h . *10614 . D h :: Hp . D :. ^ e/ioo . = : (37) . ye N„c'a . S1117 . £ e ^'7 :

[*64-3] = : (37) . 7 eN c'a . j3 sm 7

:

e £%/« :

[*102'84] =:/?sma./3e£%/a:
[*106-1] =:/3eNooCfa::DI-.Prop

*106-401. I- : fi = N'c'a . D . ^ (00)
= N"e'a

Dem.
h . *104-24 . *106-4 . D h : Hp . D . /i

(00)
= NooC't"a

[*10625] = N"c'a : D h . Prop

*106402. h : /i = NlC'a . 3 ! /i . D . ^ (00,
= Nuc'a

Dem.

h . *106231

.

:> h : Hp . £ « /x . D . N„c'a = N00c</3

[*106-4.*103-26] = ^ (00
»

(1)

h . (1) . *10-ir23-35 .DhiHp.gl^.D. pm = N„c'a OF. Prop

*106 41. h : [x = N c'a . D . /t<»> = N"c'a

Dem.
h . *63-54 . (*106'041) . *10327 . D
h::Hp.D:.^ €At«»>.=

[*102-84.*64'32]

[(*106-011)]

(37) 7 e N c fa . j8 sm 7 : /3 eWU'a

:

J3 sm a. j3 et'tn'a:

/3eNnc'a:: D h . Prop

*106 411. h:
(
a = N c

fa.D.^
1])
= KnC fa [Proof as in *106'41]

#10643. h : /x, v e N C . $'/* = £'v . D . (37, 5) . 7 €^ . $ e v (00 > . 7 r\ S = i\

Dem.

h . *103-2 . D h : Hp . D . (ga,£) . p = N c<« . i> = N c'£

.

[*106-4] D . (go, ^) . ^ (00)
= Noo^a . y (00)

= N^c^

.

[*106-32] D .
(a7 , 8). ye fim . S e vm . 7 n S = A : D h . Prop

*106-44. h:
/
A> peNwC.^=5=*'»'-3-(a7,S).7eix.8ei'.7AS«A [*106'32]
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The following propositions are analogous to #102'71 ff., and similar remarks

apply to them.

#1065. h : R e Cls -+ 1 . D'R C a . d'R C Rl'(a f a)

.

W~$§{x,yea.~x{R tx)y\.'}.W~€<l tR*'WG.OL'$u

Dem.

h.*4-73.Dh :: Hp.D:.#,yea. D^ : #TPy . = .~x{R'x)y

:

[#6-18] :>*„ :~{*TPy . = .^(5^)y} :.

[*10'1] D:.a?ea.Da;.~{a;Tya;. = ,x{R ix)x) .

[*21-43.Transp] X-W^R'x:.

[Hp] Dr.fceD'-R.IVW^ S'ir:.

[#7l-411.Transp] D:.TF~<:CKR (1)

I- . #21-33 . (#35-04) . D h : Hp . D .F G a t a (2)

h.(l).(2).Df-.Prop

#106-51. h:/3Ca.D.~(/3smRl'(at«)}

Bern.

V . #106-5 . D h : Hp . i2 e 1 - 1 . D'R = $ . d'R C Rl<(« T «) 3 •

(3 IF) .W e K\'(a f a) . If~ e d'R .

[#13-14] D . d'R 4= Rl'(« t «) (1)

h . (1) . #22-41 . D h :. Hp . D : £ e 1 - 1 . D'R = l3 . D* . d'tf + Rl^a f a)

:

[*10-51.*73-1] D :~ {/3 sm Rl'(a | «)} : ^ H . Prop

#106-52. h : $ C i/a . D . £~eNcV«

h . #106-51 . D h : Hp . D .~ {/3 sm Rl'(£ 'a f i <«)}

.

[#64-54] D.~{£sra £„/«}

[#100-1] D . /3~ 6 NcV« : D h . Prop

#106-53. h . Nc (aytn'ot = A [#106'52 . #102-6 . #63-371]

#106-54. h . N c%/a~€ NcC
Dem.

h. #100-33. #103-15. D
I- : Nooc'/S = N c%/« . . j3 sm £</« (1)

h. #103-12. (#10601). D
h : N00c'/3 = N cV« . D . C« e *V£

.

[*63-16.(*64-01)] D . W(C« f t 'a) = t't'(t </3 f C0)

.

[#63-391] D . *'&'« | C«) = «'(W 1 W)

.

[*64-3.(#64-01)] D . tfa = C£ .

[#63-105] D./3C* 'a (2)
H . (1) . (2) . D h : Nooc'/S = Noc% <« . D . £ * Nc'^'a . £ C C« (3)
I- (3) . Transp . *106"52 . D h . (/3) . NmC'/S + Noc% 'a .

[#106-13.Transp] D h . N c% 'a~ e N^C . D h . Prop

#106-55. KalNoC-NooC [#106-54]



SECTION B

ADDITION, MULTIPLICATION AND EXPONENTIATION

Summary of Section B.

In the present section, we have to consider the arithmetical operations as

applied to cardinals, as well as the relation of greater and less between

cardinals. Thus the topics to be dealt with in this section are the first that

can properly be said to belong to Arithmetic.

The treatment of addition, multiplication and exponentiation to be given

in what follows is guided by the desire to secure the greatest possible

generality. In the first place, everything to be said generally about the

arithmetical operations must apply equally to finite and infinite classes or

cardinals. In the second place, we desire such definitions as shall allow the

number of summands in a sum or of factors in a product to be infinite. In the

third place, we wish to be able to add or multiply two numbers which are not

necessarily of the same type. In the fourth place, we wish our definitions to

be such that the sum of the cardinal numbers of two or more classes shall

depend only upon the cardinal numbers of those classes, and shall be the same

when the classes overlap as when they are mutually exclusive; with similar

conditions for the product. The desire to obtain definitions fulfilling all these

conditions leads to somewhat more complicated definitions than would other-

wise be required; but in the outcome, the result is simpler than if we started

with simpler definitions, since we avoid vexatious exceptions.

The above observations will become clearer through their applications.

Let us begin with the case of arithmetical addition of two classes.

If a and /3 are mutually exclusive classes, the sum of their cardinal

numbers will be the cardinal number of ou/3. But in order that a and

may be mutually exclusive, they must have no common members, and this is

only significant when they are of the same type. Hence, given two perfectly

general classes a and /3, we require to find two classes which are mutually

exclusive and are respectively similar to a and /3; if these two classes are

called a and ft, then Nc'(a' w ft) will be the sum of the cardinal numbers of

a and /3. We note that A r\ a and An/3 indicate respectively the A's of the

same types as a and /3, and accordingly we take as a and ft the two classes

| (A « £)"i"a and (A n a) I "i"fi;

these two classes are always of the same type, always mutually exclusive, and

always similar to a and /S respectively. Hence we define

a + ^ = i(A^)"t"ay(AAo)|"t^ Df.
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The sum of the cardinal numbers of a and ff will then be the cardinal

number of a + /3; hence we may call « + /8 the arithmetical class-sum of two

classes, in contradistinction to au|8, which is the logical sum. It will be

noted that a + /3, unlike a u £, does not require that a and /3 should be of the

same type. Also a + a is not identical with a, but when a = A, « + a is also A,

though in a different type. Thus the law of tautology does not hold of the

arithmetical class-sum of two classes.

If /j, and v are two cardinals of assigned types, we denote their arithmetical

sum by p + v. (As many kinds of arithmetical addition occur in our work,

and as it is essential to our purpose to distinguish them, we effect the dis-

tinction by suffixes to the sign of addition. It is, of course, only in dealing

with principles that these different symbols are needed: we do not wish to

suggest that they should be adopted in ordinary mathematics.) Now if fi + c v

is to have the properties which we commonly associate with the sum of two

cardinals, it must be typically ambiguous, and must be the cardinal number

of any class which can be divided into two mutually exclusive parts having

fi terms and v terms respectively. Hence we are led to the following definition

:

p + ev= £{(a«,/3). /
z = N c<a. l^N c</3.£sm(a + /3)} Df.

In this definition, various points should be noted. In the first place, it

does not require that /j, and v should be of the same type
; /* +c v is significant

whenever fi and v are classes of classes. Thus it is not necessary for signifi-

cance that fi and v should be cardinals, though if they are not both cardinals,

/x + c v — A. If they are both cardinals, we find

^+c^ = l{(a« J /3)-« e ^-/3^.^sm(a-|-^)}.

Thus in this case «e//./3ei'.D.a4-/3e//.4-c f.

Hence if neith*>- /* nor v is null, and if a has /z terms and /3 has v terms,

a + /3 is a member of fi +c v. It easily follows that

h : fi = N c'a . v = N c'# . Z) . p +c v = Nc'(a + /3).

Hence when jx and v are homogeneous cardinals (i.e. when they are cardinals

other than A), their sum is the number of the arithmetical class-sum of any

two classes having fi terms and v terms respectively.

A few words are necessary to explain why, in the definition, we put

fi = N c'« . v =N c'/3 rather than /j, = Nc'a . v = Nc'/3. The reason is this.

Suppose either /* or V) say p, is A. Then, by *102-73, p = Nc (£)'*'& if K is of

the appropriate type. Hence if we had put

A* +o *= t Ka«, £)/* = Nc'a . v = Nc</3 . £ sm (a + £)} Df,

where the ambiguities of type involved in Nc'a and Nc'/3 may be determined

as we please, we should have

i/=Nc'£.D.t'f + /8€/*+c j/,

i.e. v = Nc'/3 . D . t'£+ e A +c p.
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We should also have t't
(%+ fi e A+ C v and so on. Thus A+ v would not

have a definite value, i.e. it would not merely have typical ambiguity, which
it ought to have, but it would not have a definite value even when its type

was assigned. Thus such a definition would be unsuitable. For the above

reasons, we put ft =N c'« . v =N c'/3 in the definition, and obtain the typical

ambiguity which we desire by means of the typical ambiguity of the "sm"
in " £ sm (a + 0)." It is always essential to right symbolism that the values

of typically ambiguous symbols should be unique as soon as their type is

assigned. The scope of these definitions and of the corresponding definitions

for multiplication and exponentiation (#113
-04*05 . #116'03"04) is extended

by convention II T of the prefatory statement.

The above definition of /ju -fc v is designed for the case in which fi and v

are typically definite. But we must be able to speak of" Nc'y +c Nc'S," and

this must be a definite cardinal, namely Nc'(y + S). If we simply write

Nc'y, Nc'S in place of /m, v in the definition of p +c v, we find

Nc'y +c Nc'S = | {(get, /3) . Nc'y = N c<a . Nc'S = N c</3 . £ sm (a + /3)}.

But this will not always have a definite value when the type of Nc'y +c Nc'S

is assigned. To take a simple case, write t'% for y and i'y for S. Then

Nc'i<£ +c
NcVy = i{(go, £) . NcVf= N c'a . Nc't'y = N c</3 . £ sm (a + £)f

,

whence we easily obtain

Nc'i'(;+C
NcVy= |{(a«) . Nc'l'f=N c'a . £ sm (a + i'y)).

If we determine the ambiguity of Nc't'if to be NiC'£'£ we find

Nc'^+ c Nc't'# = A
in all types; but if we determine the ambiguity to be N c^^

(
we have

Nc<Z<£ +c NcV# = Nc'(*'?+ i'y),

and this exists in the type of tf^+tfy, if not in lower types. Hence the value

of Nc'i (

f+o NcH'y depends upon the determination of the ambiguity of Nc'£r
£.

It is obvious that we want our definition to yield

Nc'y

+

c Nc'S = Nc'(y + S)

in all types; but in order to insure that this shall hold even when, for some

values of f, Nc (£)'y = A, we must introduce two new definitions, namely

Nc'a+c /i = N c'a+c /i Df,

/i+c Nc'a = /i+cN c'a Df,

whence h : Nc'a +c Nc'/3 = N c'a +c N c'/3 = Nc'(a + /3).

This definition is to be applied when "Nc'y" and "Nc'S" occur without any

determination of type. On the other hand, if we have Nc(£)'y and Nc^'S,
we apply the definition of fi+^v. We shall find that whenever Nc(£)'y and

Nc (tjYB both exist,

Nc (O'y +c Nc (v)<8 = N c'y +c N c'S.

Thus the above definition is only required in order to exclude values of £ or vj

for which either Nc (£)'y or Nc (^)'S is A.

b&w 11 5
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The commutative and associative laws of arithmetical addition are easily

deduced from the definition of a + 0. We shall have

h.a+/3 = Cnv"(/3 + «) }

whence h . Nc'a + Nc</3 = Nc'/3 + Nc'a,

because each = Nc'(a + /3). A similar though slightly longer proof shows that

h . (a + 0) + 7 sm a + (0 + y),

whence r . (Nc'a + Nc'y3) + Nc<7 = Nc'a + (Nc</3 + Nc'7).

The above definition of a + enables us to proceed to the sum of any

finite number of classes, and allows any one class to recur in the summation.

But it does not enable us to define the sum of an infinite number of classes.

For this we need a new definition. Since an infinite number of classes cannot

be given by enumeration, but only by intension, we shall have to take a class

of classes k, and define the arithmetical sum of the members of k. Thus now

the classes which are the summands must all be of the same type (since they

are all members of «), and no one class can occur more than once, since each

member of k only counts once. (In order to deal with repetition, we must

advance to multiplication, which will be explained shortly.) Thus in removing

the limitation to a finite number of summands, we introduce certain other

limitations. This is the reason which makes it worth while to introduce the

above definition of a + in addition to the definition now to be given.

If re is a class of classes, the sum of the cardinal numbers of the members

of k wit! evidently be obtained by constructing a class of mutually exclusive

classes whose members have a one-one relation to the members of corresponding

members of k. Suppose a, are two different members of k, and suppose x is

a member both of a and of 0. Then we wish to count x twice over, once as a

member of a and once as a member of 0. The simplest way to do this is to

form the ordinal couples # | a and x I 0, which are not identical except when

a and are identical. Thus if we take all such ordinal couples, i.e. if we take

the class A_

R {(rx) . x e a . R = x I a},

for every a which is a member of «, we get a class of mutually exclusive

classes, namely the classes of the form \, tt"a, where ae k, and each of these is

similar to the corresponding member of k. Hence the logical sum of this class

of classes, i.e. A
R {(g;a, x).aetc.xea.R = x\,a},

has the required number of terms. Now, by *85"601,

l««a = 6l'c(.

Hence the class whose logical sum we are taking is e J"«. Hence we put

Z<k = s<€Z"k Df.

2'/e may be called the arithmetical sum of k, in contradistinction to s'/c, which

is the logical sum. Thus 2'# bears to s'k a relation analogous to that which

a + /3 bears to a u 0.
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We put further 2Nc'/e = NcVeJ"A: Df.

Thus 2Ncr« is the sum of the numbers of members of k.

It is to be observed that SNc'k is not in general a function of No"«. For,
if two members of tc have the same cardinal number, this will only count once
in Nc"«, whereas it counts twice in 2Nc*/c.

We shall find that, provided a =j= 0,

SNc'(i'a u t
f
0) = Nc'a + Nc'£.

Thus where a finite number of summands are concerned, the two definitions

of addition agree, except that the first allows one class to count several times

over, while the second does not.

In dealing with multiplication, our procedure is closely analogous to the
procedure for addition. We first define the arithmetical class-product of two
classes a and 0, which is a certain class whose cardinal number is the product

of the cardinal numbers of a and 0. We write x a for the arithmetical

class-product of and a, and define it as the class of all ordinal couples of

which the referent is a member of « and the relatum a member of 0, i.e. as

# {(a57
- y)'Xea.ye&.R = xly}.

By #40*7, this class is s'a I "0. Hence we put

0xa= s'al"0 Df.

The class ai "0 is similar to 0, and each member of it is similar to a; hence

if N c'a =
fj,

and N c'/3 = v, s'a 1 "0 consists of v classes having ft members

each. The class a I "0 is important also in connection with exponentiation.

The product of two cardinals is defined as follows

:

/* x *,- £ {(a«» 0) A* = NoC'« • v = N c'/S . | sm (o x 0)} Df.

In regard to types, this definition calls for analogous remarks to those which

were made on fi + v. Also, as before, we need definitions of p x Nc'a and
Nc'a x /a, whence we obtain

Nc'a x Nc'/3 = N c'a x N c'/3 Df.

By means of these definitions, we can define the product of any finite number
of cardinals; but in order to define products which have an infinite number of

factors, we need a new definition.

If k is a class of classes, we take e^K as its arithmetical product. In simple

cases, it is easy to see the justification of this decision. E.g. let k consist of

the three classes aj , a2 , a3 , and let the members of ax be a?x , a?2 ; those of eife, ylf ya ;

those of a„ zlf z% . Then the members of eA '/e are

#i i «i u Vi i a3 v gl I aa ,

®* i «i v Vi i a2 v zx I a3 ,

os2 la1 vjy2 la2 vjz1 l as ,

5—2
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-with four more obtained by substituting z% for zx in the above. Thus

Nc'ed'/c =8 = Nc'a
1 x Nc'a2 x Nc'a3 . In general, however, the existence of

€i
cK is doubtful, owing to the doubt as to the validity of the multiplicative

axiom. (We shall return to this point shortly.) Hence there is no proof that

the product of an infinite number of factors cannot be zero unless one of the

factors is zero.

When k is a class of mutually exclusive classes, e^K is similar to T>"e^K

.

On account of its lower type, D"eA'« is often more convenient than €\K.

Hence we put
Prod'* = D"€4 'tf Df,

or (what comes to the same thing)

Prod = D«|ei Df.

For the product of the cardinal numbers of the members of k, we put

nNc'tf = Nc'e//e Df.

As in the case of £Nc'/e, nNc'/e is not in general a function of Nc"#. We
shall have

h : a + . D . IINc'(t'« ^ i'0) = Nc'a x c Nc<#.

Thus for products of a finite number of different factors, the two definitions of

multiplication agree.

It remains to define exponentiation. Since this is not a commutative

operation, it essentially involves an order as between the base and the expo-

nent; hence we do not obtain a definition of the exponentiation of a class «,

analogous to 2Nc'k or IINc'k, but only a definition of /i.",which may be extended

to any finite number of exponentiations. We put

a exp/3 = Prod's ,j,"/3 Df,

where a 1 "0 has the meaning explained above, resulting from #3803. It will

be observed that, if N c'a=/i, andN c'/3 = v, ol "0 is a class of v mutually
77

exclusive classes each of which has p terms; hence a exp may suitably be

used to define fi
v
. Hence we put

V>
v = % {(3«» 0) • /* - N c'a . v » N c'/3 . £ sm (a exp 0)) Df,

and for the same reasons as before, we put

(Nc'cO'HNoC'a)* Dfand/ANo'P = /i
N«°'P Df.

The above definition of exponentiation gives the same value of /j," as results

from Cantor's definition by means of " Belegungen." The class of Cantor's

"Belegungen" is

M {R € 1 - Cls . V'R C a . a<R = 0},
{ -e

-

t .

(«\0)±'0,
and it is easily proved that this is similar to a exp 0.

The usual formal properties of exponentiation result without much difficulty

from the above definitions.
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The above definition of exponentiation is so framed as to make proposi-

tions on exponentiation independent of the multiplicative axiom, except

when exponentiation is to be connected with multiplication, i.e. when it is to

be shown that the product of v factors, each of which is /j,, is /j,
v

. This

proposition cannot be proved generally without the multiplicative axiom.

Similarly, in the theory of multiplication, the proposition that the sum of

v /t's is jj, x c v requires the multiplicative axiom (as does also the proposition

that a product is zero when and only when one of its factors is zero). Other-

wise, the theory of multiplication proceeds without the need for employing

the multiplicative axiom.

To take first the connection of addition and multiplication : this connec-

tion, in the form in which we naturally suppose it to hold, is affirmed in the

proposition

:

fj,,
v e NC . k e v ft Cls excl'/i . D . s

ck e fi x c v (A)

or jj,, v e NC . k e v ft CIV . D . "2,'k e/t x v.

We will take the first of these as being simpler. It affirms that the sum of

v fj/s is p x. Q p. This can be proved when v is
s

finite, whether /j, is finite or not; but when v

is infinite, it cannot be proved without the

multiplicative axiom. This may be seen as

follows. We know that kx .
j

^

.

Xx

b : /a, v e NC . a € p . e v . 3 .

a 1 "0 e v ft Cls exclV . s'a l"06fix c v (B)

Thus (A) above will result if we can prove

k, X € v ft Cls exclV . D . s'k sm s'X,

since we shall put a I "0 for X and use (B).
*3

<i

Si

s 2

f
3

-

si

Since k, Xev
f
we have «sm\. Assume

Sel-+1.D'S=K.(1'S = X.

Let KX) «2 , ... be members of «, and let \1} Xg,

be the members of X which are correlated with

#i> fy, ... by S, i.e. Xx
= S'kx . Xa = #'«

a . etc. We
have, since k, X e CI'/jl, k± sm Xx . k% sm X2 . etc.

Thus a80.X,fi asm 0, i.e. SGsm. If k and X are finite, we can pick out

arbitrarily a correlation S1 for ^ and \, another #8 for /c2
and \a , and so on; then

& c/ #a c/ . . . correlates s'k and s'X, and therefore s'k sm s'X. But when k and X

are infinite, this method is impracticable. In this case, we proceed as follows-

By*73-01, a8m/3 = (l^l)*D'aA(I</3 Df.

Thus "asm a" will stand for all the permutations of a class into itself;

"a sm 0" stands for all the permutations of a into 0, i.e. all the 1 -+ l's whose
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domain is a and whose converse domain is /S. It is obvious that

h:g!asm/3n7smS.D.a = y./3=S.

In the case of the k and X above, we know that asm ft when aS/3; thus

a e k . D„ . a ! a sm (S'a)

or 0eX.D,.a!OS*j8)SB£.

Put Crp(£y/S = (£'£) sm/3 Df,

where "Crp" stands for "correspondence." Thus Crp(#)'/3 is the class of all

correspondences of S'fi and y3 ; Crp (S)"X is the class of all such classes

of correspondences. If we extract one member out of each of these classes of

correspondences, we get a class of relations whose sum is a correlator of s'k

and s'X; i.e.

vr e D"€4 fCrp (S)"X . D . s'nr e (s'k) Im (s'X).

Thus the desired result follows whenever

3 ! ei'Crp (S)"X.

Now we have 8 e 1 -> 1 . S G sm . D . Crp (8)"X e Cls ex2 excl.

Consequently

Mult ax.D:fl«?l->l.£Gsm. T>'S = * . d'S = X . *, X e Cls2 excl

.

D . s
r* sms%

whence, by what was said previously,

Mult ax . D : k e v *» Cls excl'/* . D . s'k e /j. x // . 2Nc'# =/ix i/,

The consideration of £4'Crp(#)"X leads similarly to the proposition

h :. Mult ax . 3 : /a, v eNC .rcepr\ CY/jl . D . eA '« e jx
v

. IINc'/c = /a".

The proof is closely analogous to that for the connection of addition and

multiplication.

It will be seen that, in the above use of the multiplicative axiom, we have

two classes of classes k and X concerning which we assume

(HjS) . 8 e 1 -» 1

.

8 G sm . D'S^k . a<8*=X,

i.e. we assume that « and X are similar classes of similar classes. A slightly

modified hypothesis concerning « and X will enable us to obtain many results,

without the multiplicative axiom, which otherwise might be expected to require

this axiom. This is effected as follows.

Put KsmsmX . = .(giF) . Te 1 -> 1 . <l'T=s'X. « = Te"X,

where " smsm" is a single symbol representing a relation.

When this relation holds between k and X, we shall say that k and X have

"double similarity." In this case, T correlates s'k and s'X, while Te correlates

k and \, so that if $ is a member of X, 2V& i-e. T"&, is its correlate in k.

We shall then have

h/esmsmX.D.s'Ksm s'X,

h : k sm sm X . D . XNc'k = XNc'X,

h«;smsmX.D. TlNc'/e = IINc'X.
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Also we have

h : k sm sm X . D . (a#) . # e 1 - 1 . £ G sm . D'5f- « . <I<S= X.

Conversely,

h : *, \ e Cls2 excl . 8 e 1 - 1 . S G sm . D'£= « . (T£ = X .

«r e D"e4'Crp (S)"\ . T = s'sr . D . ^e 1 -> 1 . (T

2

7= s'\ . k = Te'%
whence

h :: Mult ax . D :. *, \ e Cls8 excl : faS) . £ e 1 - 1 . SG sm . D'£ = * . (P£ = \ :

D.KsmsmX.

Hence the multiplicative axiom is only required in order to pass from

(g£) . S e 1 - 1 . S G sm . D'S * « . <3SS = \

to « sm sm \. It is this fact, and the consequent possibility of diminishing

the use of the multiplicative axiom, which has led us to the employment of

" sm sm " in the present section.

We treat also, in this section, the relation of greater and less between

cardinals. We say that Nc'a > Nc'/3 when there is a part of a which is

similar to ft, but no part of /3 is similar to a. The principal proposition in

this subject is the Schroder-Bernstein theorem, i.e.

h : /ji^v . v^ fj> .3 . jjb = v.

This is an immediate consequence of *73 -

88. It cannot be shown, without

assuming the multiplicative axiom, that of any two cardinals one must be the

greater, i.e.

jju,ve NC . jju^v .D : /a> v . v . i> > /*.

If we assume the multiplicative axiom, this results from Zermelo's proof that

on that assumption, every class can be well-ordered, together with Cantor's

proof that of any two well-ordered series which are not similar, one must be

similar to a part of the other. But these propositions cannot be proved till a

much later stage (*258).



#110. THE ARITHMETICAL SUM OF TWO CLASSES AND OF
TWO CARDINALS

Summary o/#110.

In this number, we start from the definition

:

#110-01. a + £ = |(Aft£)"e"au(An«),l"t"£ Df

a + is called the "arithmetical class-sum" of o and 0. The definition is

framed so as to give tw# mutually exclusive classes respectively similar to a

and 0, so that the number of terms in the logical sum of these two classes is

the arithmetical sum of the numbers of terms in a and respectively. a +
is significant whenever a and are classes, whatever their types may be.

By means of u + 0, we define the arithmetical sum of two cardinals as

follows

:

#110-02.
fj,+e p = '£{(fta,0). fi

= 'Noc
(a.v = N oc<0.Zsm(« + 0)} Df

This defines the " arithmetical sum of two cardinals." (It is not necessary

to significance that /* and v should be cardinals, but only that they should be

classes of classes. If, however, either is not a cardinal, n-\-Q v = A.) It will

be observed that, when fi and v are typically definite, so are a and in the

above definition; but £ is typically ambiguous, on account of the ambiguity

of " sm." Hence /j, + v is also typically ambiguous.

It will be shown that fi + v is always a cardinal, and that, if

fi =N c'a . v = N c'/3, then /* + v = Nc'(a + 0).

Hence whenever fi and v are cardinals other than A, /j, + Q v is an existent

cardinal in some types, though it may be A in others.

Two more definitions are required in this number, namely

:

#11003. Nc'a+ ^ =N c'a+ /i Df

#11004. fi + Nc'a =
fj, + N c'« Df

These definitions are needed in order to apply the definition of fx +c v to

the case in which /j. and v are replaced by typically ambiguous symbols-

Nc'a and Nc'/3. It does not make any difference to the value of Nc'a + Nc'/3

how the ambiguities of Nc'oc and Nc'/3 are determined, so long as they are

determined in a way that insures g ! Nc'oc . g ! Nc'/3; but if there are types

in which either Nc'a or Nc'/3 is A, we get Nc'a + Nc'/3 = A in all types if we
determine the ambiguities so that Nc'a = Aor Nc'/i? = A. It is in order to

exclude such determinations of the ambiguity that the above definitions are

required. Also in connection with these definitions and the corresponding

definitions #113*04-05 and *116-03'04 and *117-02-03, the convention II T of

the prefatory statement must be noted.
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The propositions of the present number begin with the properties of a + fi.

We show (#110'iri2) that a + /3 consists of two mutually exclusive parts,

which are respectively similar to a and fi; we show (#1 10-14) that if a and fi

are mutually exclusive, au/3 is similar to a + /3, and (#110'15) that if 7 and

8 are respectively similar to a and fi, then 7 + 8 is similar to a + fi. We show

(#110-16) that Nc*(a + /3) consists of all classes which can be divided into two

mutually exclusive parts which are respectively similar to a and fi.

We then proceed (#110-2—-252) to the consideration of fi+e v. Here

fi and v are typically definite, and the definition #110-02 applies to any
typically definite symbols, such as N c'a or Nc (if)*a. We prove (#110'21) that

if fi and v are cardinals, their sum consists of all classes similar to some class

of the form a+ fi, where aefx.fiev; we prove (#110-22) that the sum of

N c'a and N c*73 is Nc'(a + /3), and (#110*25) that if fi and v are cardinals,

their sum is equal to the sum of the "same" cardinals in any other types in

which they are not null, i.e.

#110-25. \-ifi,v€NC . g ! sm/'/t . g ! sm/V . D . fi +Q v
- sm/*> +c sm^V

We then (#110-3—*351) consider Nc'a

+

Nc'/8, to which we apply the

definitions #110-03-04. We have

#110-3. 1-
. Nc'a + Nc</3 = N c'a +cN c</3 = Nc-(a + fi)

whence the other properties of Nc'a +c Nc'jS follow from previous propositions.

We then have (#110'4—'44) various propositions on the type of fj,+e v and

its existence and kindred matters. The chief of these are

#110-4. h : a ! fi +c
v . D . p, v e NC - t'A . fi, v eN C

#110-42. h./i+^eNC
This proposition requires no hypothesis, because, if fi and v are not both

cardinals, p + v = A, and A is a cardinal, by #102'74.

Our next set of propositions (#110'5—'57) are concerned with the permu-

tative and associative laws, which are #110' 51 and #110*56 respectively.

We then (#110-6—-643) consider the addition of or 1, proving (#110-61)

that a cardinal is unchanged by the addition of 0, and (#1 10-643) that 1 + 1 = 2.

#110-01. a + ^=i(Aft/9)'V'«-j(Aftfl)i"i"/3 Df

#110-02. /*+„* = £ {(go, £)./* = N c'a . v - N„c'£ . £ sm (a + fi)} Df

#11003. Nc'a+ ^ = N c (a+c /i Df

#110-04. ^+c Nc'a-=/i+c N c
fa Df

These definitions are extended by IIT of the prefatory statement.

#110-1. f- : . R € a + fi . = : (gar) . x e a . R = (I'x) j(An/3).v.

(ay).y«0.2i-(AnaH(i'y)
[#38-13-131. (#110-01)]
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#110 101. h . <t'*) I (A ft 0) * (A ft a) I (l'y)

Dem.

h.#55l5. D I- . D'(tV) l (A ft ft)
= I'l'x . D'(A r> a) \ {i

l

y) = t'(A « a) (1)

h. #51-161. D !-.£*«={= (An a).

[#51-23] D b . t't'ar 4= (<(A n a) (2)

f- . (1) . (2) . D b . D'(i'x) I (A n £) + D'(A n a) 4 (i'y) . D h . Prop

*11011. h . I (A n £)"i"a n (A n a) j "i"£ = A

(- . #110 101 . D h : a; e a . R = | (A n /3)V# .ye
i
8.S=(Anfl)

>i
'i'y .D.R^S:

[#37-67] D h : R e
J,
(A n £)"t"a . # e (A n a) j «i"£ . D . £ + 8 (1)

I- . (1) . #24-37 . D h . Prop

#11012. I- . | (A n |8)"«"osm a . (A n a) | "("jSsm /9 [#73-41-61-611]

#1101112 give the justification for the use of a + ft in defining arith-

metical addition, since they show that a + ft consists of two mutually exclusive

parts which are respectively similar to a and ft.

#110-13. f- : 7 sm a . S sm ft . 7 ft 8 = A . D . 7 u 8 sm (a + ft)

Dem.

b . #110-12 . D h : Hp . D . 7 sm J (A ft £)'Va . S sm (A ft a) j "t"/3 (1)

h . (1) . #110-11 . #73-71 . D b . Prop

#11014. |-:an£ = A.:).au£sm(a + £) [#11013 . #733]

Thus whenever a and /3 are mutually exclusive, their logical sum may
replace their arithmetical sum in defining the sum of their cardinal numbers.

#110 -

15. f-:7sma.Ssm/3.D.7 + Ssma + /3

Dem.

b . #110-12 . D h : Hp . D . 4 (A n S)"t"7 sm a . (A ft 7) I "t"S sm /3 (1)

r . #110-11 . D r 4 (A n $)"l"y n (A n 7) J,
"t"8 = A (2)

h.(l).(2).#11013.D

h : Hp . D . J (A n S)"t"7 u (A n 7) j "t"8sm a + £ : D h . Prop

#110151. bz.an ft=A .3
:
%sm(ayjft) . = .(^y,8).ysma.&smft .y r\ S== A.%==y \j &

Dem.

h. #73-71. Dh:.Hp.D:
(37> S) . 7 sm a . S sm /3 . 7 n S = A . f = 7 u 8 . D . ^ sm (a w /Q) (1)

b . #72-411 . #37-25-22 . #7322 . D
h : Sel -» 1 . WS= £ . d'S = a \j ft . a n ft

= A . D .

S"a n £"/3 = A . f = S"a u#"£ . £"a sm a . S"ft sm ft .

[#ll-36]D.(a7,S).7sm«.Ssm /
8.7ft 8 = A.£= 7 uS (2)

K (2). #1011-23-35. #731. D
b :. Hp . 3 : £sm (auft).D. (g7j g) . 7 sm a . S sm # . 7 ft S = A . £= 7 w 8 (3)

b . (1) . (3) . D h . Prop
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*110152. I- : fsm (a + 0) . = . (g7 ,
B).ysma.^sm0.yr\B = A.^ = yyjh

Bern,

K #11015111.3
V : £sm(a + £) . =. (g7, 8) . 7 sm J,

(A n £)"i"a . 8sm (A n a)J,
"

t"£

.

7n8 = A.f= 7<»'8.

[#73-37 .#11012] = . (37, 8) . 7 sm a . 8 sm £ . 7 n 8- A . f= 7 u 8 s 3 I- . Prop

#11016. h . Nc<(« + £) = f {(37, g).7sma.Ssm/3.7nS = A.| = 7 ug}

[#110152. #1001]

#11017. H : a e *'/3 . 3 . g 1 Nc (i'a)'(a + /3)

Dew.

f- . #104'43 . 3

h : Hp . 3 . (37, 8) . 7 sm a . 7 C t
ca . 8 sm . 8 C £'a . 7 r» 8 = A .

[#22-59] 3 . (37, 8) . 7 sm a . 8 sm /S . 7 n 8 = A . 7 u 8 C t'a .

[#110-16] 3 . (g£) .gCt'a.ge Nc'(a + £)

.

[*1 02-6.*63'5] D . g ! Nc (*<«)<(a + /3) : 3 f- . Prop

Thus when a and /3 are of the same type, Nc'(a + /?) exists at least in the

type next above that of a and /3. We cannot prove that it exists in the type

of a and /3, E.g. suppose the lowest type contained only one member; then

if x were that one member, Nc'(t f# + i
lx) would not exist in the type to which

t'x belongs; but would exist in the next type, i.e. there would not be two

individuals, but there would be two classes, namely A and i
lx, so that

l
l
h. u l'l'x e Nc'(t'a? + i'w).

#110-18. I- . a + £ € t't'it'a | t'fi)

Dem.
K #64-53. Dh:»e«.:4(Anj9)V*6^'at^) (1)

f- . (1) . #37-61 . 3 r . I (A n £)«i"a C t\t l
0L f $<£) (2)

Similarly h . (A n a) 4 "t"£ C *<(*<« f 1<0) (3)

h.(2).(3). Dh.a + |8C«((('at^)'
[#63-5] 3 h . a + £ e W(«'a f *<£) . 3 h . Prop

#110-2. 1- : f e/i + c
1/ . = . (get, /3) . p = N c'a . y =N c'a ,^sra(a+ ^)

[(#110-02)]

#110-201. r-:.|e/*+ i/. = :/* l veNC:(aa, i
9).oe^-/5«v.fsm(a + ^)

[#10327 . #1102]

#110202. h:.£e^+c i/. = :

3 ! fi . 3 ! 1/ : (^7, 8) . /* = Nc'7 . v = Nc<8

.

7 n8=A.| = 7w8
Dew.

1-
. #110-2152 .31- :.fe/* +„*. = :

(ga, ft y S) . /A-Nric'o . i> = N c'/S . 73m a
. 8 sm £ . 7 n 8 = A . £= 7 u S =

[#103-28] = : (g7 , $) ,rI ft.Rlv . fi = Nc'7 . v = Nc'8 . 7 n8 = A.£~7v8:.
3 h . Prop
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#110 21. I" : . ft, v e NC . D : f e fi + v . = . (aa, /3) . a e /* . /3 e ^ . £ sm (a + £)

[#110-201]

#110211. h:./*,i;eNC.D:.fe
/
A+ v. = .

(gy, 8) . y e sm"^ ^ e sm'V ,(yn8 = A.f = 7^S
Dent.

Y . *110-21152 .Dh;.Hp.D:^/i+^.s.
(got, £,iy, 8).ae/A.£ei/.7sma.8sm#.7f»8 = A.£ — yu8.

[#37'1] s . (a7, 8) . 7 e sm"/t . 8 e sm'V .y«8-A.|; = 7u8:.:)K Prop

#110-212. h :. fi, v e NC . D : £ e /* + v . = . (37) 7 e sm"/* . 7 C £ « £ - 7 e sm"i/

Bern.

h. #110-211. #24-47. D

r- :. Hp . 3 : £ e /* + p . = - (37. 8) . 7 e sm"/i . 8 e sra"v . 7 C £ . 8 = f - 7 .

[#13-195] =.(a7).7esm"/A.7C^. ^-7esmu f.:. D h . Prop

*110-22. r . N c<a +c
N c'/3 = Nc'(a + £)

Item.

h . #103-4 . #110-211 . D

f- : £ eNoc'tt+c
N c<£ . - . (37, 8) . 7 e Nc'a . 8 eNc'/S -7r>8 = A.£ = 7uS.

[#100*31] = . (37, 8).7sm«.8sm^.7r»8 = A.^ = 7u8.

[#110-16] = . f e Nc'(a + £) : D I- . Prop

#110-221. l-:^ e Nc(7/) ra+c Nc(O^.= .a!Nc(^y«.a!Nc(0^.feNc <(a+^)

Z)em.

h . #110-202 . D I- :. ^eNc^'a +e Nc(f)'£

.

= : g ! Nc (^)'a . a ! Nc (§)<£ : (a7, 8) . Nc (»?)<« = Nc<7 .

Nc (£)'£ = Nc'S . 7 r> 8 = A . £ = 7 u 8

:

[*100-35] = :a!Nc(7?)
<a.a!Nc(f) f

J8:(a7,8).7sma.8sm^.7n8=A.|= 7 u8:

[#110-16] = : a ! Nc (»?)<« . g ! Nc (£)<£ . £ e Nc'(a + /3) :. D h . Prop

#110-23. V : g ! Nc (v)'a . a ! Nc (f)</3 . D .

Nc (i7)'o +c
Nc (£)<£ = Nc'(a + /3) = N c'a +cN c<£ [#110-221'22]

Thus Nc (?;)'«

+

c Nc (£)'/? is independent of 77 and £ so long as Nc'ot and

Nc'/3 exist in the types of rj and f respectively.

#110-231. h : . Nc (77)^ = A . v . Nc (£)'£ = A : D . Nc (»?)'« +c Nc (£)'£ = A
[#110-221]

#110-24. h : t? sm a . f sra j3 . D . N c
f
17 +cN c<£ = N c'a +cN c</3

Dem.

V . #103-42 . D I- : Hp . D . N c<T7 = Nc (v)'a . N c<£= Nc ($)'/3 (1)

H . (1) . #103-13 . D I- : Hp . D . 3 1 Nc(i»)'a. 3 ! Nc(£)'/3 .

[#110-23] D . Nc (r,)<a + Nc (£)<£ - N„c<a +cN c</3 (2)

K(l).(2).Dh.Prop
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*110 25. I- : fji, v e NC . a ! sm
n"fi . a ! sm^V . D . fi + v = sm,"^ + %m£ lv

Dem.

V . *103-27 . D I- : p, v e NC . a e
fj,

. fi e v . g ! sm/'^t . a ! sm
?"i>

.

D . /i = N c'a . 1/ =N c'/3 . a ! sra,'•> . a ! sm/'i;

,

[*103-41 .*102-85] D,iul = N c'a . v «

N

c'£ . sm„"> « Nc («j)'a

.

sm
f
"i/ = Nc (O'yS 3 ! Nc <»<a . g ! Nc (Q</3

.

[*110'23] D . fi + 1/ = N c'a + N c</3 = sm„'V +c sm/V (l)

I- . (1) . *1011-23'35 . D

hr^veNC.al^.aly.alsm^'/t.aSsm^S.D./A+ei/^sm/'/Lt+cSm^'i/ (2)

h . *37-29 . Transp . D I- : g ! sm
n
"/t . a ! sm f

"i> . D . g ! /* . g ! i/ (3)

h . (2) . (3) . D h . Prop

*110'251. hs^jreNC.D. /*w + 1/'
1
* = /* +c z>

Dem.
h.*110-25.*104-265.D

h : Hp . a !
^w

. g ! y'1
) . D .

/*w +c i/<
]
> =/* + v (1)

f- . *110-202 . D h :~ (a ! /a'
1

* . a I *w ) ^ .^ + i/'
1

' = A (2)

f- . *104'264 . D I- : Hp (2) . D . ~(g ! /* . a 1 v)

.

[*110-202] D. /*+„*/ = A.

[(2)] D.^+.^^+e, (3)

h.(l).(3).:>KProp

*110252. h:fi,veNC . D . /u. (00) +c vm =fi+e v [Proof as in *110*251]

A similar proof applies to fi®, v®, etc., and to any such derived cardinals

whose existence follows from that of fi and v. The proposition does not hold

generally for /jl^, vix, and other descending derived cardinals, because they may
be null when \l and v exist.

The following proposition (sfrllO^) is more often used than any other in

this number except *1104.

*1103. f- . Nc'a+c
Nc'£=N c<a+oNoc'£=Nc'(a+/3) [*1 10-22. (*11 0-03-04)]

*110'31. h:7 8ma.Ssm)8.3.Nc'y+ Nc'S«Nc'a+
fl
Nc'/8 [*110'24-3]

The following proposition is frequently used.

*110-32. h:ar>£ = AO.Nc<a+ Nc<,3 = Nc'(«u/S) [*110-3-14]

*110'33. l-:feNcfa+c Nc t)S.= .(a7)
S)-7Sma.Ssmj8.7r\S = A.^= 7u8

[*110'3'16]

The above proposition is used in #1 10'63. We might have used the above

to define arithmetical addition, but this method would have been less con-

venient than the method adopted in this number, both because there would

have been more difficulty in dealing with types, and because the existence of

Nc'a + Nc'/8 (in the types in which it does exist) is less evident with the

above definition than with the definitions given in *110-010203-04.
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#110-331. h . Nc'a + Nc'£ = | {(37) . 7 sm a . £- 7 sm fi . 7 C £}

Dew.

h . *11033 . #24-47 . D

h : I e Nc'a + Nc'/3 . = . (37, S) . 7 sm a .Bam/3 .7 Cf . S = £ -7 .

[#13"195] = . (37) .7sma.£-7sm/3.7Cf:DI-. Prop

#11034. h : g ! Nc (»?)'a . g ! Nc (£)'£ . 3 .Nc (*?)'a + Nc (£)'/3 = Nc'a +c Nc'£

[#110'233]

#11035. f- . NVa +c NV/3 *= Nc'a + Nc'/3 [*104102-21 . #110-34]

#110-351.
J-

. Nwc'a + Nwc'/3 = Nc'a + Nc'/3 [#106-21 . #110-34]

Similar propositions will hold generally for ascending cardinals.

The following proposition (#110'4) is the most used of the propositions in

this number. It is useful both in the form given, and in the form resulting

from transposition, in which it shows that ja + v = A unless both /j, and v are

existent cardinals. It is chiefly useful in avoiding the necessity of the

hypothesis fi,v e NC in such propositions as the commutative and associative

laws.

#110-4. HgS/i+^.D.^i/eNC-t'A.^i/eNoC [#110'20r202'2]

The following propositions, down to #110'4ll inclusive, are concerned with

types. They are not referred to in the sequel.

*110'401. h : fx = N„c'a . v =N c'/3 . D . a + j3 e t't'(fi f v)

Dem.

f- . #110-18 . #10312 .DI-:Hp.D.a + ^€ tH'(t'a f t'ft) .ae/i.&ev.

[#63-11] D . a + /3 € t't'(t'a f t'ft) . t'a = tf/i . t'/3 = tjv

.

[#13*12] D . a + /3 e t't'(t '/i | tfv) .

[#64-13] D . a + e £'*'(/* f if) : D h . Prop

#110-402. I- : ^ 1/ eN C . 3 . 3 ! 0* + v) n *<*'<> f »,)

i)em.

r. #11022. #100-3. D

I* : fi = N c'a . ^ = N c'/3 .D.a + ^e/i+ci/.

[#110-401] D . a + £ e (p + „) n ^'(^ f v)

.

[#10-24] ^ - 3 ! (/* + v) « t't'fa \v) (1)

J" (1) . #103-2 . D I- . Prop

#110-403. h : /i, 1/ eN C . = . a ! (fi + v) r> t't'(fi f v) [*110'402-4]

#110-404. h . a ! (Nc'a + Nc'£) n *'£'(£<a | *'/S) [*11018'3 . *100'3]



SECTION B] ARITHMETICAL SUM OF TWO CLASSES AND TWO CARDINALS 79

#11041. \--.fi,v€N C .t'li^t'v.D.RUp +c v) n t'f*

Bern.

Y . #103*11 . D [- : fx =N c<« . v = N c<£ . t'/x = t'v.D.

fiQt'a.vCt'fi. t'fi = t'v

.

[*63-21'35] Z> . t,<ix = t'a . U'v = t'j3 . U'fx = U'v .

[#13-16-17] }.tt
cL = t'/3 = t 'ji.

[#11017] D . a ! Nc<(« + £) « $V/* .

[#110-22.#63-1 9] D . a ! (fi +c v) n fy : D h . Prop

#110-411. h : «'o = t'j3 . D . a ! (Nc'a +c Nc<£) r> t't'a . a ! Nc (^a)'(a + /S)

[#11017-3]

It will be observed that the following proposition (#110-42) requires no
hypothesis. This is owing to #110-4 and #102-74.

110-42. h.^+ c ifeNC

Dem.

h . #110-22 . D h : /* = N<,c<a . *> = N c<£ . D . ^ + v = Nc<(a + /3)

.

[#100-41] D.^+c i/eNC (1)

h.(l). #103*2. Dhr^veNoC.D./A+oveNO (2)

I- . #110-4 . Transp . D h : — (/*, v eN C) . D . /a + i> =A .

[#102-74] D./A+.i/eNC (3)

h.(2).(3).DKProp

#110-43. h:/i+c i'=N c^. = .7/€/i+c i; [#110-42 . #103-26]

*11044. h.sm"(/i+c i/) = /i+
(1

i'

I-. #371. #1 10-2. D
h : f e sm"0 +c i>) . = . (a??, a,/3)./J.= N cfa . v = N c'# . 77 sm (a + /3) . £ sm 77

.

[#73-3-32] = . (aa, /5) . /* = N c'a . v = N c'/3 . f sm (a + /3)

.

[#110-2] = .£ e/*+c „Or.Prop
The above proposition depends upon the fact that /x +a v is typically am-

biguous, even when /x and v are typically definite. It is used in the theory of

inductive cardinals (#120-32-41-424).

The following propositions are concerned with the commutative and

associative laws for arithmetical addition of cardinals.

#110-5. b./3 + a = Cnv«(a + /3)

Dem.
h .#55-14 . D h . Cnv"(a + j3) = A n ft I "i"a w I A r> a"i"£

[(#11001)] = £ + a . D h . Prop

#110-501. l-./3+asma + # [*110'5 . #73*4]

#110-51. I-./a +e v = v+ ix [#110-2-501 . #7337]

It is not necessary to the truth of the above proposition that //. and v

should be cardinals. If either is not a cardinal, /x + v and v + p are Dotn ^
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The following propositions lead to the associative law (#110-56).

#110*52. f-: £ sm(a+/3) + 7 .= .(gir.p, o) . Trsma.p sm^ . asmy.

7r r>p=A.7rna- = A.pn<T = A.|: = 7rUpuo-

Dem.

h . #110152 . 3 h :. fsm(a + /3) + 7 = : to> °")
«?
sm (« + £) •

a* sm ry.77rto- = A.f= 77VJa-:

[#1 10152] = : (gTT, p,iy,o-).7rsnia.psm/8.'7mp=A.i7 = irup.

<rsm7.i)rt£r = A. £ = 77 u O" :

[*13195.*22-68.*24-32] = : (gir, p, <r) . it sm a . p sm fi . a sm 7 . ir n p = A .

Trna = A.pr\a = A.i;='Tr\Jpv<r:.'5\-. Prop

#110521. I- : fsma + (/3 + Y). = . (gir.p, o-) . ttsqi a . psm j3 . o- sm7 .

irr\p=:A.'7rr\o- = A.pr\<r = A.j; = Trvpv<r [#110'501'52]

#110 53. K (« + /3) + 7 sm a + (£ + ?) [#11052-521]

#110531. a + /3 + 7 = (a + £) + 7 Df

#11054. h . (Nc'a +c Nc'£) + Nc'7 = Nc'(a + j3 + 7)

f- . #110-3 .31-. (Nc'a +c Nc<£) + Nc<7 = Nc'(a + /3) +c Nc<7

[#110-3.(#110531)] = Nc'(a +£+7) . 3 h . Prop

#110-541. h . Nc'a +c (Nc<£ +c Nc<7) = Nc'(a + & + 7)

Dem.
f- . #110-3 .31-. Nc'a + (Nc'£ +c Ne'7) = Nc'{a + (/3 + 7)}

[*110-53.(*1 10-531)] = Nc'(a + £+ 7). 3 h. Prop

#110-55. r . (Nc'a +c Nc'£) + Nc'7 = Nc'a + (Nc'£ + Nc'7) [#110-54-541]

#110-551. h . (N c<a + N c'/3) +c N„c'7 = N c'a +c (N c'/5 + cN c'7 )

[#110-55. (#1100304)]

#110-56. K(/i+c*')+c OT = At +c(*'+o^)

Dem..

K #110-551. #103-2.3

\-ifl,V,VT€ N C . 3 . O +c I/) +c
W = fl +c (1/ +c «r) (1)

h.*110-4.Transp.3

f- : ~0*, ^w 6 N C) . 3 . (ft +c 1/) +c ur = A . fi +c {v + w) = A .

[#13-171] 3 . (/* +c v) + tx = ^ +c (1; +c
w) (2)

I- . (1) . (2) . 3 V . Prop

This is the associative law for arithmetical addition. It will be seen

that, like the commutative law, it does not require that fi, v
t
ot should be

cardinals.

#110-561.
f
i+Q v+ c 'ST =

{fjt, +cV)+ ^ Df

#110-57. \-'Oi+e v)+ a (m+ ll p) = fi+9 v+ 'sr+ p [#110-56. (#110-561)]
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The following propositions, concerning the addition of or 1, are used fre-

quently in dealing with inductive cardinals (#120).

#1106. h:/ieNC.D./A+
8 0«sm"/A

Dem.

h. #101-11. #110-21.3

h:.Hp.D:fe^+c 0. = .(aa,/3).ae/i.#e0.fsm(a + /9).

[#54102] =.(aa).ae/*.fsm(a + A).

[#110'152] = . (ga,y,S) . ae fi . ysm a . & sm A. y n S=A. £=y vS.
[#73'47] = .(g;a, 7). a € /a. ysm a. £ = y.

[#13-195] = . (ga).ae/<i. f sm a.

[#37-1] = . f esm"^ :. D h . Prop

When ^ is a typically definite cardinal, sm"/i is the same cardinal

rendered typically ambiguous; when
fj,

is a typically ambiguous cardinal,

sra"jii is fi. In place of the above proposition, we might write

ft eNC . D . /u. +c ~/jl; this would be true whenever the ambiguity of

^ +c was so determined as to make it significant. But the above form

gives more information.

#110 61. h. Nc'a -f = Nc'a

Dem.
h . #101-1 . D h . Nc'a +c

= Nc'a +c Nc'A

[#110'32] =Nc'(auA)

[#24-24] = Nc'a . D I- . Prop

In this proposition, Nc'a is typically ambiguous; hence we escape the

necessity of putting sm"Nc'a on the right, as we should have to do if

Nc'a were typically definite. We can deduce #110'61 from #110 -

6 as

follows:

r- . #110-3 . D h . Nc'a + = N c'a +
[#110-6] = sm"N c'a

[#103-4] = Nc'a

We have to travel via N c'a in this proof, in order to avoid the possibility

of a typical determination of Nc'a which would make Nc'a = A. It is for

the same reason that we cannot put "sm"Nc'a = Nc'a"; for if the first

Nc'a is determined to a type in which Nc'a *= A, while the second is not, this

equation becomes false.

#11062. b:fi+c v = 0.= . ^ = . i> =
Dem.

h . #103-27 . #101-1 1-13 . D I- . = N c'A (1)

h. (1). #110'43. D
\-i.fi+o v—0.=

[#110-202] =

[*24-32.*13-22] =

[#101 -1-12] =

r&w ir

A € jjl +c v :

2!^.g!i>:(g7,8)./u==Nc'7.i>= Nc'8.yri8=A.y<jS=A:

gl/Lt-a \v. /*- Nc'A. i/ = Nc'A:

At=0.i; = 0:.D[-.Prop

6
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#110 63. h . Nc'a +o 1 = | {(37, y) . y sm a . y~ e y . £= 7 v i'y]

Dem.

h.*101-2.D

h . Nc'a + 1 = Nc'a + NcV#

[*110"33] = | {(g7 , 8) . 7 sm a . 8 sm t'# . 7 n S = A . £ = 7 u $}

[#73-45] = |{(a% 8) . 7 sm a . S e 1 . 7 n 8 = A . f = 7 v 8}

[#62"1] = £ {(g7, 8,y). 7sm a. 8 = t'y. 7 r> 8 = A. £ = 7^8}

[#13195.#51'211] - I {(37, y) . 7 sm a . y~e 7 . £ = 7 u t'y} . D V . Prop

The above proposition is much used in the theory of finite and infinite, both

cardinal and ordinal. It connects mathematicalinduction for inductive cardinals

with mathematical induction for inductive classes (cf. #120).

#110-631. H/teNCD. /*+<.! = ?((Hy,y) • 7 e sm"/* .y~ey.% = yv t*y)

Dem.

I-. #110-211. #101-21.:)

H : Hp . D . fi +c 1 = f {(37, 8) . 7 esm> . 8 esm"l .y n & = A . % = yv 8}

[#101-28] =|{(a7,8).7€sm
fV.8el.7n8 = A.^ = 7uS}

[#52-l.#51-211] = % [(Qy^) . y esm"/j, . y^e y . £ = 7'-' l'y] • 3 H . Prop

The proposition

^eNC.D./i+ l=f{(a7,y).7e/i.y~e7.^sm7Wt^}

which might at first sight seem demonstrable, will only be true universally if

the total number of objects in any one type is not finite. For suppose a is a

type, and /* = N c'a. Then if a is a finite class, /* = i
l
a. Hence 7 e /* . D

Y) y . y e 7.

Hence i? {(37,y) -ye p.yr^ey . gsm(yv i
f
y)} = A in all types. But /*+c l will

exist in all types higher than that of 7. If on the other hand the number of

entities in a is infinite, we shall have

y set. D . a— t'yeNc's. y^e a — t'y.

Hence in this case the above proposition will be true universally.

#110-632. h:/ieNC.D./i+c l = £{to) V * £ • £- *'y e sm"/*}

Dem,,

V. #110-631. #51-211-22. D

f- : Hp . D . fi +c 1 = I {(a7l y) . 7 e sm"/i y e ? 7 = £ ~ t'y}

[#13-195] = I {(ay) .yeg.g-i'ye sm"/*} : D h . Prop

#110-64. f- . +c
= [#110-62]

#110641. h.l+
c
= 0+c l = l [#110-51-61 . #101-2]

#110-642. l-.2+c = 0+c 2 = 2 [#110-51-61 . #101-31]
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*110643. r.l+ l = 2

Dem*
H. f110-632. *101*21-28.D

[*54-3] =2.Dh.Prop

The above proposition is occasionally useful. It is used at least three times,

in *1 13 66 and *120123472.

*110-7'71 are required for proving #11072, and *11072 is used in *117*3,

which is a fundamental proposition in the theory of greater and less.

*1107. H:£Ca.D.(a^)./*eNC.Nc'a = Nc'/3+oAt

Dem.
h . *24-411-21 .Dh:Hp.D.a = £w(a-/3)./3n(a-£) = A.
[*110-32] D . Nc'a = Nc'/3 + Nc'(a - /3) : 3 h . Prop

*11071. h : (&fi) . Nc'a - Nc'/3 + fi 3 . (gS) . 8 sm £ . 8 C a

h.*100-3.*110-4.D

hiNc^Nc'^+^O.^eNC-t'A (1)

h . *1103 . D h : Nc'a= Nc'/3 + Nc'7 . = . Nc'a = Nc'(/S + 7)

.

[*100-3-31] D. asm (£ + 7).

[*731] D.(%R).Rel->l.T> tR = a.(I tR = lAy"l"j3yjAfil"i"y.

[*3715] D . (rR) . R € 1 -» 1
. 4 V't"£ C d'E .

£"
J, V'*"£ C a

.

[*110'12.*73-22] D ,(gS) . 8 Co . 8sm£ (2)

h.(l).(2).DKProp

The above proof depends upon the fact that "Nc'a" and MNc'/3+ /u" are

typically ambiguous, and therefore, when they are asserted to be equal, this

must hold in any type, and therefore, in particular, in that type for which we

have a e Nc'a, i.e. for N c'a. This is why the use of #100*3 is legitimate.

*11072. h : (a8) . Sam {3 . S Ca. = . (g/*) . /leNC . Nc'a « Nc'/S + y.

Dem.

r . *100-321 . *110-7 . D
V : . S sm £ . S C a . D : Nc'8 - Nc'£ : (gj-x) . ft eNC . Nc'a= Nc'S + fi :

[*13-12] DKa^.^eNC.Nc'a-Nc'tf+o/* (1)

h.(l).*110'7l.DH.Prop

6—2



*111. DOUBLE SIMILARITY

Summary o/#lll.

The arithmetical properties of a class, so far as these do not require or

assume that it is a class of classes, are the same for any similar class. But a

class of classes has many arithmetical properties which it does not share with

all similar classes of classes. For example, if k is a class of classes, the number

of members of s'tc is an arithmetical property of tc, but it is obvious that this

is not determined by the number of members of tc, but requires also a know-

ledge of the numbers of members of members of k. For example, let tc consist

of the two members a and & and let X consist of 7 and 8. Then «sm\; but

in order to be able to infer s*k sm s'X, we require «, Xe Cls2 excl and

a sm 7 . ft sm 8 or a sm 8 . fi sm 7 or some such further datum. The relation of

"double similarity," to be defined in the present number, is a relation between

classes of classes, which, when it holds between tc and X, insures that all the

arithmetical properties of tc and X are the same, e.g. we have (in particular)

NcV« = NcVX and Nc'e&'/c = Nc'sa'X. This relation we denote by "sm sm,"

which is to be read as one symbol. It is defined as follows: We define first the

class of "double correlators" of tc and X, which we denote by "* sm sm X," and

of which the definition is

#111-01. /csmsmX = (l-+l)Aa's'Xn£(«=2T

e"X) Df

so that

h : Te tc sm sm X . = . Te 1 -> 1 . d'T= s'\ . tc = Te"\.

We then define "tc sm sm X" as meaning that tc sm sm X is not null, i.e. that

there is at least one double correlator of tc and X.

To illustrate the nature of a double correlator, let us suppose that tc consists

of the two classes aY and a2 , and that ctj consists of xn , #12 , while a2 consists of

#21, #22> #33- Similarly let X consist of & and j32> while £1 consists of yn , yn
and /32 consists of y^, y^, yn . Now let T correlate each % with the y having

the same two suffixes. Then T is a one-one, and its converse domain is s
l
\.

Moreover TS& (which is Tii^1) = a1 , and 2V& = a2 ,so that Te"X = tc. Thus
T is a double correlator according to the definition.

The essential characteristic of a double correlator T is that (1) T is a
correlator of s'« and s'X, (2) T£ fX is a correlator of tc and X. If we write S
in place of Te [\ then if /9 e X, we have S*fi e tc; moreover T[@ is a correlator

of S'{3 and (3. Thus « and X are similar classes of similar classes. They are

not merely this, however, for we not only know that S'fi is similar to @, but
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we know a particular correlator of S'/3 and j5, namely T^fi. This is essential

to the use of double similarity, as will appear shortly.

Let us consider the relation between * and X which consists in their being

similar classes of similar classes. This means that there is a correlator 8 of k

and X, such that, if /9 e \, 8'/3 is similar to ft. That is to say, we are to consider

the hypothesis

(a-S) . 8 € 1 -> 1 . D'S = k . d'S = X . 8 G sm

or, as it may be more briefly expressed,

3 ! k sm X n Rl'sm.

Let us assume 8 e tc sm X n Rl'sm. If we attempt to prove (say) that s'/e

is similar to s'X, we find that we are forced to assume the multiplicative axiom,

unless k and X are finite. This necessity arises as follows. Let us put

Crp(S)^ = (£</3)sm/9,

where "Crp" stands for "correspondence." Then we know that whenever

/9eX, Crp(#)'# is not null. Further it is easy to prove that, if k and X are

classes of mutually exclusive classes, and if we can pick out one representative

member of Crp (S)'/3 for each value of ft which is a member of X, then the

relational sum of all these representative correlations gives us a correlator of

s
1k and s'X. That is, we have

hiK,\e Cls2 excl . 8 e «sm X n Rl'sm . JWCrp(S)"X. D.s'D'i2e(s'*:)sm (s'X).

But in order to infer hence s'k sms'X, we need a ! eA
fCrp($)"X, i.e. we

need to be able to pick out a particular correlator for each pair of similar

classes S'ft and ft. This, however, cannot be done in general without assuming

the multiplicative axiom. It follows that we must not define two classes as

having double similarity when g!«^Xn Rl'sm, but must give a definition

which enables us to specify a particular correlator for each pair of similar

classes. This is what is effected by the above definition of double correlators,

where our 8 is given as of the form Te fX, where Te 1 -> 1 . CL'T^s'X If the

multiplicative axiom is assumed, but in general not otherwise, we have

(#111-5) _
k, X e Cls2 excl .DiKsmsmX.s.^I/csmXn Rl'sm.

In the present number, we shall begin with various properties of double

correlators. We prove (#11 I'll) that T is a double correlator of k and X when,

and only when, T is a correlator of s'tc and s'X, and Te fX is a correlator of k

and X. We prove (#111-112) that in the same hypothesis, Te f"X e k sm Xa R-l'sm.

We prove (#111-13) that i|VX is a double correlator of X with itself; that

(#111-131) if T is a double correlator of k and X, T is a double correlator of X

and k; that (#111-132) if 8, T are double correlators of k with X and of X with

fj,
respectively, 8\T is a double correlator of k with p. Hence it follows

(#lll*45-451-452) that double similarity is reflexive, symmetrical, and transi-

tive.
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We then proceed (#11 1*2—'34) to consider Crp(#)"X, where it is to be

supposed that 8 is a correlator of S"\ and X, and that S'fi is similar to ft if

j3 € X. We prove

#111*32. r : X, S"\ e Cls9 excl . S e 1 ->1 . R e e4'Crp (£)"x . if= s'D'iZ . D .

M e 1- 1 . (I'M = s'X . S"\ = itf £"X . S fX = #« r*.

Thus in the case supposed, M is a double correlator of S"\ and X. Thus

#111*322. h : k, X e Cls3 excl . 8 e k sm X . R e e^'Crp (£)"X . if= s'D'i? . D .

M €Ksmsm\.S =M€ \\

We then proceed (#111*4—-47) to various propositions on "sm sm," and

finally (#11 1*5*51*53) state three propositions which assume the multiplicative

axiom, namely

#111*5. If k, X € Cls2 excl, then /esmsmX.= .a!«:smXn Rl'sm.

#111*51. In the same case, g ! k sm X r\ Rl'sm . D . s'k sm s
l
\, i.e. if k and X

are similar classes of mutually exclusive similar classes, their sums are similar.

#111*53. In the same case, if «,\e Cls2 excl, k sm sm X. Hence the multipli-

cative axiom implies that two classes of yt, mutually exclusive classes each of

which has v terms, have the same number of terms in their sum.

#111-01. *8msmX = (l^l)*aVXnT(«: = Te"X) Df

#111*02. GrpW/S-iS'flm/a Df

#111*03. sm sm •= £ X (g ! *: sm sm X) - Df

#111*1. h:Te/esmsmX.-=.Tel->l .a'T=s*\. k=Tc"\ [(#111*01)]

#111*11. h : Te k sm §m X . = . Te(s'/e) sm (s'X) . T* f X e k sm X

Bern,

h . #37*25 . Fact . D h : d'T= s<\ . * = 2V'X . D . DT= 2"VX . k = Te"\

.

[#40*38] D . T>'T= s'T<«\ . k = Te"X

.

[(#37*04)] D.D*T=s<k (l)

h . #72*451 . #60*57 . #35*65 . D

h:Tel^l.a'T=s'X.D.2Terx 6 l^l.X = a'(Terx) (2)

V .#37*401

.

D r : *» T,"\ . = . K = T>
t(Te[\) (3)

h.(l).(2).(3).#4*7l.Dh:Tel-^l.a'T=s fX.A:=2T

e"X.-=.

Tel-+l.T><T=s<K.(I<T= s<\.T€ \>\el->l.T><(Te\'\)= K .(I
t(Te\'\)=\ (4)

r . (4) . #111-1 . #73*03 . D h . Prop

#111111. f-^etfsmsmX.D.rerxGsm
1 Dem.

r-
.
#111*1

. #60*57 .Dh:Hp.D.r«l->l.XC Cl'd'T

.

[*73*5] D . r.TX Gsm : D h . Prop

#111*112. HireArsmsmX.D.retXe^BmXARl'sm [#111*11*111]
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The two following propositions are useful lemmas for the case when T is

replaced (as it often is) by T[ a.

*11112. h^'XCo.D.^ ay'\ = Te"k . (T[ a> [ X = T, \\
Dem.

V . #37101-421 . D h : /9 C o . D . (!Tr ay/3 = Te'0 (1)

h.*4013. Dh-.Hp.D
h.(l).(2). Dr:.Hp.D
[#37-69.*35-71] D

(2):£e\.3.£Ca
ij3e\.1.(T{ayj3=Tt</3i

:(2
Tt-a)e"X=r/'X.(2

7

ra)e[
kX = Te ^:.Dr.Prop

#111-121. \-.(T\'8<\)e"\ = Te"\ = (Te r\y<\.(T\'s<\)e \'\ = T4\
Dem.

h . #37-421 . D h . Tt"\ = (Te [ X)"X (1)

h.(l). #111-12 — .Dh.Prop

#11113. h . /[VXeXsnismX

I- . #72-17 . *50-5'52 . D h . J p s'X e 1- 1 . d'(/ f s'X) = s'X

h. #111121. Dh.(I[s'\y'\ = Ie"\

[#5016-17] = X

h.(l).(2).#llll.Dh.Prop

#111131. h^e/csmsmX.^.TeXsmsm/c
Dem.

\- .#71*212 . Z) I- : Tel -> 1 . = . Te 1 -> 1

h . #11111 . D h : Te k sm sm X . D . DT= a'*

(-.#1111. (2). *60o7. D
\-:T€/emm\.3.Tel^l.KCC\<~D<T.\CC\'a'T./c=Te"\.

(1)

(2)

(1)

(2)

[#74-6] D.X = (T)e
"«

h . (1) . (2) . (3) . #111-1 . D h : TeKsm sm X . D . TeXim sm *

Dh-TeXsmsmtf.D.Te/esmsmX
71

(3)

(4)

(5)

I- . (4) . (5) . D h . Prop

#111132. h:-Se«smsmX.TeXsmsm/i.D./Sf|Te«smsm/*

Dem.
h. #11111. #73-311. D
h : Hp . D . S|T e («<«) sm (sV) (& [ \)\(Te

[

/*) e* sm

^

h . #35-354 . D h . (Se [\)\(Te[ a*)
= &I(x 1 T<? l»

h .#74-251 .#1111 . D h : Hp . D . &[(X1 re|» = &|(re|»

[#35-23] = (&|Te)|>
[#37-34] =(S\T)4fi

h . (1) . (2) . (3) . D h : Hp . D . S|Te(s'tf)sm(s*» . (S|T)e|> e «im/i

[#111-11] D.sjre^smsm^rDI-.Prop

(1)

(2)

(8)
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#11114. \-:T\-s'\eKmm\. = .Tts<\6l^>l.s<\C(I<T.fc = Te"\

Bern.

f- . #1111121 . D

I- :Tts<\e/cmm\. = .T\'s'\el->l.(I'(Tts'\) = s'\.fc = Te"\.

[*35-65] = . T[s'X e 1 -> 1 . s'X C <TT'. k = Te"\ .Oh. Prop

#11115. V :T\ s'Xe KsmsmX . = . T\ s'Xe{s'K)m(s'X) . Te \Xe KsmX

Dem,

h. #111-11. D

h : T \ s'X e k sm sm X . = . T\ s'X e («'«) im (s'X) . (T \ s'X)e \ X e k sm X (1)

h.(l). #111-121. Dh. Prop

#11116. h:g!asm/3nysmS.D.a = y./3 = 8

Dem.

h . #7303 . D h : Hp . . (g-5) . D'R = a.d'R = p. ~D'R = y.<l'R = 8.

[#13-171] D.a = y.£ = $:DI-. Prop

#11118. h . a sm £ C (a f /3)a</3

Dem.

h . #35-83 . #73-03 ,3\- i Ream/3 .0 .RGaf & (1)

h. #73-03. 0\-:Reamp.0.Rel^>G\s.a'R = /3 (2)

h. (1). (2). #8014. Dh. Prop

The class (a f /3)a'/9 is important, being the class of Cantor's "Belegungen"

used by him to define exponentiation; we have in fact

Nc'(a t £)A'£ = (Nc'a)Nc^
Thus the above proposition shows that Nc f(a sm /?) is less than or equal to

(Nc'a)Nc</3 ; and since, whenever it is not zero, Nc'a = Nc'/3, it is less than or

equal to

(Nc'a)Nc'<\

The following propositions lead up to #lir32-33'34:

#111-2, h : E ! S'0 . D . Crp (S)</3 = (S'£) sm £ [*14'28 . (#111-02)]

#111-201. h :/{Crp(S)'£} . = .f{(S'/3)sm/3} [#4*2 . (#111-02)]

#111-202. h:5eCrp(S)')3.s. J2el->l.D'J2 = iS^.a'i2^
/
8

[#111 -201. #73-03]

#111-21. r : a ! Crp (S)'p . = . S</3 sm p [#111-201 . #7304]

#111-211. h : a I Crp (£)'£. D .E ! S'/3 .^effS [#111-21 .#14-21 .#3343]

#111-22. I- :. /3e(I'S . D
fi

. a ! Crp(<S)'£ : = . Se 1 ->Cls . 5 Gsm
Dem.

h.#lll>2i.Dh-../3ea<S.l
fi .R\Crv(S)</3-. = :/3 6a (S.D li .S</3fim/3:

[*72-93] ==:Sel->Cls.£Gsm:.:)l-.Prop
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#111-221. h : . S e 1 -> Cls . 8 G sm . D : a ! Op (S)'p . = . /3 e d'S

h. #111-22. D h s.Hp.Ds^ea^.D. a !Crp(S//9 (1)

l-.(l). #111-211. Dh. Prop

#111-23. h : 8 e 1- 1 . /3 e <3<£ . D . Crp (S)'0 = Cnv"Crp (S)'S</3

Bern.

h. #111-2. #71-163.3

h :. Hp . D : Crp (S)<$ = (£'£) sm £
[#73-301] = Cnv"(£ sm S'j3)

[#72-241] =Cnv"(S'S'l3mS'@) (1)

h . (1) . #111-201 £~? . D h . Prop

#111-24. h : fl e 1 -> Cls . X C Cl'fl . I) . Crp (S)"X e Cls2 excl

Dm.
h. #111-2. #71-163. D

h :. Hp . D : £, 7 e X . D^ . Crp (#)</3 = (£'£) sm /3 . Crp (£)'7 = (S'y) sm 7 . (1)

[#111-16] Dp, y .a!Crp(S)' /
8nCrp(iS)'7.D.^=7.

[(l).#30-37] I).CrpOS)</3=Crp(£)<7 (2)

h . (2) . #37-63 .
~> h :. Hp . D : p, a e Crp (£)"X . a ! p n a . 3Pi<r .p=<r:. D h.Prop

#111-25. h : £ e 1 -> Cls . £ G sm . X C <3SS . I) . Crp (S)"X e Cls ex2 excl

[#111-24-22]

#111-3. h : X e Cls2 excl . D . s"D"e4'a sm"X C (0 f s'X)A 's'X

Dem.

h . #37-29 . #24-12 . D

I- : e/a sm"X =A . D . s"D"eSa sm"X C (a f s'Xys'X (1)

+ .#83-1.3

h :. Hp . a ! eA'a sm"X .D:/3eX.D^.a!a sm'/3 .

[#111-18] V3 («!#)*'£

[#80*15] ZVa!(af «'X)a'£:

[#80-83] ^ = {(« t *'*)*"*} 1 (« T *'^)a e 1 - 1 (2)

h . (2) . #111-18 . #85-72 «f>(«tfVU _ ^

f- : Hp . g ! eA'« sm"X . D . D"e./a sm"X C D"ed'(a f «'X

)

A"X

.

[#37-2] D . i"D"e4'a sm"X C s"D"ed'(a f s'X)A"X

[#85-27] C(afs'X)AVX (3)

h . (1) . (3) . D h . Prop
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#111-31. h : X, S"\ e Cls2 excl . 8 e 1 -> 1 . R e ed'Crp (S)"\ . D .

Dem.

h . #83*2 . D
I- :. Hp . D : £eX . = . JS'Crp (Sy/3eGrp(S)'0 .

[#111-202] = . iZ'Crp (S)'/3 e 1 -> 1 . D'JS'Crp (S)</3 = S'fl .

(Ti2<CrpOSf)'/3 = /3 (1)

h . (1) . #72-322 . D h : Hp . D . s'£"Crp (S)"\ e 1 -> 1

.

[#8034] D.i'D'J2el->l (2)

h . (1) .#37-68. #50-1 7 . D I- : Hp . D . D"£"Crp (S)"X = S"\ .

(I"#"CrpOS)"X = X.

[#80-34] D . D"D'i£ = £"X . d"D'i2 = X .

[#41-43-44] 3.D's'~DfR = s
tS"\.a<s<D'R = s

t\ (3)

I- . (2) . (3) . #73-03 . D h . Prop

#111-311. I- : X, £"X e Cls2 excl . 8 e 1 -» 1 . a ! eA <Crp (£)"X . D . tfS«\ sm s'X

[#11 1-31. #7 3-04]

#111-313. h : X e Cls2 excl . R e ed'Crp (<S)"X . /3 e X . i/ = s<T>'R . D .

M \ /3 = R'Cr? (S) (

J3 . M [ e Crp (£)'/3

Bern.

(1)h .#83-2. D I- :: Hp . D :. a e X . X : E'Crp (S)'a e Crp (S)'a :

[#111-202] Da : d'E'Crp (#)<« = a :

[#33-14.*4*71] Da ia;[R'Crp(Sya}y. = .a;{R'Crp{Sya}y.yea (2)

h .#35101 .#83-23 . #4111 . D

[(2)] = . (ga) . a € X . # {iZ'Crp (S)'aj y*yean]3.
[#84-ll.*22-5] =.(aa).a6X.a?{J2'Grp(S)'o}y.y6iS.o=-i9.

[#13-195] =.0e\.x {iZ'Crp (S)'/3} y . y e /3 .

[Hp.*4-73.(2)] = . sb (E'Crp (S)</3} y (3)

h.(l).(3).DKProp

#111-32. h : X, £"X e Cls2 excl '. 8 e 1 -> 1 . E e e4'Crp (£)"X . if« s'D'i? . D .

M e i -> i . a'if= s'x . s«\ =

M

e"\ . 8[ x = ife r X
Dem.

h . #111-31 .#7303 . D h : Hp . D . if e 1 -> 1 . G'l = s'X (1)

h . #111 313202 . D h :. Hp . D : £ eX . D . D'(if f/3)
= S</3 . d'(i/ p/3)=>9.

[#37-25] I), (if [*•£)"£ = S</3.

[#37-421-11] D.ife'£ = S<£:
[#35-71.#37-69] D : i/e f X = 8 fX . ife"X = <S"\ (2)

h.(l).(2).Dh.Prop

#111-321. H : X, £"X € Cls2 excl . 8 e 1 -> 1 . 3 ! e^Crp (S)"\ . D .

(&M) . if 6 1 -> i . a<if=s'x . £"x= if€"x . iSrpx = M4 x

[#111-32]
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*111'322. h : k, X e Cls2 excl . S e k sm X . R e e4'Crp (S)"X . M= s'D'R . D .

Me/e&mm\.S = Met"K [*lll*32-l.*35-66. #73*03]

#11133. h :.MuItax.D : S el^l.£Gsm.K,XeCls2excl.*=S"X.XCd'£.:> .

s'k sm s'X

Dem.
h. #111-221. D

h :. Se 1 -» 1 . SGsm . k,\ e Cls2 excl . * = S"X . X C d'S. D :

0eX.Va!Crp(S)'j8:
[#88-37] D : Mult ax . D . g ! e4'Crp (#)"X

.

[#111-311] D.s'«:sms'X:.Dh.Prop

#111-34. h:.Multax.D:

(g#) . £ e 1- 1 . S G sm . D'jSf = k . d<$ = X . *, X e Cls2 excl . D .

(g-jtf) . Me 1- 1 . d'l/= s'X . * =Me"\
Dem.

K #111-25. D

f-:.#el->l.£Gsm.D'£=«:.d ,'£ = X.A:,Xe Cls2 excl . D :

Crp(^)"XeClsex2 excl:

[*88-32] D : Mult ax . D . a ! eA'Crp (S)"\

.

[#111*321] D . (gif) . if e 1 - 1 . d'M=s'X . k - i/e"X (1)

h . (1) . #10-11-23 . Comm .Dr. Prop

The following propositions are concerned with the elementary properties

of "sm sm." It will be seen that they are closely analogous to those of "sm."

*1114. h:/tsmsmX.= .(ar).2
76l->l.aT=s'X.«=?Te"X.».a!«smsmX

[#11 1-1. (#11 1-03)]

#111-401. h : k sm sm X . = . (>&T) .Tel^>l.s'\C d'T. * = 2V'X

Dem.

h.*22-42.#lll-4.Dh:«smsmX.D.(a2T).rel->l.s'\Caf2
T.«=2Te"X (1)

h. (1). #111-14. Dr. Prop

#111-402. h : k sm sm X . = . (gT) . Tfs'X e 1 -> 1 . s'\ C d'T. k = T/<\

[*111-14-1121]

#111-43. I- : *sm sm X . D . faS) . Se 1 -> 1 . SGsm . D'£= a: . d'£= X

[*11MM11]

#111-44. r:/esmsmX. D . a: sm X . «'*• sm s'X [#111*1 1*4. #73*03]

#111-45. r.XsmsmX [#111*13-4]

#111-451. h:A:smsmX. = .Xsmsm/c [#11M31'4]

#111-452. h:«i8rasm\.Xsmsm/i.D.«smsm/t [#111-132-4]

#111-46. h : X, £"X 6 Cls2 excl . S e 1 -> 1 . H I e4'Crp (S)"\ . D . S"X sm sm X
[#111-32-4]
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#111-47. h:.*smsm\.D:«e Cls2 excl .
= . X e Cls2 excl

Dem.

h . #111-4 . D h :. Hp . D : (&T) . Te 1 -> 1 . (FT^'X . * = T"'X :

[*84-53] D : X e Cls2 excl . D . « e Cls2 excl (1)

f- . (1) . *111-451 . D F- :. Hp . D : k e Cls2 excl . D . X e Cls2 excl (2)

h . (1) . (2) . D h . Prop

#111'5. h : : Mult ax . D : . k, X e Cls2 excl . D :

*smsmX. = .(aS).i8fel->l . SGsm . D'£= * . (F£ = X .

= .a!ArsmXr.Rl'sm [*lll'34-43'4]

#111*51. h :. Mult ax . D : te, X e Cls2 excl . g ! /e sm X r\ Rl'sm . D . s'« sni s'X

[#111'5'44]

#111-52. h :fi,ve NC . k, X e /* r. Cl'v . D . g ! k sm X r. Rl'sm

Dem.

h . #100-5 . #73*1 . D f- : Hp . D . (g£) . S e 1- 1 . B'S = * . <J'S = X (1)

h. *100'5. Dh:.Hp.D:ae«r./9eX.D.asm^ (2)

h.(l).(2).Dh.Prop

#11153. h : . Mult ax . D : /*, y e NC . k, X e p n CI excl'v . «: sm sm X

[#11 1-52-5]



*112. THE ARITHMETICAL SUM OF A CLASS OF CLASSES

Summary q/"#112.

In this number, we return to the arithmetical operations. The definition

of addition in #110 was only applicable to a finite number of summands,
because the summands had to be enumerated, In the present number, we
define the arithmetical sum of a class of classes, so that the summands are

given as the members of a class, and do not require to be enumerated. Hence
the definition in this number is as applicable to an infinite number ofsummands
as to a finite number.

If k is a class of mutually exclusive classes, the number of s'k will be the

sum of the numbers of members of k\ i.e. if we write "2Ncf«" for the sum of

the numbers of members of «,

k € Cls2 excl . D . NcV* « 2Nc'«.

But when the members of k are not mutually exclusive, a term $ which is a

member of two members (say a and /?) of k has to be counted twice over in

obtaining the arithmetical sum of «, whereas in the logical sum x is only

counted once. Thus we need a construction which shall duplicate x, taking

it first as a member of a, and then as a member of /?. This is effected if we

replace x first by x I a, and then by x I ft. In fact, x I a has the kind of

arithmetical properties which we mean to secure when we speak of "x con-

sidered as a member of a"—a phrase which, as it stands, does not serve our

purpose, for x is simply x however we may choose to consider it. Thus we

replace a by
J,
a"a and fi by J, ft"ft and so on; i.e. (using #85*5), we replace

a by e J a and ft by e J ft and so on. These new classes are similar to a and ft

and so on, and are mutually exclusive. Hence their logical sum has the

number of terms which is wanted for the arithmetical sum of the members of

k. Thus we put
2<« = s<6j"* Df;

2Nc'* = Nc'£'* Df

With regard to the second of these definitions, it is to be observed that

2Nc f« is not a function of Nc"«, unless no two members of k are similar; for

Nc"vc cannot contain the same number twice over. For the same reason, if \
is a class of cardinals, and we define "Sum'X," we do not get what is wanted

for arithmetical addition, because our definition will not enable us to deal

with summations in which there are numbers that are repeated. We could,

if it were worth while, define "Sum'X" as follows: Take a class of classes k,

consisting of one class having each number which is a member of X, i.e. let k
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be a selection from X; then 2'te will have the required number of terms. I.e.

we might put

Sum'X= | {(a*) . * e D"e*'X . f sra %<K} Df.

But since this definition is only available for sums in which no number is

repeated, it is not worth while to introduce it.

In this number we prove the following propositions among others.

*11215. h : k e Cls* excl . D . s'/e e 2Nc'/c

This is an extension of #110*32.

#11217. h : * sm sm X . D . XNc'k = 2Nc'X . 2'* sm 2'X

The chief point in the above proposition is that it does not require

k, X e Cls2 excl.

#112*2—*24 are concerned with the use of the multiplicative axiom and

the propositions of #111 in which it appears as hypothesis. We have

#11222. h :. Mult ax . D : 3 ! (eJ"*)sm(4"X) « Rl'sm . D . 2Nc-"« = 2Nc'X

whence we derive the proposition

#112*24. h :. Mult ax . D : fi, v eNC . k, X e ji a Cl'v . D . 2Nc-"/e = 2NCX

J.e. assuming the multiplicative axiom, two classes which each consist of

fx classes of v terms each have the same number of terms in their sum. This

number would naturally be defined as /a multiplied by v, but owing to the

necessity of the multiplicative axiom in this proposition, we have selected a

different definition of multiplication (#113) which does not depend upon the

multiplicative axiom. The reader should observe that the similarity of two

classes, each of which consists of fi mutually exclusive sets of v terms, cannot

be proved in general without the multiplicative axiom.

The remaining propositions of this number give properties of 2 in special

cases. We prove that 2'A = A (#112*3), that 2NcVa = Nc'a (#112*321), that

« +£ . D . 2Nc'(t'a v i'#)=Nc'a + Nc'/3 (#112*34), which connects the defini-

tion of addition in this number with that in #110. Finally we prove the

general associative law for addition, in the following two forms:

*112'41. h.s f2"X = 2VX
#112-43. r : X e Cls2 excl . D . Nc'2f2"X - Nc'2VX

#112-01. 2'*«s'eJ"* Df

#11202. 2Ncf* = Nc<2'*: Df

#112-1. r . 2'* - 8f
e l"K [#20-2 . (#112-01)]

#112-101. h . 2NC* = Nc'2'« = NcVe \"k [#20-2 . #112-1 . (#112-02)]
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#112102. h . t lK = B {fact, x).ae K .vea. R**xla}

Dem.
h . #85-6 . #4011 . #1121 . D

h . %'k = & {fan, a) . a e k . ^ = 4 «"« .-Bfi^]

[#13195] =£ {(aa) . a e /c . R e I a"a}

[*55'231] = E{(aa,a!).ae«:.a:ea. JB = a;4a} , D (- . Prop

#112103. h . 2'« = *£ {(aa) . a e « . m = 4 «"«} [*1121 . #85-6]

#11211. h:/3e2Nc'*. = .j8sms'eJ"« [#112101]

#11212. r-.s'«I"*e2Nc'« [*11211]

#11213. h:\smsmeJ"/c.D.s'\e2Nc'«; [#111-44 .#11211]

#11214. h : « e Cls2 excl . D . e \"tc sm sm k

Dem.

h . *21'33 . D h :. Hp . T= fix {faa) .ae/t.fcea.i^^a}.}:
#272 . y272 . D . (ga, ^).i£ = ^4a.JR = y4/5.

[#55-31] D.x = y:

[#7117] D : 1*6 1-> Cls (1)

h . #21-33 . D
h:Hp(l).aj2T

i2.aj2
T5.D.(aaJ

j8).a,^e*.a;eaA^.72 = aJ 4a.5«aj4/8.

[*8411.Hp] 0.(Ka,8).a = p.R = xlci.S= xll3.

[#13-195] O.R = S:

[#71171] D : Te Cls -> 1 (2)

h . #33131 . D h :. Hp (1) . D : «ea rr. = . (g^, a) . a e /c . «ea . iJ = a; ^ a.

[#5512] =.ices'« (3)

K #37111. D
h :: Hp . D :. a e* . D : R e 2Va . = . fax, 0) .xea n @ . e k . R = x I .

[#84-11.Hp] =.fax,0).xectn/3./3€K.a = t R = xl0.
[#13195] =.fax).xea.R = xlfi.

[#85-601] =.i2eej'a:.

[#37-69] 0:,T€"k = €1"k (4)

(- . (1) . (2) . (3) . (4) . #111-4 . D b . Prop

#11215. f-:*eCls2 excl.D.s'*e2Nc'« [#11214*11 .#111-44]

#112151. s'e l"\ = R {faa,x) .ae\ .X6Ct.R = xla} . s's'e J"X = ef A.

Dem.
K #4011. (#85-5). D

h . s'e l"\ = £ {fact) .aeX.Re], a"a}

[#38-131] = _R{(aa,#).ae\..#ea.E = # >[r
a} (1)

K(1).#4111.D
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[*13-195.*55'13] = {(30, x) .cteX.xea ,y = x . /3 = a]

[#13-22] = £/3{/?eX.y 6 /3)

[#35101] = efX (2)

h . (1) . (2) . D h . Prop

The following proposition is a lemma for #112153, which is required for

#11216. #11216 in turn is used in #11217, which is a fundamental proposi-

tion in the theory of addition.

#112152. h : Te 1 ->Cls . £C (FT. D . (T\\ Te)"e J £ = e J (T"/3)

Dem.

h . *37-6 . #85-601 . Dh.CT||Te)"€ J£=%ay).ye/8.i2=(r||?e)'(y 1 /?)} (1)

h.(l).*55*61.D

h : Hp . D . (T\\ £)«e J £ = R {(ay) . y e /8 B = <2*y) J, (ft'0)}

[#3711] -£{(a30-y«0-^ = (^H(^'£)}
[#38-131] =

J, {T"fr)"(T"&)

[#85-601] = e J (2" 73) : D h . Prop

In the following proposition, we have a double correlator of a sort which

will frequently occur in cardinal arithmetic, namely T\\T£ with its converse

domain limited, where T is a given double correlator (or single correlator, on

other occasions). As appears from the propositions used in the above proof of

#112*152, if T is a correlator whose converse domain includes j3 and has y as

a member, (r|| Te)'(y l/3) = (T'y)
J,
(T"$). Thus Tj| Te is an operation which,

when operating on suitable relations of individuals to classes (including selec-

tors), turns the individuals into their correlates and the classes into the classes

of their members' correlates. This is why it is a useful relation.

#112153. re*SmsmA..D.(r||?e)|
k

fi
reJ"Xe(eJ"*)sm8m(eI"X)

Dem.

r . #112-151 .#41-43-44 . Z> h . s'D'Ve I"X=»D'(e [ X) . s'(I"s'e J"X=(F(€ [ X) .

[#62-41-43] D\-.s<r>"s'el"\ = s
f\.s'(I"s (el"\ = \-i iA (1)

h.(l).#1111. #37231. "}\-:H.v.1.s'D"s (el"\C(I'T.s'<l"s (€l"\Ca'Te (2)

K #111-1. #71-29. Dh:Hp.D.ZTrs'D'VeJ"Xel->l (3)

h . #111-11 . (1) . D h:Hp . D . Te T s'd' <s'e J"\ e 1 -» 1 (4)

M2).(3).(4).*74-775
S-^|^^^^^ (5)

h. #43-302. 3\-.s'el"\C(I<(T\\re) (6)

h . #112-152 . D h : Hp . D . (T\\ Te)"<e J"X = e J"T"'X .

[#3711] 3.(T\\T€y<el"\ = el"Te"X
[*lH-l.Hp] =el"K (7)
h. (5). (6). (7). #111-14. Z>h. Prop
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*11216. h:*smsmX.D.<? J"«smsmeJ"X [#112153 .#111-4]

#11217. h : * sm sm X . D . XNc'k « SNc'X . S'k sm 2'X

Dem.

V . #112-16 . #111-44 . D h : Hp . D . s<€ J"* sm s'e J"X (1)

K (1). #112-1 101. DK Prop

#112-18. f- . SNc'k = SNc'e J"*
Dew,

h . #85-61 . #112-15 .Dh./e J"* e SNc'e J"/e (1)

I- . (1) . #112-12 . #100-34 . D I- . Prop

#112-2. I- : S e 1 -> 1 . V'S = e J"« . (PS = e J"X . 3 ! eA
fCrp (S)"\

.

D . 2Nc'« = SNc'X . S'« sm 2 fX
Dew.

h . #111-311 . #85-61 . D f- : Hp . D . s'e 1"k sm s'e J "A. (1)

b.(l). #1121101. DK Prop

#112-21. h :. Mult ax . D : (gfif) . Se 1-*1 . £G sm . D'£=6 J"« . (FS= eJ"X

.

= .eJ"«smsmeJ"X [#111-5 .#85*61]

#112-22. r-:.Multax.D:3!(eIa/c)sm(eJ"X)nRlfsm.D.
2Nc'« « 2Nc*X [#1121718-21]

*112-23. h :. Mult ax . D : *, X e Cls2 excl . g ! k sm X r\ Rl'sm . D .

s
f
*, s'X e 2Nc<« . SNcSe = XNc'X

Dem.

f- . #1 12-15 . D h : Hp . *, X e Cls2 excl . D . s'k e 2Ncf« . s'X e XNc'X (1)

h . #1 11-51 . 3 h : Hp (1) . g ! k im X n Rl'sm .D.s'k sm s'X (2)

f- . (1) . (2) . D K Prop

#112 231. h : #e * smX n Rl'sm . D . e J 1
8} CnVe Je(eJ"*)sm(eJ"X) n Rl'sm

Dem.

h. #73-63. #85-601. Dh:Se*liax.D.eI|S|Cnv'el6(eJ"*)^(eI"X) (1)

h . #85-601 . #73-33-34 . 3 h : S G sm . D .4 1£| Cnv'eJ Gsm (2)

f-.(l).(2).Dl-:/S'e«smXnRl fsm.D.eJ|>Sf|Cnv fej6(eJ"«)sm(€l"X)nRl'sm;

Dh.Prop

#112-24. h :, Mult ax . D : p, v e NC . k, X e yu n CIS . 3 . 2Nc'k = SNc'X

Dew*.

I- . *111'52 . D 1- :
fj,,

v € NC . *, X e (i n OYv . D . 3 ! tc sm X r\ Rl'sm .

[#112-231] D. a !(eI''*)sm(eJ''X)nRl'sm (1)

h . (1) . #111-51 . #85-61 . D
I- :. Mult ax . D : ^ v e NC . «, X e

fj,
n C\'v .3. s'e J"«sm s'e J"X .

[#112-101] D . £Nc'*= SNc'X :. D h . Prop

R&W II 7
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*U2'3. h-2'As.A [*37'29.*40'21.*112-1]

*112*S01. r.2't'A = A
Bern.

r . *112*102 . D I- . 2<t'A =R {faa,x) . ae t'A . # ea . £ = # I a}

[*5115] =^{(a ir).«eA.i2 = a; 4A}
[*24-15] = A . D r . Prop

*112'302. I- . Vk = 2<(* - t
fA)

Bern.

\-. *112-102. D \-. 2,'x =R {faa, a). « etc. a; e a. R*=oc I a]

[*10*24] =E {(3a, oc) . a e k . 3 ! a . x e a . R = # ^«j

[*53'52] = Jtt {(g;a, #) . a e « — t
fA . a e a . .R = <c j a)

[*112102] = 2<(«- t'A) . D h . Prop

Thus if A is a member of a class of classes, it does not affect the value

of their arithmetical sum.

*112-303. f-:/cnX= A.D.S'«AS'X = A
Bern.

K*112\L02.D

r : R e %'k a X'\ . = . fact, /3,x,y).a.€Knfte\.ocea.y€l3*R-=zccla = ylft.
[#55"202] D . (get, ar).ae«nX.#ea.

[*24-5] D.g!«nX (1)

r
.
(1) . Transp .Dr. Prop

*112-304, F:2'« = A. = .$'/c = A
Bern,

h . *1 12-3-301 . *53*24 . 3 h : s'k =A . D , 1<k = A (1)

h . *112\L02

.

DhraeK.^ea.D.ajjaeS'/c:
[*10'24.*40-1 1] D r : g ! s'k . D . g ! 2,'k (2)

h.(l).(2).Dh.Prop

*112'31. h . 2'(« u\) = 2<* u S'X

r . *1121 . D r . 2 r
(# w\) = s'e J"(* w A.)

[*40'31] = s'eI"«v,s<6 J"\
[*112-1] =S f/cvn.Dh, Prop

*112-311. r : * n X = A . D . 2Nc r
(* u\) = 2Nc'* + SNc'A.

1-.*112-303.*110-32.D

f- : Hp . D . Nc'(2<* v, 2*\) = Nc'S'k +c Nc'S*X
[*112\L01] =2Nc'*+ SNc'\ (1)

r.(l).*112-31.DKProp
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*11232. h . 2Va « e J a

Bern.

h . *53'31 . #1121 . D h . 2't'a = s
f
t'e J a

[*53'02] = e J a . D h . Prop

*112'321. V . 2NcVa = Ne'e [*112-32101 . *85'601]

*112-33. h . 2'(t'a u t'0) = e J a u e J /3 [#112-32-31]

#112331. h.S'(«ut^) = 2f«ueJ,/3 [*112-31*32]

*11234 h : a + £ . D . 2Nc'(t<a w t</9) = Nc 'a +c Nc</3

K #51-231. #112-311.3

h : Hp . D . SNc'(t'a u t</3) = 2Ncf
t'a + 2NcV£

[#112-321] = Nc'a+c Nc f£:Dl-.Prop

This proposition establishes the agreement of the two definitions of

addition, namely that in #110 and that in #112. It will be seen that the

definition of #112 is inapplicable to the addition of a class to itself, if this

is to give the double of the class, instead of (like logical addition) simply

reproducing the class. Hence the need of the condition a 4= fi in the above

proposition.

#112-341. 1- : #~e * . D . 2Nc'(k w i'&) = 2Nc<* +c Nc<£

Dem.

h . #51-211 . D h : Hp . D . * n t'0 =A

.

[#112-311] D . 2Nc'(« v i'j3) = 2Nc<*+c SNcVjS

[#112*321] = 2Nc'« +c
Nc</3 : 3 h - Prop

#11235. !-:« + £. « + ?.£ +7. D.2Nc'<Va u t</3 w t<7)=Nc'a+ Nc<£+eNc
f
7

Bern.

h . #51-231 . #112-311 . D

h : Hp . D . 2Nc'(t'a u t<£ u (
<

7) = 2Nc'(t'a v, t<£) + 2Nc't<7'

[#112-34-321] = Nc'a + Nc'/3 +c Nc<7 : ^ •" • Prop

Similar propositions can obviously be proved for any finite number of

summands.

#112-4. h : s'k, s"k e Cls 2 excl . D . 2NcV* = 2Nc's"«

Dem.

h . #112-15 . D h : Hp . D . 2NcV* - NcW*
[#42-1] =NcW*
[#112-15] = 2NcV* : D f- . Prop

7—2
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#112-41. \-.s
ft"\ = 2's t\

Dem.
h . #112-1 . D h . a

tX"\ = a
ta"e l"'\

[#421] = sVeJ"'\

[#40-38] =s'eJ'V\

[#1121] = 2V\OKProp

#112-42. (- : \ e Cls2 excl . D . 2"X e Cls2 excl

K #112-303. DK.XeCls2 excl. D:/9,yeX. £ + 7. Dfty
.S'j8n2 f7*A :

[*30-37.Transp.#37-63] D : /*, v e 2"\ .jt +vO^.^ni/^A:
[#84-1] D : %"\ e Cls2 excl :0 K Prop

#112-43. h : X e Cls2 excl . D . Nc'£'2"A, = Nc'S's'A.

h . #11215*42O h : HpO . Nc'2'2"X = NcV2"X
[#112-41] = Nc'SVXOK Prop

The above is the associative law for arithmetical addition.



*113. ON THE ARITHMETICAL PRODUCT OF TWO CLASSES
OR OF TWO CARDINALS

Summary o/#113.

In this number, we give a definition of multiplication which can be

extended to any finite number of factors, but not to an infinite number of

factors. We define first the arithmetical class-product of two classes a and 0,
and thence the product of two cardinals p and v as the number of terms in the

product of a and when a has p terms and has v terms. In #114, we shall

give a definition of multiplication which is not restricted to a finite number
of factors. The advantages of the definition to be given in this number are,

that it does not require the factors to be of the same type, and that it enables

us to multiply a class by itself without (as in logical addition and multiplica-

tion) simply reproducing the class in question. The disadvantage of the

definition in this number is the impossibility of extending it to an infinite

number of factors.

The arithmetical class-product of two classes a and 0, which we denote by

x a*, is the class of all ordinal couples which take their referent from a, and

their relatum from 0, i.e. it is the class of all such relations as x ^y, where

x e a and y e 0. For a given y, the class of couples we obtain is I y
{i
a, which

is similar to a; and the number of such classes, for varying y, is Nc f
/9. Thus

we have Nc'/9 classes of Nc'a couples, and x a is the logical sum of these

classes of couples. The class of such classes as ^ y* 'a, where ye0,is important

again in connection with exponentiation; we have I y
tfa = a^y, whence the

class of such classes, when y is varied among the /3s, is a I "0, and

0xa = s'al"0 (cf. #40-7),

which we take as the definition of x a.

We represent the arithmetical product of //. and v by (i xc v. This, as well

as Nc'a x c Nc f
/3,is defined in terms of a x exactly as, in #110, the sum was

defined in terms of a + 0.

The present number contains many propositions which belong to the theory

of a I "0 rather than (specially) of x a; and many propositions are rather

logical than arithmetical in their nature, i.e. they might have been given in

#55. The line is, however, so hard to draw that it has seemed better to deal

simultaneously with all propositions on a ^ "0 or on its sum, which is x a.

Thus in the present number, the early propositions, down to #113'118, deal

mainly with logical properties of a 1 "0 and x a; the following propositions,

* We define this as p x a, rather than a x £, for the Bake of certain analogies with products in

relation-arithmetic. Cf. *166.
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down to #11313, deal mainly with arithmetical properties of a J, "ft; the pro-

positions #11314—*191 are concerned mainly with arithmetical properties of

ft x a; #113-2—'27 deal with the simpler properties oifi x c v\ #113-3—-34 give

propositions involving the multiplicative axiom, and exhibiting the connection

(assuming this axiom) of addition and multiplication; #113'4—"491 are con-

cerned with various forms of the distributive law; #113-5—*541 deal with the

associative law of multiplication, and the remaining propositions deal with

multiplication by or 1 or 2.

The most important propositions in the present number are the following:

#113-101. 1- : U e ft x a . = . (g#, y).xea.yeft.R = xly
This merely embodies the definition of ft x a.

#113105. l-:g!a.D.aiel-»l

This proposition is especially useful in dealing with exponentiation (#116).

#113114. r-:.« = A.v.£ = A: = ./3xa = A
It is in virtue of this proposition that a product of a finite number of factors

only vanishes when one of its factors vanishes.

#113118. f- . s
l
T>"(ft x a) C a . s'd"09 x «) C ft

This proposition is chiefly useful in the analogous theory of ordinal products

(#165, #166), where it enables us to apply #74773. Unless ft — A, we have

s'D"(/9xa) = a) and unless a = A, s'(I"(ftxa) = ft (#113-116).

#113-12. h : a ! a . D . a 1 "ft e Nc'/3 n CI excl'Nc'a

I.e. unless a is null, a 1 "ft consists of Nc f
/3 mutually exclusive classes each

having Nc'a members.

#113-127. r*:22p7«a§m7.(Sp$e£sra8.D.

(£i|^r(Sx7)e(aj"/9)smsm(74»S)

This is an important proposition, since it gives a double correlator of a
J, "ft

with 7 4 "B whenever simple correlators of a with 7 and of ft with B are given.

It leads at once to

#113-13. 1- : a sm 7 . ft sm B . D . a I "ft sm sm 7 1 "B . (ft x a) sm (B x 7)
33 33

This proposition is fundamental in the theory of multiplication, since it

shows that the number of members of ft x a depends only upon the numbers
of members of a and ft. It is also fundamental in the theory of exponentiation,

as will appear in #116.

#113-141. r-.Nc'(ax/9) = Nc'09xa)
This is the source of the commutative law of multiplication (#113'27).

#113-146. l-:a=f#.D.ax/3sm eA'(t'a w t'ft)

This connects our present theory of multiplication with the theory of

selections.
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We come next to propositions concerning /* x v. We have

*113204. H:.^= A.v.i; = A.v.~(/i, ve NO) :D./tx p = A
The use of this proposition, like that of #110-4, is for avoiding trivial

exceptions.

*11323. l-./iXjveNC

*11325. r . Nc<7 x c Nc'S = Nc'(7 x B)

This proposition enables us to infer propositions on products of cardinals

from propositions on products of classes, and is therefore constantly used.

*11327. \- .fi,x v = vx fi

This is the commutative law of cardinal multiplication.

The chief proposition using the multiplicative axiom is

#113*31. h :. Mult ax . 3 : fx, v e NO .icevr* C\'/x . D . 2'« e/xx^v

I.e. assuming the multiplicative axiom, the sum of the numbers of members

in v classes of /x terms is /x x v. If we had taken this sum as defining fix9 v

almost all propositions on multiplication would have required the multiplica-

tive axiom. The advantage of a I "ft is that, given a sm 7 and ft sm 8, we can

construct a double correlator of a 1 "ft with 7 1 "S, without using the multi-

plicative axiom. This is proved in #1 13*127 (mentioned above).

The distributive law, which is next considered, has various forms. We
have, to begin with,

#113*4. h . 08 v 7) x a = (ft x a) v (7 x a)

whence, using also the commutative law, we easily deduce

#113*43. h . (v + er) X fi = ix x (v + m) = (fx X v) + (/* X m)

But the distributive law also holds when, instead of enumerated summands

ft, 7 or v, or, the summands are given as the members of a class k, which may
be infinite. We have

#113*48. K«'«x"*=ax s'k = Gnv"{(*'«) x a}

whence, using the definitions of #112, we find

#113*491. h : k e Cls2 excl . D . XNc'a x"« « Nc'(a x S'*) -= Nc'a xc XNc'*

This is an extension of the distributive law to the case where the number

of summands may be infinite.

The associative law

#113-54. h .(// X v) x c vr =/xX (v X sr)

is proved without any difficulty.

We prove next that /x x o v = when, and only when, /x = Q or v = 0, fx, v

being existent cardinals (#113-602); that a cardinal is unchanged when it

is multiplied by 1 (#113*62*621) ; that /iX 2 = /*+„/* (#113-66) and that

fi x e (v. + 1) = (fi x v) +ofx (#113-671).
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#11302. /3xa= s'a>L"/3 Df
>>

#11303. ti x v « f {(a«, £) . /* =N c<a . v = N c'£ . £ sm (a x £)} Df

#113 04. Nc'# x /ti = N c<£ x
fl ^ Df

#11305. /a x Nc'a = /* x N c'a Df

In relation to types, #11303'0405 call for similar remarks to those made

in #110 for addition.

#1131. h./3xa = s'al"l3 [(*113'02)]
)>

#113101. h:Refixa. = .(Rx,y).xea.ye/3.R = ccly [*40'7 . #1131]

#113102. h:yej3.0.a^y = (a^ ftyi'y

Bern. h. #35103. DH:. Hp . Z> :#(a \&)y . & .xea :

[*85'51] D : (a f p)A'i'y = J,
y"a

[(#38-03)] = a I y O h . Prop

#113103. V . a 4 "0 = (a f £)a"i"/3 = (a 1 0) I"£ [*H3102 . #85-52]

*113104. h.Ela^'y [#3812]

#113105. h:g!a.D.alel-»l

Dem.

h . #113104 . #71166 . Z> r . a I e 1 -» 01s (1)

I- . #38131 .'^Y\al t
y = aV tz.xea.Z>.wlyeoi]

r

tz.

[#38131] Z> . (ga/) . «r'e a . a
J, y « x \z ,

[#55-202] :>.y = s (2)

h . (2) . #1011-23-35 .Dh:a!a.o4'y = a4^.D.y = « (3)

K(l).(3).*7r54. Dr. Prop

#113106. \-:cceCL.ye(3.0.xly€l3xoL [#113101]

*113107. r: a !a. a !/3.D.a!/9xa [#113106]

#11311. h: a !a.D. a 1 "/3eNc'/3 :(y) .a^y eNc'a

Dem. K #113105104. #7326 Ohg! a. D. a l"£sm£ (1)

r . #38-2 . #73-611 . Dl-.alysma (2)

H.(l).(2). Dr. Prop

#113111. I- . a J,
"£ e Cls2 excl [#113103 . *85'55]

#113112. r:a = A. 3 !/3.:>.al"/3 = t<A

Dem. l-.*38-3.3h:Hp.D.a4"/9 = ^{(ay).2/e^. /
Lt = 4i/"A}

[#37-29] "
=/2{to).2/e/9. M -A}

[Hp] = t<A
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#113113. h : & » A . Z> . a I "0 = A [#37-29]

#113114. H:.a = A.v.£ = A: = .#xa= A [*1131-112-113-107 . #53-24]

#113115. Ks'(/3xa) = af/3

Dem.
h. #113101. #4111.3

h : u {s'(fi x«))«.s. (rR, x,y).xccL.yefi.R = x^y. vRv

.

[#13195..#55-13] = . (go;, y).xGa.yefi.u = x.v = y.

[#13-22] -.uea.vefi.
[*35'103] = . u (a 1 £) v : D t- . Prop

#113116. h : g I /3 . Z> . *<D"(£ xa) = a:g!«.D. s<(l"(/3 x a) = /?

[#113115 . #41-43-44 . #35-85-86]

#113117. h:.a = A.v.£ = A:D. s'D"(/3 x a) « A . *'<1"0S xa) =A
[#113-115 . #41-43-44 . *35'88]

#113118. I- . *'D"(£ x a) C a . s<<2"(/3 x a) C /9 [#113-116-117]

#11312. h : g ! a . Z> . a I "0 e Nc<£ n CI excl'Nc'a [#11311111]

#113121. I- . Vol i "$ sm ft x a [#11215 . #113-1111]

#113122. \-:R[y
i
S^B € Cls~*\.yCa tR.SCa tS.O.(R\\S)[^xy)el-^l

[#74-773.#113-118]

*113'123. h : R [ y, S [ B e 1 -* Cls . 7 C d'R .SCa.'S.zey.vteB.'}.

(R
||
S)'(* lw) = (R'z) I (S'w) [#55-61]

#113124 \-:R\'y,S[hel-^Ch.yCa iM.dCa (S.weB.O.

(R\\S)«y},w = Wv)},
>

(S'w)

Dem.

h . #113-123 . #38-131 . Z> h : Hp . D . (R
||
5)" 4 w"7 = 4 (S'w)"R"y

[#38-2] 3 . (J2
1|
S)"y I w=(R"y) X (flf'w) .OK. Prop

#113125. h : R[y,8t S e 1 -* Cls . y C d'R . S C<1<£. D .

(R
||
S)e

"
7 1 "S = (i2"7) 4 "(S"«) [#113*1243

#113126. h : Hp#113-125 . D . (R
||
§)"(S x 7) = (£"S) x (i2"7)

Dm.
I- . #113-1 . #40-38 . D h . (i2

1|
£)»($ x 7) = *'(i2

|j

3)"'7 J,
"5 (1)

I- . (1) . #113-125 . D h : Hp . D . (R
||
3)"(8 x 7) = s'(jR"7) | "(£"8)

[#113-1] = (<S"S) x (jR"7) : D I- . Prop
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*113127. bzRtyeamrf.StSepsmS.L

(R\\S)t(bxy)e(al"f3)emm(vl"S)

[*113-122*125 . *43'302 . *73'142 . #111-14]

*113128. f- : Hp #113-127 . D . (R
|| 8) f (B x 7) e (£ x a) sm (S x 7)

.

(R
||
S)e r (7 i "$) e (« 4 "£) sm (7 4 "8) [#113-127 . #11115]

#11313. I- : a sm 7 . £ sm S . D . a 1 "£ sm sm 7 J, "S . (/3 x a) sm (S x 7)

[*113127 . *lll'4-44 . #1131]

#11314. h . a x £ = Cnv"(/3 x «) [#113-101 . *55'14]

#113141. h . Nc'(a x 0) = Nc<(/3 x a) [*1 13*14 . #73*4]

#113142. h : 3 ! . Z> . D"(£ x a) = i"a : g ! a. D . d"[j3 x a) = i«/3

Dem.
h . *55-261 . #2-02 . D h : y e £ . D . D"a | y = t"a

[#37-63] Oh:yeD" fal"0.O.y=i"a. (1)

h . *37'45 . D h : g ! £ . D ."3
! D"'a | "£ (2)

I- . (1) .(2). #51141 .3 h : g ! ^ . D . D'"a 4 "£~ i'i"a .

[*40-38.*53-02] 3 . D"s'a 4 "£ = i"a (3)

h . #55-251

.

D h : 3 ! a . D . <3"a I y = 1'1'y

.

[*37-355] D . (F"a J,
"0 = i"i"$

.

[*40"38.*53-22] 3 . <I"s<a I "0 = i«$ (4)

K (3) . (4) . #1131 . D V . Prop

#113143. b :a$ 0. P = x ly. R = x I avy I fi. 0.

P = (R'a) I (R<$) . R = B'P t t'a v d'P 1 t'/S

h . #55-62 . D h : Hp . Z> . R'a. = cc . R'fi = y .

[*3019.#1315] D . P = (R'a) I (R'/3) (1)

h . #5515 . D h : Hp . Z> . D'P = t'a?. <2'P = t'y .

[#551] D.P = D'Pf t*a<y<PPfi<# (2)

K(l).(2).Z)KProp

#113144 Vza%$.T=pR{(j&x,y).xe(x.ye$.P = x\,y.R=xl<ivyl&).
D . Te 1 -* 1 . DT= /3 x a . aT = e4

f
(i

(a u i'£)

h . #21-33 . 3 h :. Hp . 3 :

PTR . QTR . D . fax, y,z,w).x,zea.y > weft.P = xly.Q = zlw.
R = x I a vj y 1 = z I a vyw 10.
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[#113-143] Z> . P = (R'cl) I (R'ft) . Q = (R*a) I (jB*>9) .

[13-172] Z>.P = <2 (1)

h . #21-33 . 3 r :. Hp . D : PTQ . PTR . D .

(R®,y>z,w).x,zea..y
> we$.P = xly =wlz.Q=x^a.vylp.R=z ]f aivwl$,

[113143] D . Q = D'P f L'a vy d'P f t'ft . R = D'P f t'a vy d'P f t<£

.

[#13-172] D.Q = R (2)

h . #33-13 . Z> h : Hp . D

.

[*11'55.#13-19] = P {(ftx,y) . x e a . y e ft . P = x ±y]
[#113*101] =j3xa (3)

h . *33-131 . D I- : Hp . D .

<J'T=R{(KP,x,y).xea.ye@.P = xly.R = xlauyl/3}
[*11-55.#13'19] = R{{<&x,y).xea.yeft.R = x\,avy lft\

[i*80-9] -eA '(i
ravi'£) (4)

K(l).(2).(3).(4).Dh.Prop

#ote to #113-144. In virtue of 113143 and #5561 we have

h:.Hp 113-144. : PTR . = . Re eS(i'au t'ft) . P = {R\\R)'(a I ft).

At a later stage (in #150) we shall put

RfS = (R\\R)<S Df.

Thus we shall have, anticipating this notation,

r : Hp 113-144 . Z> . T = {+(a I ft)} f e4'(t'a u t'£).

Hence we have

h : a + £ . D . {f(a | £)} f €A<(t<a u i'£) e (£ x a) sm «A'(i'a w t'/8).

113145. h:a=}=/3.D./3xasm eA'(t'a v i'£) [*1 13-144]

113146. h:a=)=/3.3.ax/3sm ed'(i'a u t</3) [113-141145]

#113147. h : Hp #113144 . ft x a = ^ . Z> .

T= PR {P e /* . £ = D'P t iVD"/* vy d'P f tVCT'V}
Dew.

I- . 113114 . Transp .DhiHp.Pe^.D.ala.gljS.
[#113-142.*53-22] Z) . a = s'D"/*. /3 = s'd"/i. C1)

h . #113-101-143 . D h :. Hp . Pe^. D:Pri2. = .£=D'PlVavyd'Ptfc'/3 (2)

(-. #113-144. DI-iHp.PTTZ.D.Pe/* (3)

h . (1) . (2) . (3) . #113101 . D h . Prop

The advantage of this proposition is that it exhibits the correlator of ft x a

and €a'(i'ce >-> t'/3) as a function of ft x a.
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*113148. f-:an£ = A.D.(7r(ax£)el-»l
Dem.

h.*l 13101. *5515.D
h : . Hp . D : R, S e a x ft . CR = C'S . = .

(gar, #', y, y') . x, x e a . y, y
7

e ft . R = y ^x, S = y' I x' . t'x u t'y = t'x w t'y'

.

[#54
-

6] D . (rx,x',y,y') . x,x e a . y,y' e ft .R=ylx.S=y'lx'.x=x'.y=y'.
[*13-22172] 3.R = S (1)

h.(l).*7l'55.DI".Prop

*11315. I- . C"(a x /3) = C"(/3 x a) ~ f {(gar, y) . x e a . y e ft . £ = t'x u i'y}

h . *1131 . *40'38 . D h . C"(/9 x a) = s'C""a 1 "£

[#40-4] = f {(ay) . y e /9 . f e C'a^ y}

[*55-27.*38'2] «f {(^y).«ea.ye£.f=*i'a?ui'y} (1)

K(1)^J. Dh.C«(ax/9) = |{(^,y).^6a.y e y9.^=^ W ^} (2)

K (1) . (2) . D h . Prop

*113 151. h : a + £ . D . C"(« xft) = D"ei<(t<a u i'£) [*113'15 . *80"92]

*113152. h:an^ = A.3. C"(a x ft) sm (a x /3) . D"e4'(t'a u t<£) sm (a x ft)

Dem.

h . *84-41-62 .Dh:Hp.a+£.D. D"e4'(t<a u i'£) sm eA'(i'a u t'ft) (1)

h.(l).*113146151.D

h : Hp . a + £ . D C"(a x ft) sm (a x 0) . D"ei'(t'a w t'ft) sm (a x £) (2)

K*24-38.Dh:Hp.a = /3.D.a = A./3 = A.
[*113-114.*83-ll.*37-29] 3 . a x ft = A . D"eA'(i'a u t</9)=A . C"(a x ft)=A

.

[*73-47] D.C"(ax/3)sm(ax^).DV(i'a«^)sm(ox^) (3)

h . (2) . (3) . Z> I- . Prop

The following proposition is only significant when \ and ft are classes of

relations. It is used in relation-arithmetic (*172'34).

*113153. b:s i\^s'^=A.^.s\C['(\x/ji)e(s'\^''iJ^sm(\Xfj^.s'\ra''ijismXx^

Dem.

V . *55-15 . #5313 .3\-:R = TlS.3. s'C'R =SvT (1)

h.(l).*113101.D
r- : R, R' € X x i* . s'C'R = s'C'R . D .

(RS,8',T,T).S
>S'e\.T,T'efi.R=TlS.R'=T' IS'.SvT=S'vT (2)

h . (2) . *25-48 . *41-13 . 3
f- :. Hp . D : R, R' eX x p. s'C'R = s'C'R' .l.R^R' (3)

h.(l).*113-10l.5h.s''C''(\xp) = M{(ftSt T).Se\.T€fi.M = SvT}
[*40*7] = s'\ \y <> (4)

I- . (3) . (4) . *73-25OK Prop
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*11316. h : t'a = t'0 . 3 . Nc'(a x j3) =

I {(37. 5) - 7 « Nki'a . £ € NV0 . 7 n 8 = A . £ sm D"e4'(t<7 u t'S)}

Dem.

h . #113152 . D h :. 7 e N'c'a . 8 e N]c<£ . y ^ £ = A . D :

£smD"e4 '(i
(
7 w t<8) . = . fsm(7 x 8)

.

[*11313.*104'101] a . £ sm (a x /9)

.

[*100"31] a • f e Nc'(a x £) (1)

1- . (1) . *5'32 . *iril-341 . D
1" = (37, S) . 7 e NVa . 8 e JPc',8 . y n 8 = A . f sm D"e4'(t<7 u t'S) . s :

(37, $) • 7 e NVa . 5 e NV/3 . 7 n £ = A . \ e Nc'(a x 0) :

[*1 1-45] s= : (37, 8) . 7 e NVa . 8 e NV/3 . 7 n 8 = A : \ e Nc'(a x £) (2)

h
. (2) . *104-43 Oh. Prop

*11317. h.£xaeW(af/8)
i)em.

I- . *113115 . *41*13 .Df-iiZe/Sxa.D.iZGaf/?.
[*64-201] D.jRei'(af £) (1)

h . (1) . *63-5 . D h . Prop

*113171. h:an/9=A.D. a !Nc (i'a)'(a x 0)

Dem.

h.*113-15215.Dh;Hp.D.f{(a^y).a:ea.yey9.^=t^wi^}eNcf(ax^) (1)

h . #51'16 . 0\-:a)ea,y€@.%=i lccvji l

y % '3.wea.x€t;.

[*63'13] D.£e*'a (2)

h . (2) . *ll'll-35 . D

h . £ {(g#, y) . # € a . y e /3 . £ = t'# >-> i'y} C tf'a

.

[#63-5] Dh.|{(a«,y).«ea.ye/3.|=t^wt^}6«ra (3)

h . (1) . (3) . D t- : Hp . D . 3 ! Nc'(a x /3) n *<*<« (4)

h.(4).*102-6.DKProp

Note that the hypothesis a n /3 — A is only significant when a and /S are of

the same type.

*113172. h : a e t'fi . D . g ! Nc (Pa)'(a x /9)

Z)em.

I- . *11316 . 3 I- :. Hp . D : 7 eNVa . 8 € NV/3 . 7 a 8 = A . D .

D"ei f(i'7 w i<8) e Nc'(a x £) (1)
I- . (1) . *10443 . D I- : Hp . 3 .

(37, S) 7 eNVa . S e NV/3 . D"€A'(t (
7 u i'8) e Nc'(a x /8) (2)

I- . *1041 . 3 h : 7 eNVa . D . 7 eP'a

.

[*6361-621] D.i f
7 u i<8 eWa .

[*83-81] D . D"eA '(t
f

7 w t'S) eWa (3)

h . (2) . (3) . D h : Hp . D . [j ! Nc'(a x £) n £<£2'a (4)

H . (4) . *102-6 . b h . Prop
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#11318. Ha!a.a!£.ax/3 = a'x#'.:>.a = a'./9 = /3'

Dem.

V . *113114 . D h : Hp . Z> . 3 I a' x ff .

[*1 13-114] D.gla'.gl/S' (1)

h . #3037 . Z> h : Hp . 3 . s'd"(a x /?) = $<d"(a' x £')

.

[#113142.(1)] D . sVa = *'i"a' .

[*53'22] D.a = a (2)

Similarly h : Hp . 3 . /3 = /3' (3)

h. (2). (3). Dr. Prop

#113181. h: a !a. a !a'.ax^ =a'x^.D^ =
i

8'

K*13l72.Dh:/3 = A./3' = A.:>./3 = £' (1)

h . #11318 . D h : Hp ,~(/S = A. ff = A). Z> . /3 =^ (2)

h . (1) . (2) . D h . Prop

#113182. h:a!/3.a!/9'.ax/3 = a'xy5'.D.a = a'

[Proof as in #113181]

#113183. h: a !a. a !£.D. F"(a x /3) = *'C"(ax^a^

r . #40-57 . OK *'(7"(a x £) = s'D"(a x 0) v s'(I"(a x 0) (1)

h . #40-56 . Z> I- . ^'(a x /?) - s'C"(a x £) (2)

I- . #113142 . D h : Hp . D . s'atc(a x £) = sVa
[#53-22] = a (3)

h . #113142 . D h : Hp . D . $'D"(a x /3)~s {l"@

[#53-22] =/3 (4)

r.(3).(4). Dh:HpO.*'D"(ax£)v«'<2"(ax£)-«au£ (5)

l-.(l).(2).(5).Dh.Prop

#113-19. \~ :<&l(ax fi) n(y x $). = .<&! any. RlfinS

Dem,

r . #1 13101 . I) h :. 3 ! (a x /3) * (7 x S) . = :

(H^j y» ^ w).ocea.ye/3.zey.w€&*x\y = w^z:
[#55*202] = : (a#, y, z, w). xea..ye{S.zey.we%.co = z.y=*w\

[#13*22] = : (33;, y).oc€ar\y.yefir\$;.'D\-. Prop

#113191. H : . a ! a . D : a ! a 4 "|8 n a 4 "7 . = . 3 ! ^ n7

Dem,.

h . #37*6 . ^ h : a ! a 4 "£n a^ "7 . = (ay,*) . y e£ . *ey . a^ y = a £ * (1)
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h . #113105 . *71'57 . D h :. Hp . D : a 1 y = a^z . = . y = z :

[(1)] D:alaj
5

"/3na^"7. = .(ay,«).ye j
8.«e7.y-^.

[*13'195] =.a!an/3:.DH.Prop

*1132. h : j-eft x 1/ . = . (a«, £) . /i =N c'a . i/ = N c'/S . £sm (a x ,8)

[(*113'03)]

#113-201. h :. £ e ft x v . = : fi, v e NC : (ga, #) . a e fi . e v . f sm (a x /3)

[*113'2 . #103-27]

#113*202. \~ :.% e ft x v. = :r\ ft. Rli>:(Ky,S). ft = Nc'v.v~Nc'8,t;8m(yx$)

Item,

h . #113-201 . *100'4 . D

h :. ge/j,x v. = : (ga, /3, 7, 5) . )ti= Nc f7 . i/=Nc<$ . ae/i. /3 e ? . £sm(ax£).

[#100-31] =:(aa,/S,7J
S)./t = Ncf7.i/=Nc (S.asm7.^smS.fsm(a xy5).

[#113-13. #73-37] = :(aa,A7,S)./A=Nc
(7.y = Nc<S. asm 7. /3smS.£sm(7 xS).

[#100-31] = : (a«,i8,7,fi) . /* = Nc'7 . v = Nc'S . a e /i, . e v . £sm (7 x S)

.

[#10-35] = : a ! jx . 3 ! v : (37, 8) . fi = Nc<7 . v = Nc'S . £sm (7 x B) :.

3 I- . Prop

#113-203. I- : a ! ft x v . D . ^ v e NC - t'A . /*, v eN C [#113-201-2022]

#113-204. h:./i=A.v.v = A.v.~(^)j'eNO):D.ftx^=A [#113*203]

#113-205. l-:~O,veN C).D.^x i/ = A [#113-203]

#113-21. h :. yu,, v e NC . D : £ e /* x v . = . (ga, /3) . a e /* . /S e i> . f sm (a x /?)

[#113-201]

#113-22. h:feNc(^7X Nc(^S. = . a !Nc(^7 .a!Nc(r)^.|sm(7x8)
Dew.

I- . #113*21 . #100-41 . D h : f e Nc (^)'7 x Nc (£>'S . = .

(ga, 0) . a e Nc (^'7 . /S e Nc (£)'8 ^sm (a x /3)

.

[#102*6] = .(aaJ
/3).aeNc(^y7.

/
SeNc(0^.asm7./3smS.fsm(ax/3).

[*113-13.*73-37] = .(aa,^).aeNc(i;) (7.^6Nc(OfS.asm7./3sm5.^sra(7xS).

[#102-6] = . (go, £) . a € Nc {n)'y . e Nc (J)'8 . fsm (7 x 8) .

[#10-35] s . g ! Nc (i;)<7 . g ! Nc (£)'8 . £ sm (7 X 5) : D h . Prop

#113-221. h : a ! Nc (v)'y . a ! Nc (£)<S . . Nc (ij)<7 x Nc (£)'$ •= Ncf
(7 x 8)

[#113-22]

#113-222. h . N c<7 x N c'S = Nc<(7 x 8)

Dem.

h . #103-1-13 .31-. N c<7 = Nc (7)<7 . N c'S = Nc (8)<S . a I N c<7 . a I N c<8 .

[#113-221] D h . N c*7 x N c<8 = Nc'(y x 8) . D h . Prop
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*113'23. l-./Ltx veNC
Devi.

V . *113'222 . *100-41 . D r : p,v eN C . D . p x v e NC (1)

V . *1 13-205 . *102-74 . D h : ~(M, *> e

N

C) . Z> . ^ x i> <• NC (2)

h . (1) . (2) . 3 h . Prop

*113'24. h . Nc<7 x Nc'S = N c<7 x N c'8 [(*113'04-05)]

#113-25. h . Nc<7 x Nc'S = Nc'(7 x 8) [*113"24-222]

This proposition constitutes part of the reason for our definitions. It is

obvious that such definitions ought, if possible, to be chosen as will yield this

proposition.

#113-251. h. 7 xSeNc'7 x Nc'S [*11325 .*100*3]

#113 26. h:/j,,ve NC . a ! sm/'/t . a ! snif"v . D . fx x v = sra/'/x. x smf"v

Dem.

h . #37*29 . Transp .Dh:Hp.D-a!^.a!i/.
[*102'64] D.(aa)^7,S). /4 = Nc(a)'7 . I/ = Nc(

/
S)'S (1)

1- . #102-88 . D I- : p = Nc (a)<7 . v - Nc (£)'8 . a I sm/V H ! sm<r"v 3

sm/V = Nc (v)'y . sraf"i/
= Nc (£)'S . a ! Nc (i/)'7 . a ! Nc (£)'8

.

[#113-221] D . sm,"/i x smf'S = Nc<(7 x S) (2)

I- . #37-29 . Transp . *113221 . D

h:/i = Nc(ay7 .^ = Nc(
;S)^.a!sm,"/i-a !sra^"J'- :> -^ xo^=Nc <

(7 xS) (3)

h . (2) . (3) . D r : p = Nc (a)'7 . * = Nc (£)'$ . a ! sm,'V 3 * smf
"ir . D

.

fx,x v = sm
ri
"/j,x smi"v (4)

r . (4) . *iril-35-45 . (1) . Z> h . Prop

#113*261. H : /a, v e NC . D . /x, x v = j*« x i;W = /t
(00)

x i> (00>
= etc.

Here " etc." includes all ascending derivatives of p. We shall only prove

the result for /x,
(l

> and v (1
>, since it is proved in just the same way for the other

cases. /t
(1) x v (2

> or fi
m xo v (00)

or etc. will serve equally well; i.e. it is not

necessary to take the same derivative of /x as of v.

Dem.
\-

. #104-264-265 . D
f-:Hp.a!^. a !i/.D. p {,) = sm/> . v« = sm/> . a ! /*

(1)
. a !

»w
.

[#113-26] Z> . /a x v = ,*«*> x *»> (1)

K #104-2 64. #113204. D
H : ~(a ! M . 3 1 v) . D . ^ x » = A . ^

(1
> x c

»w = A (2)

l".(l).(2).3l-.Prop

As appears in the above proof, if ft and ^' are any derivatives of \x, and v,

the above proposition holds provided we have

a i ix . a i v . d . a \ M*
. a i vf.

Thus it holds for all ascending derivatives, but not always for descending

derivatives.
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*11327. h.^,x z> = z>x /4

h.*113'2'141.3

h : get* x v . = . (got, /9) . p= N c'a . y = N c<# . f sm(/3 x a)

.

[*113-2] =.| ei;X o/i :Dh.Prop

Note that this proposition is not confined to the case in which p and v are

cardinals. When either or both are not cardinals,

fi x v = A = v x /*.

*113-3. h :. Mult ax . D : « e Nc<£ « Cl'Nc'a . D . 2<* e Nc'a x Nc</3

Bern.

V . *11224 . #11312 . D
h :. Mult ax . g ! a . D : «: e Nc</9 n Cl'Nc'a . D . Vk sm S'« 4 "0 .

0113-121] D.S'*sm£xa.
0113141-25] D.2<A:eNc<ax Nc</9 (1)

r- . *11311425 . D h : a = A . D . Nc'a x Nc<£ = (2)

h. #10114. Dh:.a = A. «eNc^8n Cl'Nc'a. D:*eCl<t<A;

060-362] Z>:/c = t'A.v.* = A:

OH 2'3-301] D:2'« = A (3)

h
. (2) . (3) . #54102. Dh:a=A.*eNc'/3o Cl'Nc'a. D. 2'*(:Nc'«x Nc'£ (4)

K(l).(4).Dh,Prop

*11331. h :. Mult ax . D : ^, v € NC . * e v n CIV . D . 2'* e ^t x v 0113*3]

#113*32. h :. Mult ax . D : p, v eNC . k e v r\ CI excl'/i . D . s'/c e p x v

OH215. #113-31-23]

*11333. h :. Mult ax . D : p, v eNC .icevn Cl'fi . X e /* r\ GYv . D .

SNc'k = SNc'X = m x
fl
v OH3-31-27-23]

#113 34. h :. Mult ax . D : /*, i> eNC . ice vn CI exclV . X e /i <-. CI exclS . 3

.

Nc'«'/c = NcVX~/*xa v OH3-32-27]

The above propositions give the connection of addition and multiplication.

The following propositions are concerned with various forms of the dis-

tributive law.

*1134. h.(
J
8uy)x« =

( i
8xc()u(7xa)

Dem.
V . *1131 . D h . (£ u y) x a = «'«

J,

"08 « y)

[#40-31] = s'a I "£ " s'a I "y

OH3-1] = (£ x a) u (y x a) . D h . Prop

#113-401. h:/3ny = A.D.(/3x«)n(yxa) = A [#113'19 .Transp]

» & w ii 8
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*113*41. r- . Nc<(/3 + y) x Nc'a = Nc<{(£ + 7) x a} = Nc<{(/3 x a) + (7 x «)}

= Nc r(/Sxa)+ Ncr(7X«)
Dm.

r- . #113-25 . #110-3 . D I- . Nc'(£ + 7) x c Nc'a = Nc'{(/3 + 7) x a}

.

Nc<{(/9 x a) + (7 x a)} =Nc<(/3 x a)+ Nc'(7 x a) (1)

h . *1134 . (#110*01) . D K (£ + 7) xa=(4 A/V0x«)u(A, 4 "i^xn) (2)

K #11313. *110'12. Dh. j A/V'/?xasm/3xa.Ae j'V^xasn^xa (3)

h . #113-401 . #11011 . D r .
( I A/'i"#xa) n (Ap I "i«7 x a) = A (4)

h.*110152.(2).(3).(4).Dh.(
/
S + 7)xasm{(^x«) + (7xa)} (5)

h . (1) . (5) . D r . Prop

#113 42. r . (Nc'£ +0 Nc<7) x Nc'a = Nc<(£ + 7) ><o Nc'a

= (Nc'£ x Nc'a) +c (Nc'7 x Nc'a)
[#110-3. #113'25. #113-41]

*113421. r . Nc'a x c (Nc'£ + Nc'7) = Nc'a x c Nc'(/9 + 7)

= (Nc'a x Nc'£) + (Nc'a x Nc'7) [#113-42-27]

*113'43. K(j-+ «) x o/i = At x (v+o cr) = (/iX c y)+c (^x o OT)

Ztem.

h . #113-27*421 . D r : /*, v, « eNC . D . (z> + ot) x c ^t = /* x (z> + w)

= 0*x e v)+ (/*x e w) (1)
K. #113-204 . #110*4 . D
h : ~(/*, v, vr e NC) . D . (z> + ot) x p= A . fi x (v + 13-) = A .

(^xoV)+Q (fixc i!T)= A (2)
r- . (1) . (2) . D r . Prop

The following propositions are concerned with various forms of the distri-

butive law, when the sumraands are not enumerated, but given as the members

of a class.

The first of them (#113'44) gives the distributive law with regard to arith-

metical class-multiplication and logical addition of classes.

#11344. h . (s'k) xa= s
f(x a)"*

Dem.
h . #113-1 ,Dh.«'(x a)"* = s's"a i

'"«

[*42'1] =*s's'a|'"«

[#40-38] = s'a i "s'k

[#113-1] =(s^)xa.Dr.Prop

*113'45. V : K e Cls2 excl . D . x «"« e Cls2 excl

Dem.

h. #113-19. Dh:g!xa (
J
8nxar7.D.a!j3A 7 (1)

h . (1) .
#84-11 . D h :. Hp . D : £, 7 e * . 3 I x a'/3 n x ct'7 . DA

y

. = 7 .

[*30-37] D^.xa'^xa'7:
[#37*63] D:p, o-e xa""/c.g !pr\cr.Dp

i(r .p = cr (2)

h . (2) . #84-11 , D K Prop
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#11346, h : k € Cls2 excl . D , S'x a"* sm (Z'tc) x a

item.

h. #11215. Dr-zHp-D-S'/esms'*.

[*113*13] D . (S'«) x a sm (*<*) x a (1)

h . *112\L5 . #113-45 . D h : Hp . D . %'x a"* am s'x a"« (2)

h . (1) . (2) . #113*44 . D h . Prop

#113-47. h : « 6 01s2 excl . D . SNCx a"* = Nc'{(£'«) x a} - 2Nc'* x Nc'a

[#113-46]

This is the distributive law for arithmetical multiplication and arithmetical

addition of the kind defined in #112.

#11348. h . s'a x"« = a x s'k = Cnv"{(«'*) x a}

Bern.

V . #11314 .Dh.s'ux"K = s'Cnv"'x u"k

[#40-38] = Cnv"s'x a"«

[*113"44] = Cnv"{(s'«) x a} (1)

[#113-14] =axs iK (2)

h . (1) . (2) . D h . Prop

#113-49. h : k. € Cls2 excl . D . 2'a x "k sm a x (S<*;)

h . *113'14 .Dh.flx"/c = Cnv"'x a"« (1)

h . (1) . #113*45 . #7211 . #84-53 . D

h : Hp . D . a x"k e Gls2 excl

.

[#112-15] D.S'«x"«8m«'ax"K,
[#113-48] D . S'ot x"*sm a x (*'*)

.

[#112-15.*113-13] D . S'a x'Scsm a x {Vk) Of-. Prop

#113-491. h : k € Cls2 excl . D . SNc'a x "« = Nc'(« x 2'*) = Nc'a x
fl
2Nc'«

[*1 13-49-25]

The following propositions are concerned with the associative law for

arithmetical multiplication.

#113-5. h.(yx/3)x« = .R {(g#, y,z).osea.y€fi.Z€y.Il**ttl(yl2)}

Bern.

K*113'101.D

[#113-101] =5{(aflj,yJ
«).«ea.yej8. (8re7.E««4(y4*)}.DI-.PK)p

#113-51. I- . (a x £) x 7 sm a x (/3 x 7)

Dem.

V . #113-141 . D h . a x (# x 7) sm (/3 x 7) x a (1)

h . #113-5 . Dh,(axj8)x 7 = _R {(g#,#,2) . a:ea.l/e/3.£e7..R=,^'j( (y,l, a?)}•

(£ x 7) x a=P{(g#,?/,2) .#ea.2/e£.*e7.P=#4(*|y)} (2)

8—2
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H . (2) . D h : T= RP {(^x
y
y,e) .aea .ye0.zey.R=zi(ylx).P= osi(yiz)} -3.

D'T=(a x 0) xy.a<T = (f3 x 7) x a (3)

f- . *2133 . D h : Hp (3) . £7T . iR^Q . 3

(a^, *', y> tf> *, z') • «, a? e a . y ,
y' e£ . z, sf e y . R = z \ (y I x) = z I (y' I x')

.

P = xl(zly).Q = x'l(z'ly').

[*55-202p.P=*Q (4)

Similarly h : Hp (3) . RTF . QTP . D . R = Q (5)

h . (3) . (4) . (5) . D h . (a x £) x 7 sm (/3 x 7) x a (6)

f- . (1) . (6) . D I- . Prop

*113-511. axj3x7»(axj8)x7 Df

*11352. h . (Nc'a x Nc'£) x Nc'7 = Nc'(a x £ x 7) [*113-25]

*113-53. h . (Nc'a x Nc</3) x Nc'7 = Nc'a x (Nc'/3 x Nc<7)

7)ew
h . *113'52-51 . D

h . (Nc'a x Nc'/3) x Nc'7 = Nc'{a x (£ x 7)}

[*113-25] = Nc'a x (Nc'£ x Nc'7) . D h . Prop

*113 531. h . (N c'a x N c'/3) x N c'7 = N c'a x (N c'£ x N C7)

[*113-53 . (*113'0405)]

*113'54. h . {fM x 1/) x vr = ^t x (z> x ct)

Item.

h.*113'531.*103*2.D

H/i,v«e

N

C . D . (/i x v) x sr = p x (v x w) (1)

h . *113-204 . D

h:^(^,^OTeN C). D.(/iX y)x CT = A./i,x (y x w) — A (2)

h.(l).(2).Dh.Prop

*113'541. fi x 1/ x © = (/* x z>) x ct Df

*113-6. h.Nc'ax o =

f- . *113'25 . *1011 . D h . Nc'a x = Nc'(a x A)

r*113-114.*101-l] =0 . D h . Prop

*113601. h:/*«NC-t'A'.D.
A
*x =

H . *103-26 . D h : Hp . D . (g«) . ^ = N„c'a (1)

I- . *101 11-13 . *103-27 . D h . = N c'A (2>

h.(l).(2).Dh:Hp.D.(a«). A
*x

(,0 =N-c'BX eN^A
[*113-222] = Nc'(« x A)

[*113114.*1011] = : D h . Prop
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*113'602. h :. /li x v = . = : /*, v e NC - t'A : /* = . v . v =

Dem.

K #113*203. *101\L2.D

h:fix v = 0.^.fi,ve NC - t'A (1)

h.(l).#113'201. D

f::/iX o i/ = 0.D . f e . =
f : (ga, £) . « e p . /3 e v . f sm (a x £) :.

[#54*102] D . | = A . =f : (ga, #) . a e /* . /3 e z> . £ sm (a x #) :

.

[*10-1.*1315] D ' (a«. £) . a e fi . /? € v . A sm (a x /9) :.

[#73*47] D • (3a, /3).ae/i./3ei>.ax£ = A:.

[#113*114] D :-(a«,j8):«e^.^ei': a = A.v./3 = A:.

[#13-195] D :. A e^i . v . A ev :.

[(l).*100-45] D :. fi = Nc'A . v . v = Nc'A :.

[#101-1] D :. /*= (). v.z/ = (2)

h . #113*601-27 .Dh:./i,i/€NC~('A:/i = 0.v.i; = 0:D./ix o y = (3)

h.(2).(3).Dh.Prop

The following propositions are concerned with multiplication by a unit class

or by 1 or 2.

*11361. h . i'z x a = I z"a

Dem.
h . *113'1 . D h . **jgr x a = s'a I "i'z

[#53*31-02] =al'z

[*38-2] =
J,
z«u . D h . Prop

#113-611. h.i'sxasma [#113*61 .#73*611]

#113-612. h.axt'ssma [#113*611-141]

h . Nc'a x„ 1 = Nc'a#113*62.

Dem.

#113*621.

Dem.

h . #101*2 . D h . Nc'a x 1 = Nc'a x Nc'i'z

[*1 13-25] =Nc'(ox6)
[#113-612] = Nc'a . D h . Prop

h:/*eNC.D./4X l= sra">

= sm"/i

r- . #113-204 .Dh:^ = A.D./xx l=A
[*37'29]

h. #103*26. Dh:Hp.ae/i.D.^Nec'a.

[(#113-04)] D . /* x 1 = Nc'a x 1

[#113-62] = Nc'a

[#103-4.(2)] = sm'V
I- . (2) . #10*ll-23-35 , D I- : Hp . a ! ^ . D . ^ x 1 = sra"/*

h . (1) . (4) . D K Prop

(1)

(2)

(3)

(4)
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Observe that if /a is a typically definite cardinal, sm"/i is the "same"

cardinal rendered typically ambiguous; while if ft is typically ambiguous,

fj,
= sm"/i in every type.

*113'63. Y : z~ e a . 3 . 1 z"ix sm D"6a'(i'« ^ iH'z)

Dem.
Y . *113152 . D h : Hp . D . D'^'iVa u iH'z) sm a x i'z (1)

K (1).*1 13-61*141. Dh. Prop

*il364. Y . | z«a x | *"/9 smax/34 *"a x ^ z"$ sm J,
*"(« x £)

1-
. *73-611 . *11313 . D h . j *"« x | *"/3 sm a x £ (1)

K (1) . *73-611

.

D h 4 2"a x
J,
z"$ sm j *"(« x /3) (2)

h . (1) . (2) . D h . Prop

*113'65. Y . I z"a x \ z"$ = ( I z
||
Cnv< I z)"(a x £)

Bern.

Y . *72-184 . *55-21 .OY . Izel->1 .aCd' ±z . j3C<l< ±z .

[*113-126] D K I z«u x j s"£ = (i z
||
Cnv' 1 *)"(« x /3) .

D h . Prop

*113"66. h,/iX 2=/t+ /i

Dew.

h . *110'643 . D r . p x 2 = ^ x (1 + 1)

[*113'43] =OXol)+c(/* xcl) (1)

h . (1)

.

D h :. ^ = N c'a . D . /* x 2 « (N c'« x 1) + (N c'a x 1)

[*113-62.(*113'04)] = Nc'« + Nc'a

[*110-3] = /*+<,/* (2)

Y . (2) . *103*2

.

Dh:/ieN C.D./iX 2 = M+ /* (3)

h . *113-205 .*110'4. D h : ^eNoC . D . /* x 2 = A . p +ofi= A (4)

h.(3).(4).Dh.Prop

*113-67. Y . Nc'a x Nc'(/9 + i<y) = (Nc'a x Nc</3) + Nc<«

.Dew.

h . *113421 . *1012 . 3

Y . Nc'a x Nc'(/3 + i'y) = (Nc'a x
c Nc'/9) + (Nc'a x 1)

[*113'62] = (Nc'a x Nc'£) + Nc'a . D h . Prop

*113*671. Y^x (v+ l) = (fMX v)+
<i fi [*11367-205 . *110'4]



#114. THE ARITHMETICAL PRODUCT OF A CLASS
OF CLASSES

Summary o/*#114.

The kind of multiplication defined in #113 cannot be extended beyond a

finite number of factors. We therefore, as in the case of addition, introduce

another definition, defining the product of the numbers of a class of classes,

and capable of being applied to an infinite number of factors. We define the

product of the numbers of members of k as Ne'e*'*:; thus we put

nNcf
/c = Ne'e4 <*: Df.

It is to be observed that nNc'« is not a function of Nc"* 3
because, if two

members of k have the same number, this will count only once ill Nc"«, but

will count twice in IINc r
«.

It is very easy to see that, in case tc is finite, Nc'ea'/c will be what we

should ordinarily regard as the product of the numbers of members of k. For

suppose (e.g.)

K = tftk V l'ft V l'y,

where fi^-ft,t».-^y,ft^y. Then

ei
r
/c = R {(gv», y,z). R = x lavy I ftv z ly .aett.y eft .z ey).

Thus ifR is a member of e^K, R is determinate when x, y, z are given, x, y, z

being the referents to «, ft, y. Whether «, ft, y overlap or not, the choice of any

one of #, y, z is entirely independent of the choice of the other two, and there-

fore the total number of choices possible is obviously the product of the numbers

of a, ft, y. Thus our definition will not conflict with what is commonly under-

stood by a product.

The propositions of this number are less numerous and less important than

those of #113. We shall deal first with products of a single factor, and products

in which one factor is null (*114'2—-27> We shall then deal (#114*3—-36)

with the relations between the sort of multiplication here defined and the sort

defined in #113. Then we have a few propositions (#114"4—'43) showing that

unit factors make no difference to the value of a product. Then we prove

(#114'5—'52) that the value of the product is the same for two classes having

double similarity, and then (#114-53—-571) we give extensions of this result

which depend upon the multiplicative axiom. Finally, we give some new
forms of the associative law of multiplication.

Among the more important propositions in this number are the following

:

#114 21. h . nNc'i'a *? Nc'a

I.e. a product of one factor is equal to that factor.
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*11423. r : A e k . D . IINc'a: =

I.e. a product vanishes if one of its factors is zero. The converse requires

the multiplicative axiom, as appears from the proposition

#114'26. h :. Mult ax . = : IINc'« = . =K . A e tc

I.e. the multiplicative axiom is equivalent to the assumption that a product

vanishes when, and only when, one of its factors is zero.

#114-301. h/tri\ = A.D. e±(ic v X) sm e^tc x e4'X

whence

#114-31. h:*n\ = A.D. IINc'a: x nNc'X = IINc'(/c u X)

which is a form of the associative law, and

#114-35. r : a 4= £ . D . IINc'(i'a v, i*p) = Nc'a x Nc'£

which connects the two sorts of multiplication.

#114-41. r : X C 1 . D . IINc'(tf y\)= IINc'ic

J.e. unit factors make no difference to the value of a product.

#114-51. h : T \ s'X e k sm sm X . D . (T
j|
Te) [ e4'X e (e4V) sm (eA'X)

This proposition gives a correlator of e^K and e^X as a function of a double

correlator of tc and X, and thus leads to

#114'52. h : « sm sm X . D . TINc'« = IINc'X . e4
f« sm eA 'X

Hence, by the propositions of #111, we infer

#114-571. h :. Mult ax . D : p, v e NC . *, X e fi n CYv . D . IINc'/c = IINc'X

I.e. assuming the multiplicative axiom, if k and X each consist of p classes

of v terms each, their products are equal.

We have next various forms of the associative law, beginning with

#114-6. r : k € Cls2 excl . D . nNc'eA"« = IINc's'a;

which is an immediate consequence of #85'44. The other form is

*114632. h-.Styel^l.yCa'S.y* S"y = A . D .

eA 'p, {(a«) . a e y . /* — a x S'et} sm e^(y u $"7)

As to the sense in which this is a form of the associative law, see the

observations following *114 -

6.

#11401. nNcf
/e = Nc'e4

r* Df

#1141. r.nNc'« = Nc'ei
f« [(#114-01)]

#114-11. h : j8 e IINe'* .s.jSsm e*'* . = . £ e Ne'e*'* [#114-1 . *100'31]

#11412. r- . e4
r« e IINc'* [#100-3 . #114-1]

#114-2. h . IINc'A = 1 [#831 5 . #101-2]

Thus a product of no factors is 1. This is the source of /i°=» 1, as we shall

see later.
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*114'21. h . IINc'i'a = Nc'et [#83-41]

#114-22. KIINc't'A = [#114-21 .*1011]

*114'23. h : A e k . D . IINc'* - [*83\L1 . #101-1]

Thus an arithmetical product is zero if any of its factors is zero. To prove

the converse, we have to assume the multiplicative axiom, which, in fact, is

equivalent to the proposition that an arithmetical product is only zero when
at least one of its factors is zero.

*11424. h : IlNc'X 4= . k C X . D . IINe'* 4=

Dem.

r- . #114-1 . *10M . D h : IINc'X + . D . a ! e4'X (1)

h . (1) . *80-6 . D h : TINc'X + O . k CX . Z> -a ! e4'« .

[*114-1 .#101-1] D . IINc'* + : D r- . Prop

#11425.

Dem.

h :. Mult ax . = : IINc'* = 0.1.Ae«

h . #88-37 . Transp . D

h:. Mult ax. = : e&K = A . D« . Ae« :

[*114\L.*10ri] = : IINc'« = . 3K . A e k :. D h . Prop

Note that Ae«. = -.0e Nc"k.

#114 26. h:. Mult ax. =

#114-261. h:. Mult ax. =

#114-27. h::Multax.=

IINcSc = . =« . Ae* [#88-372 . #101*1]

IINc'ic = .
=

K . e Nc"/c [#114-26 . #101-1]

. a e k . Da . g ! a :
~

K . nNc'«4=

[#114-26 . Transp . #24*63]

#114-3. h : * 4= X ^ ^(tfei'ic v t'e^'X) sm ei'/c X eA 'X

h . #1 13-146 . D h : eA
r
/c 4= e*

rX . D . e4
r(^64 '/c v i^'X) sm e*'* x ca'X

h . *80'81 . 3 H :. a ! 6*'k . v . g ! e*'X : *; 4= X : D . eA '«- 4= e4'X

h . #83-903 . #113-114 . D

h : 6a'« = A . e4'X = A . D . ei'(iW* v i
f
e4 '\) = A . e4

(
/c x eA'X= A

h.(l).(2).(3).Dh.Prop

#114-301. h : k r\ X = A . D . e4'(« u \) sm ei'« x eA'X

Ztem,

h . #85-45 . #114-3 . D

(-:«:riX=sA.*4: X.3. 6a'(« <-" X) sm e4'/c X eA 'X

t-.#22'5.Dh:«r.X = A.* = X.D.« = A.X = A.
[#83-15] D . ca'O « X) = i'A . 6a'« = t'A . e4'X = i'k .

[#113-611] D e4
r
(/c w X) sm e±'ie x e4'X

r.(l).(2).Dh.Prop

(1)

(2)

(3)

(1)

(2)



122 CARDINAL ARITHMETIC [PART III

*114-31. h : k n X = A . D . IINc'k: x IINc'X = IINc'(a; w X)

[*114'301-1. #113-25]

The above is one form of the associative law of multiplication.

#114-311. h . IlNc'(* u \) = IlNc'* x IINc'(X - *) [#114-31 . #22-91 ]

#114-32. h : nNc'(« w X) =f . = . IINc'* 4= . IINc'X 4=

Bern,

K #114-311. #113-602. D

h:nNcV u >-)=fo.D.nNc^4=o (i)

K(l)^. Dh:nNc'(«:uX)4=O.D.nNc f\4=0 (2)

V . #114-24 . D h : IINc'X =j=0 . D . IlNc'(X - *)=f :

[Fact] D h : IlNc'* =j= . IINc'X 4= . D . IlNc'* 4= . IINc'(X - *) 4= .

[*113-602.*114-311] D.nNc'(«wX)HrO (3)

h.(l).(2).(3)'.Dh.Prop

#114-33. Ha~ 6 «.D.nNc'(*ui'a) = IINc'tfX Nc'a [#114-31-21]

#114-34. h : IINc'« 4= . 3 ! a . = . IINe'O; v i'a) +
[#114-32-21. #101-14]

#114-35. h : a 4= £ . D . IlNc'(i'a u i<£) = Nc'a x c Nc'£ [*114-33'21]

#114-36. (-:a=t= i
8.a4=7.

i
84=7.D.nNc f(^aui^ut'7)=Nc f«x cNc

f

i
8x Nc f

7

[*1 14-33-35]

#114-4. V : X C 1 . D . IINc'X = 1 [*83"44]

#114-41. h:XCl.D.nNc r(«uX)=nNc^ [#83-57]

#114-42. h . IINc'* = TINc'(« - 1)

K #24-41. DK*=*(/e-l)u(*nl) (1)

h . (1) . #114-41 . D h . Prop

#114-43. h . IINc'(/e u t"«) = IINc'* [#114-41 . #52-3]

#114-5. h : T e k sm sm X . D . (T
||
Te)

|" e*'X e (e4 '*) sra (e4'X)

h. #111111. DhiHp.D.^T^Xel^l (1)

F- . #80-14 . #83-21 . D h . s'D"ei'X C s'X . s'd"e4 'X C X (2)

K(l). (2). #74-773. D

h : Hp . D . (T|| £) f eA<X e {(T || T<)«eS\] sm (e*'X) (3)

h . #82-43^ . #62-3 . D

H:r,Te
I

k Xel^l.s'XCa r27 .XCa'Te .*=re"X.D.

(r|«rx|T.y*=<T||?.)"e./x (4)

h. (4). (1). #111-1 .#37-111 . D h : Hp. D . (Tj efXj ?ey« = (21 ?e)"(^'X (5)
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h . #34-1 . #37-101 . D

\-:cc(T\ € {\\Te)a. = .(ny> &).x)Ty.ye/3./3e\.a=T«/3 (6)

h.(6).*72-52.*lll-l.D

b:.Ky.3:x(T\€t\\h)«.=: .(<3Ly,@).%Ty.y6i3.0e\.f3=r"a.aQV<T.

[*liri-l31.*13'195] = . (gy) .xTy.yeT"a.ae>c.

[*37-l] s.^efT'a.ae*.
[*72-502.*lll-l] =.(c(€ {K)a (7)

h . (5) . (7) . D h : Hp . D . (e [ k)±'k = (T|| Te)"e^\

.

[#83-12] D . eA <* = (2
1

1| ?e)"eA<\ (8)

h . (3) . (8) . D h . Prop

*114'501. h : £ = Tf s'\ . D . (£ || &) T eA<\ = (T|J ?e) f *a'X

Z)em.

h . #80-14 . #83-21 . D
h : . i? € eA 'X . D : yB& . D . y e s'X . £ e \ .

[#40-13] l.yes'X.pCs'X: (1)

[*4'71.Fact] D : a-Sty • yR& . £?*« .= . xTy .yes'X. yR$ . &T€ a .@Cs'\.
[#37-101.#22-621] = . x {T\s'X) y . yR@ . a = T"j3 .& = &ns'\.
[(1).*37*412] = .x(T[s tX)y.yR/3.a = {T\'s lX)"& (2)

[#35-71] D : (T|| Te) [ e±<K = (S
j| &) f eA'« :. D h . Prop

#114-51. h:T|k 5ae*si5sm\.D.(T|j?e)reA f\e(€A <yc)sm(ei
fX)

[#114-5*501]

#114-52. I- -.KsmsmX. D.IINc'*=IINc'X. e^KsmeSX [#114'51 .#111*4]

#114-53. f- : : Mult ax . D : . k, X e Cls2 excl

:

(3#) . S e 1 -•» 1 . S G sm . DSS = K . <T# = X : D . IINc'* = IlNc<\

[#114-52. #111-5]

#11454. I- : . Mult ax . D : p, v eNC . *, X e fi * CI excl'v . D . IlNc'/c = IINc'X

[#114-52. #111-53]

The condition k, X e Cls2 excl, which is involved in the hypothesis of

#114-54 (through k, X e CI excl'v), is not necessary. The following propositions

enable us to remove it. We first prove

and then we use #114'54 to take us from e&'e J"« to e& 'e J"\. Thence we

arrive at e^'/c sm e&'X.

#114-56. h . eStc sm

e

A'e J"* - IlNc'/e = nNc'e J"/e [#8554]

*114 561. h : S € Ksm X n Rl'sm . D . eJl#|Cnv'(e J)e(eJ'^)sm(eJ"\)* Rl'sm

[#73-63 . #85-601 . #38-12 . *33*432]
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#114 562. H:.Multax.D:

(ajS). JS € l-+l. )
8fGsm.D'iSf«*.a'iSr= \.D.eI"*smsmeJ"\

Dem.

h. #114*561. #85'61.D

f- : . (aS) . S e 1 - 1 . 8 G sm . DSS = k . a'£ = X . D :

eJ"«,€X"\eCls!! excl:(a[T).Tel-^1.2
T Gsm.D tT=eX">c.a (T=£j"\:

[#111-5] D : Mult ax . D . ej"« sm sm eJ"X :. D h . Prop

#114'57. hi.Multax.D:

faS) . £e 1 -+ 1 . SG sm . DSS = * . (T£= X . D . IINc'k = IlNc'X

Dm.
1- . *114-562-52 . D

r :. Mult ax . D : (g£) . £e 1 -* 1 . £ G sm . D<S = * . a^= X . D .

nNc'e ^ "* = IlNc'e
J,
"\ .

[#114-56] D . IINc'k = IINc'X :. D r . Prop

#114-571. h :. Mult ax . D : /*, » € NC . «, X e ^ n Cl'v . D . IlNc'* = IINc'X

[#111-52. #114-57]

#114*6. h : * e Cls2 excl . D . nNc^"/e = IINcVk [#85"44]

This is the most general form of the associative law for arithmetical multi-

plication.

Owing to the fact that we have two kinds of multiplication, namely

a x /3 and e^«, we have four forms of the associative law of multiplication,

namely:

(1) #114*6, above,

(2) #113-54, i.e. h . {p x v) x w = p x c {v x w),

(3) #114-31, t.& h : « r> X = A . D . IINc<* x IINc'X = nNc f
(« u X),

(4) a form of the associative law which has not yet been proved, which

may be explained as follows.

Suppose we have a number of pairs of classes, e.g. (aJ} &), (a3 , /32),

(<x3 , f33), .... Suppose we form the products otjX&j a2 x^82 , a3 xy&,,... and

multiply all these products together. We wish to prove that (with a suitable

hypothesis) the result is similar to the product of all the a's and all the 0's

taken together as one class; i.e. if we call X the class of products ai x 0i, a2 x ft2 ,

a, x /83 , ..., and p the class whose members are alt ok, aS) •-, A, /33 , f33 , ..., we
wish to prove

IINc<X=IINcV.
In order to express this proposition in symbols, let S be the correlator of the

as and 0's, so that @v = S'av . (The suffix v will not be used further, since it

implies that the number of a's and of j6's is finite or denumerable.) Then our

class of products of the form a x & is

£{(aa).ae7.^ = ax£'a},
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where 7 is the class of all the as; and the product of this class of products is

e&'fi {(ga) . a e 7 . p = a x S'a].

On the other hand, the class of all the el's and /3's is 7 u #"7, and the product

of this class is

e4'(7wS"7).

Thus what we have to prove (with a suitable hypothesis) is

€a'/a {(go) . « e 7 . fi = a x &'a} sm 6a'(7 u £"7).

The hypothesis required is

S p 7 e 1 - 1 . 7 c ass . 7 a 5««
7 = A.

A smaller hypothesis suffices, however, for a proposition which, in virtue of

#11 4"301, is closely allied to the above, namely

€t'y x e&'S"y sm e^'p, {(go) . a e 7 . p = a x flf«].

For this, a sufficient hypothesis is

Thus e.^. we may write 7 for S, and we find

h . eA
r

7 x 64^7 sm €a'£ {(ga) . a e 7 . ^ = a x a}.

We shall now prove the above propositions. What follows, down to

#114*621, consists of lemmas.

For convenience, we write Sx 'a for ft x S'a in the course of these lemmas;

this notation is introduced in the hypotheses of the lemmas.

#114-601. \-:.S\-yel-*l.yC(I<S.A~ey.Sx =:$a(ciey./j, = axS'a).0:
Sx €l-*I.<I'S x =y.I)<S ><

= $[(Ra).aey.p = ttxS'a};

a e y . Da . S x 'a = a x S'a

Dem.

K #33-11. Dh: Uip.0.I) tSx =il{(<3
L
a).CL6y.ti = axS<a} (1)

I- . #21-33

.

Dh:.Hp.ae7.D:^ (S x )«.^.p«xSfo:

[#30-3] D:£x <« = ax#<a (2)

r- . (2) . »14-204 . D r- :. Hp . D : a e 7 . X . E ! & x 'a

.

(3)

[#33-43] D4 .aea^x (4 )

h. #21-33. #33-131. Dl-:.Hp.>:a€a^x .Da .ae7 (5)

K(4).(5). Dh:Hp.D.a*Sx -7. (6)

[(3).#7l\L6] Z>.£x el-*Cls (7)

r . #113181 . D h :. Hp . D : a, a' € 7 . a x S'a = a' x S'a' . D . S'a = £'a'

.

[#71-59] D.a = a' (8)

h . (8) . #7 1-55 . (2) . (6) . (7) . D f- : Hp . D . Sx e 1 -» 1 (9)

h . (1) . (2) . (6) . (9) . D h . Prop
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*114-602. \-:H.v*lU601.A=Ra{a<:y.R=(S<a)la}.O.A6l-*l.(I<A=v

Dem.

As in *114'601, we prove

h:Hp.D.^6l->Cls.a^- 7 (1)

I- . #21 '33 . *13"171 . 3 H- :. Hp . D : RAa . RA/3 . D . (£'a) | a = (S</3) I & .

[*55-202] D.a-0 (2)

l-.(l).(2).Dh.Prop

*114603. h:Hp*114-602.ZeeA '

7 .I
re€A^"7.P=(Ir

|l^)!^|^.=>--PeeA
<D^ x

Dew.

I- . *43-122 . #71-166 . *114-601'602 . D r- : Hp . D . P e 1 ~* Cls (1)

f- . *43"122 . #37-32*322 . #33*431 . D r : Hp . D . d'P = £ x "(IM

[*1 14-601-602] =T>'SX (2)

h.*341.D:.Hp.D:

MPfj,. = .(KR,a).M=Y\R\X.R = (S<a)la.aey.fjL = S x <a.

[*113-123.#80*14] = . (gee) . M= (F'S'a) | (X'a) /* = S x 'a . a

e

7 .

[*13'195.#114'601] = . (aa,/3) . £ = S'a . a e 7 . if= ( Y</3) | (X<a) . ^ = a x £ .

[*83-2] D.(aa,
J
8,w,v).

/8 = /S
<a.a€7.it€a.ve/9.

lf=(«4 u). /M=a x/3.

[#113101] D.Jfe/* (3)

r- . (1) . (2) . (3) . *80*14 . D r . Prop

*114-604. I- : Hp*114'602 . T=P$ {(aX F) . X e eA
<

7 . 7e €A'S"y

.

Q=YIX.P = (Y\\X)\A\$X }.

D . Te 1 -* Cls . a-T= eA
<

7 x eA'«"7 . DTC e^D'S*

The relation T here defined is the correlator required for proving

6a'£ {(ga) . a e 7 . /i = a x S'a] sm e</7 x 6a<$"7.

Besides what is proved in the present proposition, we shall have to prove

The proof of the present proposition is as follows.

Dem.

h . *21-33 . *13-I7l . D h :. Hp . D :

PTQ.FTQ.3.faX,Y,X',Y).7lX~Yir.P = (7\\X)\A\8 x .

P' = (T\\X')\A\S X .

[#55-202] D.P = P' (1)

r- . #2133 . #1 14-603 . D r :. Hp . D : PTQ . D . P e eA'D<£x (2)

h. (1). (2). #113-101. Dh. Prop
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*114605. h :Hp*l 14604. D.TeCls-»l

D&m.

h . #1 14-601 . D h : Hp . D . 5X e 1 -* 1 (1)
K(l). #74-71. #114-601-602.}

(r\\h\A = (Y'\\T)\A:

[#74-7] D:(Fj|Z)fD'il=(F||X)r D^:
[#114-602] D:a e7 .Da .(F||i)

t(^a);a = (F||i0^a)ia.
[*113'123] Da . (F'S'a) | (X'a) = (F'S'a)

J, (X"a)

.

[#55-202] Da . X'a = X"a . F'&'a = T'S'a :

[*80-14.#33-45] D : X = X' . F= F :

[#55-202] Z> : F j X = F | X' (2)

h . (2) . #13-22 . #21-33 . D h :. Hp . D : PTQ . PTQ' . D . Q = Q' :. D h . Prop

The following propositions are required for proving that, with the same
hypothesis, eA'D«Sx CD'T.

#114-61. h:Hp#114-602.P66A <D^x .X = r[a|Pj^r

x .F=7jD|P|^x j5.D.

XeeAVF6ea'#"7

h . *72-181-13131 . #80-14 . #114601 .3 r : Hp . D . X, F e 1 -* Cls (1)

h . #72-2*181'13-131 . #80-14 . #114-601 . D

h :. Hp . D : xXa . = . x «7<<TP'Sx 'a

.

(2)

[#51*53] D.tfeCI'P'S/a.

[*83-2.#l 14-601] D . (&R) . Reax S'a .see d'R .

[#113-142] D.area (3)

h . #114-601 . D h :. Hp . D : a e 7 . = . £x 'a eD'£x

[#83-2] = .E!P<#x 'a (4)

H . #83-2 . D h :. Hp . D : E! PSS/a. = . P'^'ae^'a

.

[#113-142] D.d'P'Sx'ael.

[#52-15] D . E ! ^a'PSS^'a (5)

h.(2).(4).(5). Dh:Hp.D. 7 C(TX (6)

I- . #34-36 . #114-601 . D h : Hp . D . a'IC 7 (7)

h.(l).(3).(6).(7). Dh:Hp.D.XeeA
'

7 (8)

Similarly h : Hp . D . Fe eA'S"7 (9)

h . (8) . (9) . D h . Prop

#114-611. h :. Hp #114-61 . D : a e 7 . D . ( F'&'a)
J,
(X<«) = P'#x

<«

Dew.

h . #72-2 . D h : Hp . a e 7 . D . X*a = T'd'PSS'x'a F'S'a = r<D'PSSx <a

.

[*55-16.#51-51] D.(Ft5(
a)Jr

(X <a) = P t
.Sr

><
'a: Dh.Prop
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#114-612. h : Hp #114-61 . D . (F|| X)
|

A
\

S x = P
Dem.

h . #83-15 .DNHp.glP.D.g! Df£x .

[#114-601] D.a! 7 (1)

h . *34'1 . D 1- :. Hp . D : M {(Y\\ X) \A
|
S x }fjL . = .

(aQ,o) . M = (Y\\X)'Q . QAa.^SSa .

[*114-60l-602] =
. (go) . M = (F|| X)'(S'a) | a . ^ = S x 'a a e 7

[#113123] =

[#114-611] =

[*13-193.*114-601.*71'16] =

[*7r36.*8014.(l)] e=

(gp).Jtf =(F^U(X^).^ = £x <a.«e 7 .

(ga) . Jf-P'S/a. /*= 5x 'a . ae 7 .

JlfP^i.Dh. Prop

#114613. h : Hp #11461 . Hp #114604 . D .

P= T\Y i X) . (FJ, X)e€A i

y x €a'^ (

7

1- . #2133 . #114-604 . D h :. Hp #114-604 . D :

Xe6Sy.Y6e&
cS"rf.0.T<(YlX) = (7\\X)\A\Sx (1)

h . (1) . *114'61-612 . #113-106 . D h . Prop

#114-614. I- : Hp #1 14-604 . D . eA 'T>'Sx C D'T

Dem.
h . #114-613 . D h :. Hp . D : P e e^'D'S* . D . (3Q) . P = T'Q .

[#33"43] D . P e D'T :. D h . Prop

*114'62. h : Hp #114-604. D . T € 1-*1 . DT= eA'T>'S x . <I<T= eA
<

7 x eA'S"7
[#114-604-605-614]

#114-621. h : Sf 76 1 -» 1

.

7 C a'jS . A~e 7 . D .

6a'£ {(aa) a « 7 . ^t = a x #(
a} sm €a'7 x eA

($"7
[#114-62-601]

The hypothesis A"->€ 7 is not necessary, since, when A 67,

e^p, ((get) . a e 7 . fx = a x &'a] and e4
'

7 x 6a'&"7
are both A. This is proved in #11 4'63.

#114-63. h:«p 7 6l-*1.7Ca^.D.
€*'£ {(go) . a e 7 . /a = a x >S'a} sm 6a'7 x e^S^y

Dem.

h. #10-24. #83-1l.D
r-

: Hp . A e 7 . D . A x S'A eft {(ga) . a e 7 . ^ = a x S'a} . 6**7 = A .

[#113-114] D.Aep,
{(Ka) . a e 7 . ^ = a x S'a} . eA

'

7 x eA'£"7 = A .

[#83-11] D . eA^Kgct) . ae 7 . ^ = x &<«} = A . eA
'

7 x eA'8"y = A (1)

h . (1) . #73-47 . #114-621 . D h . Prop

The above is one of the two variants of the associative law for e* and x.
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#114-631. I- . e±'p {(ga) . a e 7 . p - a x a} sm e^'a x €a<« |*114-63 ~

#114-632, \-iS[yel-*l.yQ<I<S.y*S"y = A.O.

eSfi {(g«) . a e 7 . (M = a x S'a) sm eA '(7 w ^"7) [*114-63301]

This is the second variant of the associative law for eA and x.

#114-64. \-:(R"y)
J\R,Styel-*l.yCa tR.yC(I tS.3.

eA
{R'<y x €A<S"y sm eA'£ {(a*) .zey.fi = R{zx S'z]

Dem.

»» 7

H:iS|5|k i2"7€l-»l.B"7Ca'(i8|S).D.

cA'E"7 x eSS"R"R"y sm eA<£ {(g«) . a e £"7 . fx = a x (£ |
R)'a} (1)

K. #74*14. #35-354. DK:Hp.D.^| 5 pE"7 = ^r7 1 71^-^r ^"7 = 71^
[#71-252] D.S\RfR"yel-*l (2)

r . #37-2

.

D r : Hp . D . R«y C J5"(T£

.

[#37-32] D..R"7C<I<(>S|X) (3)

f-. #74-171. Dh:Hp.D..R" JR"7 = 7 (4)

h . (4) . #74-14 . D h : Hp . D . (B"y) 1 £ = R [ 7

.

[#35-7.#71-4] D . £ {(ga) . a € R"y .fi = ax(8\ R) (
a\

=
fi \(rz) .zey.fj. = R<zx S'R'R'z]

[#74-53] =P{('&z).zey. (
ji = R izx.Si

z} (5)

h.(l).(2).(3).(4).(5).Dh.Prop

In the above proposition, the hypothesis has to be such as to yield

R"R"y = y. Various other forms of hypothesis will secure this result, and

will give other forms of the above proposition. This subject is treated in

#74, above.

#114-65. \-:.(R"y)'\R,Sryel-*l.yC(I'R.yCa <S.Rt<yrsS"y=A.'2.

e*'(R"y u S"y) sm eA <£ {(a*) . zey . fi = R*z X Sf
z)

[#1 H-64'301]

R&W II



#115. MULTIPLICATIVE CLASSES AND ARITHMETICAL CLASSES

Summary o/*115.

Whenever k is a class of mutually exclusive classes, e^tc is similar to

D"€a'*; hence
IINc<* = Nc'D"eA<K.

Now D"ei'« is of the same type as «; and when k is a class of mutually

exclusive classes, D"e4
r« consists of all classes formed by selecting one repre-

sentative from each member of k. It often happens that D"€a'# is easier to

deal with than eA */e; hence when possible {i.e. when « e Cls2 excl), it is con-

venient to use D"ed'/t, rather than eA '«, as the standard member of IlNc'/c,

We therefore put
Prod'* = D"6A'k Df.

We shall call Prod'* the "multiplicative class" of ve.

The associative law,

Prod's** sra Prod'Prod"*,

requires not merely tc e Cls2 excl, but also s'« e Cls2 excl. The combination of

these two hypotheses gives a completely disjointed class of classes of classes,

i.e. a class of classes of classes « which can be obtained by dividing a given

class (s's'/c) into mutually exclusive portions, and then dividing each of those

portions into mutually exclusive portions. For example, take a square (a class

of points) and divide it by horizontal lines, and then divide each of the result-

ing rectangles by vertical lines; then the resulting rows of little rectangles

form such a class, each row of rectangles being one member of the class.

Such a class we call an "arithmetical " class, and denote by "Cls3 arithm."

The present number is concerned with the properties of multiplicative

classes and arithmetical classes. Some of these properties will be useful in

dealing with exponentiation.

The present number begins with various propositions concerning Prod'/t

which are merely repetitions of previous propositions of #83, #84, #85 or #113.

Thus we have

#115141. h : a ! Prod'* . D . s'Prod'* = s'k by #83-66,

#115142. KProdVa = t"a by #83-7,

#115143. h . Prod'i"a = i'a by #83-71

,

#11516. K *e Cls2 excl. D.ProdVCNc'K by *100'64,

and various other properties.
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We then proceed to consider Cls3 arithm. We prove

#11522. f- :.tce Cls3 arithm. D :s<SceCls2 excl:a,/*?e*.a!s<an$<£.:)
0> ,i.a=,8

and #1 15*23 gives a similar proposition substituting " Prod " for s.

After a few more propositions on Cls3 arithm, we proceed to the associative

law for Prod (*115'34) } i.e.

b : k € Cls3 arithm . D . Prod'Prod"* sm ProdV*.

(This proposition, #11 5 "34, also states that, with the same hypothesis,

ProdVye sm 6aV«.) Hence we have

*11535. V :k e Cls3arithm.D . Nc <Prod fProd"« = Nc tProdV/c= nNcTrod"yc

We have also

#11542. V : Kt Cls3arithm . D . Prod'Prod"* = D"'Prod'e4"* = D"'D"e.i<eA"«

#11544. 1- : «eCls3arithm . D. ProdV* = s"Prod'Prod"*

We have next to prove that if two classes of classes have double similarity,

so have their multiplicative classes. The proof is simple, since the double

correlator is the same as for the original classes, i.e.

#115502. V : T[s {\e/cmm\. D . T|VProd'\e (Prod'*) smsm (Prod 'X-)

whence

#115 '51. h : k sm sm X. . D . Prod'* sm sm Prod'A,

The number ends with some propositions which result from #H4"64*65

and are analogous to them. One of these is used in the following number

in proving fx
w x v* = {fi x v)w, namely,

*115-6. r : (-«
u
7)1 R,Sf 7 e 1 -» 1 ^Cd'i^CCI'S. R"y, £"7 e Cls4excl.D.

Prod^"7 X Prod'tf"7 sm e±<p, {(a*) . z e 7 . fi = R'z x S'z\

The subject of this number will be useful in dealing with exponentiation,

since we shall define /x
v by means of Prod'a J,

"& where ^ =N c'a and

r = N c</9.

#115-01. Prod<K = D"eA'* Df

#115-02. Clss arithm = k (*, s<tc e Cls4 excl) Df

#1151. H . Prod t« = D"6i
(
yc [(#115-01)]

#115101. h:.«e*.Da .wnael:wC*'*:D.weProd'* [#84-411]

#115-11. h :: k e Cls8 excl . D :. w e Prod'* . == : a e k .
"2
a . vr n a e 1 : n C s'/c

[#84-412]

Owing to this proposition, Prod'/e can be treated without any reference to

e&'fc whenever k e Cls2 excl.

9—2
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T

#11512. r- : k € Cls2 excl . D . Prod'« e IINc'/t . Prod'* sm e^'* [*84"41]

It is this proposition that makes the notation Prod'* appropriate for the

multiplicative class.

#11513. h:a*,8 = A.:).Prod'(i<aui<£)sm(«x/3) [#113152]

#115131. h : a 4= /3 . D . Prod'(t'a v, i'/3) = <7"(a x 0) [#113151]

#11514. I- :. k f\ X, = A . v . s
1k r\ «'X = A : D :

cr € Prod'(/t u\).= , (gp, o-) . p e Prod've . a e Prod'X. . «r = /> u c

[#83-64-641]

#115141. r : g ! Prod'* . D . s'Prod'* = s'« [#83*66]

#115142. h . Prod't'a = i"a [*83'7]

#115143. 1- . ProdVa = i'a [#83-71]

#115144. r-:*Cl.D.Prod'* = iV* [*83'72]

#115145. r- :. k e Cls2 excl. a e/e.^r>ael.D://,-ae Prod'(«- i'a) . = . ^eProd'/e

[#84-422]

#11515. r- :. k, X e Cls2 excl . s'k ~ s'\ . D : k C Prod'X . == . A. C Prod'*

[#84-43]

#115151. h : k e Cls2 excl . D . e4 's'« = s"Prod'eA"* [#85-28]

#115152. r.PA'asmProd'PJ"a [#85"55]

#115153. h.eA '/tsmProd'eJ"«: [#115152]

#115154. r . Prod'e J"« e IINc'* [#115153]

#115-16. r : k e Cls2 excl . D . Prod'* C Nc'* [#100*64]

The following proposition is used in the theory of well-ordered series

(#250-5).

#115-17. V : a ! eA'Cl ex'a . D . Prod'Cl ex'a = i'a

Dem,

h . #80-14 . #115-1 . #37-45 . D h : Hp . D . g ! Prod'Cl ex'a (1)

1- . #60-61 . Fact . D

h :. R e 1 -» Cls . R G e . (I 'it! = CI ex'a . D : £ e 1 -» Cls . £ G 6 . i"a C (T£ :

[#51-15] D;xea.'2x .£cR(i t
a;):

[#3314] D:aCD'£ (2)

r . #83*21 . D h : Hp (2) . D . D'£ C s'Cl ex'a

.

[#60-501] D . D'£ C a (3)

h.(2).(3).Dl-:Eel->Cls.SGe.a'JR = Clex'a.D.D'JR = a (4)

r . (4) . #115-1 . #80-14 . D b . Prod'Cl ex'a C i'a (5)

h.(l).(5).*51-4.Dh.Prop
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#11518. h . J'Prod'* = t'K [#83'81]

*115'2. V : k e Cls3 arithm . = . k, s'k e Cls2 excl [(*115'02)]

*11521. h :. k e Cls8 arithm . = :a,y9e*.a!ar\#. D„^ . a = £ :

[#115-2. #84-11] '* ^

#115-211. h : /c e Cls3 arithm . a, /3e*:.pea.a-e/3.a!pna-.D.a = #
Dew.

I- . *1 15-21 .Dh:Hp.D.p = a-.pea.o-e/3.

[#13*13] D.pean/3.

[#115-21] D.a = #:Dr.Prop

*115'22. h :.K€ Cls3 arithm. D:s"*eCls2excl:a,/3e«. a !s'a*s'£.Da>/3 . a=£

Bern,

h . #40-11 . D h : g ! s'a e\ s'ft . ~ . (g#, p,o-).pe0L.o-e/3.aep*®ecr,

[#10'35] = . (gp, ^.pea.o-eft.Qlpno- (1)

h.(l). #115-211 .D

h :. Hp . D : a, £ e k . g ! s'a n s'ft . 3 . a = /3 . (2)

[#30-37] D . s'a = s'/3 (3)

h . (2) . (3) . #84-11 ,Dh. Prop

Observe that, although "

s

tf
tc e Cls2 excl" follows from

" a, /3 e k . a ! s'a n s'/3 . Da,£ . a = ft"

the converse implication does not hold. If there were two different classes

a and j3 having the same sum, we might have ftls'oins'ft, i.e. gls'a, without

having a = ft in spite of "s"k e Clsa excl." In proofs, less use can be made

of " s"/c e Cls2 excl " than of "a, /3 e k . a ! s'a ns £/9.D^.a= ft" If A~e k

or t'A<^e ac, the latter implies s|" « e 1 — 1.

#1 15-23. h:.rce Cls3 arithm . D :

Prod"* e Cls2 excl : a, fi e a: . a ! Prod'a * Prod'/3 . D „,/» a = £
Dem.

h. #83-62. D h : or e Prod'a « Prod '/3 . D . w C s'a « s'£ (1)

r . (1) . #24-58 . 3 r : w e Prod'a n Prod'/S . a ! *r . D . a ! s'a n s</3 (2)

h. (2). #115-22. Dh:Hp.a,/9 e *.cieProd'anProd'/9.alw.^.a=/3 (3)

h . #83-16 . Transp . D h : A e Prod'a n Prod'ft D . a = A . £ = A (4)

r . (3) . (4) . D r :. Hp . D : a,£e* . a ! Prod'a *Prod'ft D.a = ft (5)

[#30-37] }.Prod'a=Prod'£ (6)

h. (5). (6). #84-11. Dr. Prop

#115-24 h:*eCls3 arithm. EE.^efs'/teCls-*! [#115-2 .#84-14]

#115-25. h : k e Clss arithm . Z> . eA '* C 1 - 1 . e^'s'* C 1 -» 1 [#84'3 . #115-2]
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#11526. h : k e Clss arithm . D .

e*'s"/c C 1 -» 1 . €A
s
eA

,s
/c C 1 ~> 1 . e^'Prod"* C 1 -+ 1

[#84-3 . #115-22 . #84-55 . #115-23]

In the above proposition, e^e^'tc C 1 — 1 does not require the hypothesis

k € Cls3 arithm, being true always. It is merely included here for convenience

of reference.

*115-27. h : k e Cls* arithm . D . k C Cls2 excl [#ll'6-2 . #84*25 . #40-13]

We have now to prove the associative law for " Prod," i.e.

tc € Clss arithm . D . ProdV« sm Prod'Prod"*.

In virtue of #115*12, we have only to prove (under the hypothesis)

e&'s'tc sm eA'Prod"/e

which, by #85"44, will follow from

e&
l
e&"ic sm e^'Prod"k

which, by #114*52, will follow from

e& llK sm sm Prod"/e.

Now Prod"Ar = De
"6A "A:.

Thus the correlator which will give our proposition will be Dfs'ed"/*.

We have only to prove that this is a 1 — 1, and the rest follows.

#1153. h : k e Clss arithm . R, S e s'e*"* . V'R = V'S.3.R = S

Dern.

h.*115-23.Dh:A-eClssarithm. a,£e*. ReeA ta.Se €A<l3.I)
sR=~D<S.1.a=l3 (1)

h.#115-27.#84-4.Dh:A:6Clssarithra.ae*.i2,^66A fa.D (
i2 =D t>Sf.D.E = )Sr (2)

h.(l).(2).Dh:«eClssarithm.a,/SeA:.J2e6A fa.S66A (/3.D^=D^.D.J2=5f (3)

h . (3) . *10-ll-23'35 . #40-11 . D h . Prop

#115'31. h : k e Cls3 arithm . D . Prod"« sm sm eA
u

/c

Dem.
h . #115-3 , #71-55 . #72-13 . D h : Hp . D . D f s'<-±"k e 1 -» 1 (1)

h . #33431

.

Dr. s'eA
"K C (I'D (2)

h. #3711. #115-1. Dh.Prod"A- = D e"€A"* (3)

r . (1) . (2) . (3) . #111-402 . D h . Prop

#115-32. hue Cls3 arithm . D . e^'Prod"* sm e^"* [#115-31 . #114-52]

#115-33. h: K€ Cls3 arithm. D . ea'Prod'Sesm e4V* [#115-32 . *85"44]

#115-34. h : * 6 Cls3 arithm . D . Prod-Trod"* sm ProdVk . Prod's'* sm e±'s<k

[*115-33-1223]

This proposition gives the associative law for " Prod."

The following proposition embodies the last three propositions.
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#115-35. h:«e Cls3 arithm . D .

Nc'Prod'Prod"* = Nc'ProdV* = IINc'Prod"* = IINc'^"* = IINc's'a:

[*115'34-33'32]

In connection with ProdV* and Prod'Prod"*:, there remain two pro-

positions of sufficient interest to deserve proof, namely

k e Cls3 arithm . D . ProdV* = s"Prod'Prod"*

and k e Cls3 arithm . D . Prod'Prod"* = D<"D"eA<e/'tf.

Of these, the first is deduced from the second, while the second is proved

by means of #114*51, putting D for the T which appears in that proposition,

and e^'/e for the \ of that proposition.

#1151 H : Tfs'X e 1 -» 1 . s'\ C d'T . D . Prod'T'"\. = T"Trod f\

Dem.

h. #11114, #37103. Dh:Hp.« = T" fX.D. T|VXe*smSm\.

[#114-51.#73-142] D . eA*««(T|l ?e)"eA 'X (1)

H.(l). #115-1. Dh:Hp.D.Prod (Tt"\ = D"(TljTe)"ei'X (2)

I- . #37-321-231

.

D H . D'(5T
|
R

\
Te) = D'(T

|
R)

[#37'32] = T"D'R (3)

H . (3) . #43112 . 3 H . D"(T[| Te)"e*<\ = 2""D"e4'\

[#1151] = T"'Prod'X (4)

r . (2) . (4) . D H . Prop

#115-41. H :. R,Ses'X . D'R=V'S.0BjS . R = S:3. Prod'D'"\.=D'"ProdfX

#115-4? #71-55. #72-13

#11542. H : k e Cls8 arithm . D . Prod'Prod"* = DmProd'e4"«

h. #116-1. Dh.Prod<Prod"A: = Prod'D'"eA"* (1)

H . #115-3-41 . D h : Hp . D . Prod fD" f
ed "A: = D I"Prod'eA"A: (2)

[#115-1] =D f"Du6A'eA"A: (3)

h . (1) . (2) . (3) . D h . Prop

#115-43. H : k e Cls3 excl . D . ProdV* = «"D"'D"eA'eA"*

Dem.
h. #115-1. #85-28. D

H : Hp . D . Prod's^ = D"i"D"eA f
eA"A:

[#41-43] = s"D'"D"6A'<?a"« OH. Prop

#115-44. H: a: eClss arithm. D.ProdVA:=s"Prod tProd"A: [#115*43'42]

The following proposition is a lemma for #115'46.
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#115-45. h :. a, ft e k . g ! s'a r\ s'fi . 3a,0 . a = /9 : D .

(s
j
D) [ es'/c e 1 -» 1 . « f Prod's e 1 -» 1

Dew.

I- . *83'2 . #40-13 . D I- : R € e*'K . a e k . D . R'aC s'a (1)

h . #83-2 . #33'43 . D h : E e e±'/e . a e k . D . .R'a C s'D'E (2)

h . #83'23 . D

h : R € e&'/c . a e * . # e (s'D'iZ r\ s'a) . D . (g/3) .fte/c.xe R'ft .xes'a.

[(1)] D.(a/3)./3e*.#e.ft'/3.a;e-s'/3.#es'a(3)

h.(3).D|-:.Hp.J2 6 64
(A:.aeA:.D:^6(s (D'Ens fa).D.(a/3).«eie f

/3.i9= a.

[#13-195] D.aeE'a (4)

r . (1) . (2) . (4) . D h :. Hp . D : R e eJtc .ae tc .1 .R'a = s'D'R rx s'a (5)

h . (5) . D h :: Hp . 3 :. R.See^K . s'T>'R = s<D'S . D : a

e

a: . Da . R'a = S'a:

[#33'45 .#80-14] D:R = S:. (6)

[#7l-55.#72-13-16l] D :. (s
j
D) f ed '« e 1 -»

1

(7)

h. (6). #37-63. #115-1. #30-37. Dh:.Hp.D:/i,i>eProd'*.s'/i=s'iO./A=i>:

[#7l-55.#72161] D:sfProd'«el->l (8)

r . (7) . (8) . D r . Prop

#115-46. h : k e Clss arithm . D . s f Prod'Prod"* e 1 -» 1

Dem.

h. #115141. D

h : a, /3 e * . a ! s'Prod'a n s'Prod'/3 . D . 3 ! s'a n s'/3 (1)

h.(l). #115-22.3

h :. k e Cls3 arithm . D : a, £ e k . g ! s'Prod'a r\ s'Prod'/3 . D . a = /3 .

[#3037] D . Prod'a = Prod'£ :

[#37*63] O-.frve Prod"* . g ! 5> n s'v . D . p - t>

:

[#115-45] D : s f Prod'Prod"* e 1 -» 1 :. D h . Prop

The above proposition is used in dealing with products in relation-

arithmetic (#1 74-42).

#115*5. h : Tfs'X e *smsmX.D. Prod'*=Te"Prod'X [*115'4. *11M4]

#115-501. h : T[s'\ e*smsmX . a ! Prod'X.D . Tf s'Xe(Prod'*)smsm (Prod 'X)

[*115*5-141. #111-14]

#115502. \-:T[s sX€KsmsmX.'D.T[ s'Prod'X e (Prod'*) sm sin (Prod'X)

Dern.

h . #35-75 . 3 h :~a l-Prod'X . D . T \ s'Prod'X = A (1)

h . #115-5 . #37-29 . D h : Hp .~a ! Prod'X . D . Prod'* = A .

[#37-29.#40-21] D . s'Prod'« = {T\ s'Prod'\)"s'Prod'X (2)

V . (1) . #72-1 . (2) . #115-5 .#111-1.3

h : Hp .~g! Prod'X. . T[ s'Prod'X e (Prod'/c) sm sm (Prod'X) (3)

h.(3).*115-501-141.Dh.Prop
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*115'51. h : k sm sm X . D . Prod'* sm sm Prod'X [*115*502]

The above propositions show how, in certain respects, Prod** is more
convenient than €a'k. We cannot have g&'k sm sm e^'X, because e4*« is a class

of relations, not a class of classes; and the correlator of e&'/c and e&
fX is by no

means so simple a function of the correlator of k and \ as Te [ Prod'X, which

correlates Prod'*; and Prod% in virtue of #115'502.

The following propositions are a continuation of those given in #1 14*601 ff.

#115*6. \-:(R"y)'\R,S[yel->l.yCa'R.yCa tS.R"y,S"yeCl8>exc\.'}.

Prod'.R"7 x Prod'S"7 sm eSfi {faz) . z e y . fi = R'z x S'z}

Dem.
h. #115-12. #113-13. D

V : Hp . D . Prod f,R"7 x Prod'S"? sm €A
lR"y x ^'S"y (1)

K(l).*114'64.DI-.Prop

#115001. y-:(R"y)lR,Slyel-+l.yC(l'R.yCa'S.R"yeC\a*exc\.1.

£ [faz) .zey.fi = R szx S'z} e Cls2 excl

Dem.

h.*11319.Dh:.Hp.D:

g,wey.<3_l (R'z x S'z) n (R'w x S'w) . D . a ! R'z n R'w .

[#84-11] 3. R'z = R'w.

[#74-53.*30'37] D.* = w.

[#3037] 3. R'z x S'z = R'w x S'w (1)

h. (1). #84-11. Dh. Prop

#115-602. h : (R"y) 1 E, 5 f y e 1 -» 1 . y C (T.K . y C <P8 . S"y € Cls8 excl . 3

.

fi {(a*) •zey./M** R'z X #*£} e Cls2 excl

[Proof as in #115-601]

#116*61. \-:.(R"y)1R,Sty€l-*l.yCa'R.yC(I<S.R"y*S"y = A;

R"y € Clss excl . V . S"y e Cls2 excl : D .

eJ(R"y u fl"y) sm Prod'£ {fag) .zey .
(i = R'zx S'z}

[#115-601'602'12. #114-65]

#115-62. b:(R"y)'\R>
Styel-*l.yCa'R.yCa<S.R"y*S"y=k.

(R"y vS"y)e Cls2 excl. D.

Prod'(#"y u £"y) sm Prod'£ [faz) . zey . fi = R'zx S'z]

[#115-61-12. #84-25]

#11563. \-:{R"y)
J\R,S\y e l-*l.yCa'R.yC<l'S.R"y,S"yeG\&zm\.^.

¥vod'R"y x Prod'£"y sm Prod'£ {faz) .zey.p = R'zx S'z}

[*115-6-601-12]



*116. EXPONENTIATION

Summary o/*116.

In this number, we define "aex-pft," meaning "a to the exponent ft,'

where a and ft are classes, as

Prod'a|"/3.

Now Prod'a I "ft consists of all ways of selecting one each from the members

of a | "ft, i.e. from the classes I y"a> where y eft. Thus to get a member of

Prod'aj, "ft, take a set of couples x
J. y, where % is always an a, and there is

only one x for a given y, and y is each member of ft in succession. Thus for

each member of ft, we have Nc'ot possible referents; hence it is plain that the

number of possible sets of couples consists of Nc'/3 factors each equal to Nc'a,

and is therefore fit to be taken as defining <Nc'a)Nc
'
p

.

The definitions of p? and (Nc'a)Nc
'
p are derived from the definition of

aexp/3 exactly as the definitions of /i|t v and Nc'a+cNc'/S, or of fx x v and

Nc'a x Nc f
/3, were derived respectively from a + ft and a x ft.

The chief difficulty in this number lies in the proof of the three formal

laws of exponentiation, namely

/*» x v" = (p x vy,
and (jjf)*= fx

vx°*r.

The proofs of the second and third of these, in particular, require various

lemmas; but there is no difficulty involved except the complexity of the

classes and relations concerned.

The definition of /i" is so framed as to minimize the necessity for the

multiplicative axiom (see the note on #113'31 in the introduction to #113).

We have

#116*36. h :. Mult ax . D : /*, v e NC - fc'A . k e v r\ Cl> . 3 . IINc'* -p
that is, assuming the multiplicative axiom, the product of v factors each

equal to p is fi
v (assuming p and v to be cardinals which are not null).

If we had defined /*" as the product of v factors each equal to p, we should

have required the multiplicative axiom for almost all propositions on (i
v

\ but
by taking the particular class al"ft, we avoid the multiplicative axiom

except in a few propositions. Among these few is the above proposition

connecting exponentiation with multiplication.

Cantor has defined ft" by means of the class of " Belegungen," i.e. the
class

M (R e 1 -» Cls . D'R C a . (Fi2 = ft)
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which (#1161'2) = (a f ftA'ft By #85-53 and #113103, this class is equal to

£"(aexpft (as is proved in #11613), whence, since sfaexp^e 1 — 1, it

follows (#116-15) that the class of "Belegungen" is similar to a exp ft

Hence our definition gives the same value of p" as Cantor's.

The propositions of the present number begin with various simple

properties of a exp ft Its existence follows from

#116-152. h:fl:ea.D.A?|"£e(aexpjS)

whence (#11616) h . Cnv"'£
J,
"a C a exp ft and

#11618. h:.a!«,v./3 = A: = .g!aexp/9

We have

#116-19. V : a sm y . & sm 8 . D . (a exp ft sm sm (7 exp 8)

in virtue of #113'13 and #11551. #116192 shows that, if R[y correlates

a with 7, and 8 [ 8 correlates /9 with S, then (R
||
S) [ (8 x 7) is a double

correlator of (a exp ft with (7 exp 8).

We then proceed to a set of propositions on fi
v

, which are analogous to

#11 3'2 ff. on ix x v. We have

#116-203. r^aV.D./A.veNC- fc'A . /*, 1/ e N C

#116-25. r . (Nc f

7)
Nc 's = Nc<(7 exp 8)

and various other less useful propositions.

We then have various propositions on and 1 and 2. We prove

#116 301. r : p e NC - i'A . D . ^ = 1

#116-311. h:*eNC-fc fA-fc'0.D.0"=0

#116-321. I- : ^ e NC - i*A . D . /** = sm"/*

(Observe that sm"/* is the same cardinal as /i, but rendered typically

ambiguous.)

#116-331. l-:
AieNC-i lA.D.l'*=l

#116-34. h./*2 = /*x /*

(This proposition does not require that fi should be a cardinal.)

After the proposition (#116-36) already quoted, on the connection of

exponentiation and multiplication, we proceed to a set of propositions on

the case where a number of classes are all given as similar (by assignable

correlations) to a given class. In #116-411, we prove that if tc is a class

of mutually exclusive classes, each of which is similar to a given class 7,

and if, when a.e/c,Mf
a. is a correlator of a and 7, and T is the sum of M(i

K,

then

Nc*eA*T"y = Nc'TVy = Nc'(« exp 7) = (Nc'*)*^.
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This is a further connection of multiplication and exponentiation. (On the

purport of this and following propositions, see the explanation preceding

#116-4.) In #116"43, the hypothesis is somewhat modified. We still have a

set k of classes which are all similar to 7, but the correlator for a given class

a is not given as M'a, but is given as M*w, where w is a member of a class h

which is similar to k. Then « = D tfMtf
B. We assume that M \ S is a one-one,

and that if Mlw and M'v have domains which overlap, then w = v. Thus k is

a class of mutually exclusive classes, each of which has Nc*7 terms, while

k has Nc'S terms. Then it is proved in #116-43 that

Prod'D'WS sm sm (7 exp 8) . IINc'D"il/"8 = (Nc 1^ '8
.

This proposition and another (#116-45) which follows from it are useful in

proving the formal laws of exponentiation. The proof of these occupies the

following propositions from #116 "5 to #116'68. We have

#11652. V . p" x pT* = p*+«r

#116-55. h.
/
nBr x ^ =

( /
i*x i;)

G7

#116-63. h./*" x«» = (^»)w

An extension of the first of these is

#116-661. r . IINc'(aexp)"A:= (Nc'a)2Nc
'"

Here the number of members of k need not be finite. The purport of the

proposition is as follows: Let ft, 7, B, ... be the members of k; form aexp/3,

a exp 7, a exp 8, ..., and take the product of the numbers of all these; then

the resulting number is the same as if we first took the sum of the numbers

of all the members of k, thus obtaining (say) a number fi, and raised Nc'a to

the fith. power.

An extension of #116'55 is given by #1 16*68, where we prove

r- : k e Cls2 excl . D . IINc'exp 7"* = (IINc'/e)NcV.

There is no analogous extension of #1 16*63.

We prove next Cantor's proposition (which is very useful)

#11672. l-.Nc<Cl'a = 2N<''«

I.e. the number of combinations of ja things any number at a time is 2*.

(Observe that jj, need not be finite.) The remainder of the number is con-

cerned with consequences of this proposition.

*116'01. a exp p - Prod'a | "0 Df

*116-02. fi" = 7 {(r-ja, £).,* = N c'a . v =N c'£ . 7 sm (a exp £)} Df

#116-03. (Nc'a)- = (NoCa)" Df

#116-04. /aNc'* = ^Noc'p Df
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*1161. h : £<-(aexp/3) . = . faR) . R e e4<a I "0 .%=D'R

[#115'1. (#116-01)]

#11611. r :. f e (a exp 0) . = : y e . 1y . a r\ x (x I y e £) e 1 : £ C x a

i)em.

h . #113-111 . #115-11 . D

H : . f e (a exp £) . = : p e a I "0 . Dp . p n f e 1 : f C s'a | "0 :

[#38-2.#ll3-l] =:ye)9.Dj,.iy"an|el:?C/9xa (1)

h.#37-6.D

h : | y"a n f e 1 . = . R {fax) ,xea.R = £cly.Re^}el.

[#13-193] = . R {fax) .X€tt.xlye%.R = xly}el.
[*37'6] =.ly"%{xe*.x\,ye£)e\.
[#73-611-44] =.%(xea.xlye£)el (2)

I- . (1) . (2) . 3 h . Prop

#116-12. h . (a t P)S8 - £ {i2 e 1 -* Cls . D'R C a . d'R = 0}

Dem.

h . #80-14 . D h : R e (a f £)*'£ .EE.-Kel-^Cls.flGaf/S. CPE = £ .

[#3583] = . R e 1 -* Cls . D'E C a . CPE

C

. <!*% = £

.

[#22-42] = . R e 1 -» Cls . D'# C a . a fi2 = : 3 h . Prop

#116-13. h . s"(a exp £) = (a | £V£

h . #85-53 . D h . (a t /3),//3 = s"D"€A'(a f £) J"£
[#113-103] = s"D"eA'a 1 "£

[#115-1.(#116-01)] = s"(a exp 0) , D h . Prop

(afyS)^/? is the class of one-many relations whose converse domain is

/3 and whose domain is contained in a. This is what Cantor calls the

" Belegungsmenge," and is used by him as the definition of exponentiation.

In virtue of #116-15, his definition gives the same results as ours,

#116-131. h . s T (a exp 0) e {(a f 0)A '0) sin (a exp 0)

Dem.

h . #84-241 . #113-103 . D h . i"0 e Cls2 excl . a 1 "0 = (a f 0)±"t"0 (1)

h . (1) . #85-42 . D h : M.Neex'fx | "y9 . s'D'M=WiV .1.M=*N.

[#30-37] D.D'ilf= D<i\r (2)

h . (2) . #37-63 . #115-1 . (#116-01) . D h : p, v e (a exp 0) . s'p = i'p . D . ^ = v :

[#7l-55.#72-163] D r- . if (a exp /3) el - 1 (3)

h. (3). #116-13. Dh. Prop

#11614. h.(aexp/3)sm6A f
aJ.

If
y9 [#115-12. #113-111]
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#11615. h . (a exp £) sm (a f 0)^0 [*116'1S1]

#116151 is a lemma for #116152.

#116151. h : x e a . D . a? I I Cnv'(a 1 T #) e e*'a 1 "£
>i n

Bern.

V . #113105 . #72184 . D I- : Hp . D . as I |
Cnv'(a I f /3) e 1 -» Cls (1)

r . #341 . #38-1

.

D h :. Hp . D : R {as 1 1
Co v*(a | f £)} X . = .

[#38-21] D.iZeX (2)

h . *37-322-401 . D h . (Flo? I
|
Cnv'(a i f £)) = a i "0 (3)

h . (1) . (2) . (3) . #8014 . D h . Prop

#116152. h:a!ea.D.#4,"/36(aexp/3)

Dewi.

h . #37-32 . #35-65 . D h . T)'{as I |

Cnv'(a | f £)} = a 1 "y9 (1)

h.(l). #1161511. Dr. Prop

#116-16. r.Cnv"'/3|"aCaexp/3

Bern.

r . #116-152 . #55-14 . Z) r : as e a . D . Cnv" | #"£ e (a exp £)

.

[#38-2] D . Cnv"/3 1 xe (aexp/3) : D r . Prop

The above propositions are useful in establishing existence-theorems, as

appears in the following propositions.

#11617. r-:a!/3|"a.D.a!aexp/3 [#11616 .#37-47]
n

#116171. r:.g!a.v./3 = AO.a!aexp/3
Bern.

r . #113-113 . #83-15 . #51161 . D I* : £ = A . D . g ! a exp j8 (1)

h. #116152. Dh:g;!a.D.3!aexp/3 (2)

r.(l).(2).Dr.Prop

#116172. r:.g!aexp/3.D:a!a.v./3 = A
Dem.

r . #8311 . D r :. Hp . D : A~e a | "£

:

[*lia-112] D:~(a=A. a !£):

[#24-51] D:g!a.v./3 = A:.Dr.Prop

#11618. h:. a ! a .v./3 = A: = .g:!aexp
/3 [#116171172]

#116181. r.aexpA = fc'A

Dem.
r . #113-1 13 . D h . a exp A = Prod'A

[#83-15.*33'241] = t'A . D r . Prop
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#116182. H:g!/3.D.Aexp/3 = A [*118*112 .#83-11]

#116183. H . s'(a exp £) = £ x a

.Dm.

K . #115-141 . #116 18 .Dh:.g[!«.v./3 = A:D. a'(a exp £) = s'a
J,

t(
j3

[#113-1] =£xa (1)

h . #116-182 . DI-:.a = A.a!^.D. s'(a exp £) = A
[#113*114] = /3xa (2)

K(l).(2).DKProp

#11619. h : a sm 7 . /3 sra 8 . D . (a exp /3) sra sm (7 exp 8)

Dem.
h . *11313 . D h : Hp . D . a 1 "/S sm sm 7 4 "8 .

[#115'51] D . (a exp /3) sm sm (7 exp 8) : D h . Prop

*11619L I- : Reasmy.Se/3 sm 8.3.(22 1|
S) f (8 x 7)e(a exp /3)smsm(7expS)

.

(JK||S)e"(7exp8) = aexp£
[#113-127 . #115-502 . #116-183]

#116192. K-.Br yeasmy.St 8e/3sm8.D .

(jR
||
S) f (S x 7) e (a exp /3) sm sm (7 exp 8)

.

(i?
|j
S) e [ (7 exp 8) e (a exp j3) sm (7 exp 8)

[#113-127 . #115-502 . #116-183 . *11M5J

#116194. \-iE[y€asmy.S[8e^m8.^.

(r
ii
S) r {(7 r sy*} « k« r ^v^i sa {(7 r v«}

Z)em.

h . #116-12 . D h : Hp . D . 5
(D"(7 | By8 C 7 . s'(I"(7 | $)j/S C 8 .

[*74-773.*73-142] D . (ii
|| 8) f {(7 | $yS} e

{(R\\sy<(yt8y8\m{(yt8y8} (i)

I- . #116-192 . #111-14 . D h : Hp . D . a exp /3 = (-K
||
S)e"(y exp S)

.

[*116'13] D . (a T /3)i*/3 = s"(JK
||
#>"(7 exp 8)

[#43-43] =(J2||£)*'i"(7expS)

[#116-13] -(JRj|3)"(YT$yS (2)

h . (1) . (2) . D h . Prop

The following propositions (down to #116'27 exclusive) are the analogues

of propositions with the same decimal part in #113.

#116-2. h:?e /i". = .(aa,
J3)./A = Noc

fa.p=N c f/3^sm(aexp^) [(#116-02)]

#116-201. h :.^e/A".£= : /*, v eNC : (ga, #) . aep.fiev. £sm(aexp,S)

[#116-2 . #103-27]
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#116'202. h :. £e/*» .3 : a ! /* . a ! i» : (a«,/3)./i,=Nc'a . p=Nc'^.fsm(aexp£)

[Proof as in #113-202]

#116-203. h : g ! ^ . D . ^, v e NC - t'A . /i, v eN C [#116-201 202-2]

#116-204. h:./i-A.v.p = A.v.^(f*,peN0)O. Ai
,'-A [#116-203]

#116-205. h:~(/A, V€ N C).D.^ = A [#116-203]

#116-21. h:.
/
*,peNO.D:fe/*".s.(aa,^).ae^.)8e»'.fsm(aexp/3) [*116'201]

*116'22. h : f e {Nc (ij)'7)Wo W'a . = . a ! Nc^'-y . g ! Nc(£)'S . £sm (7 exp S)

[Proof as in #113*22, using #116-19 in place of #11313]

#116-221. r : a ! Nc (»?)'7 . a ! Nc (f)'S . D . {Nc foy7
po <f)'« = Nc<(7 exp 8)

[#116*22]

#116-222. r- . (N c'7)
NnC'5 = Nc'(7 exp 8) [Proof as in #113-222]

#116-23. K /*» eNC [Proof as in *113'23]

*116-24. h . (Nc'7)
Nc'* = (Noc'-y)

1^'* [(*116-03-04)]

*116'25. h . (Nc'7)
Nc<i = Nc £

(7 exp S) [#116*24-222]

#116-251. h . (7 exp 8) e (Nc<7
)Nc'* [#11 6'25 . #100*3]

#116-26. h : ft, v eNC . a ! sm„"/x . a * snV'p . D . /*' = (sm,"^)8^""

[Proof as in #113-26]

This proposition shows that we may raise or lower the types of p and v

as we please, without affecting the value of fi", provided fi and v, or rather

sin"/* and sm"p, exist in the new types.

#116-261. h : ft, v eNC . D . /** = {/x^}^ = |^(oo)}"(») = etc. [Proofas in *113'261]

Here "etc." covers any derivative of /* or v whose existence follows from

that of /z or v.

#116-27. K /*" - £ ((a«= /3) . it.
•= N6c'a . v = N C/3 . | sm (a f /3)A*/3}

[#11615. #73-37. (#116-02)]

#116-271. h:/i,veNC.ae
A
*./3e»'.D.(aexp£)e

i

&* [#116-21]

#116-3. h.(Nc'«)6 = l

Z)em.

K #1011. #1 16'25. Dh. (Ne'er) = Nc'(a exp A)

[#116181] = Nc't'A

[#101-2] =l.Dh.Prop
#116-301. h : /* eNC - t

(A . D . /*° = 1 [Proof as in #113-601]

#116-31. h : £ + A . D .
Nc'P =

h . #1011 . #116-25 . D h .O^ = Nc'(A exp £)

.

[#116-182] D h : Hp . D .
Nc'" = Nc'A

[#1011] = 0:3t-.Prop
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#116-311. h: V eNC-t'A-i'0.D.0" =

Dem. h . *103'34 . *101'1 D h : Hp . D . (a/3) . £ + A . v = N c'/3

.

[*13-12-15] D . (3/3) . /3+A.0"~ N°C'P

[*116-31.(*116*04)] =0:Dh.Prop

#116-32. r-.(Nc'a)1== Ne'er

Dem. h . #116-25 . #101*2 . D h . (Nc'a)1 = Nc f
{« exp (t<«)}

[(#116-01)] = Nc'Prod'a | "t'#

[#115'142.#53-31] =NcV r«4a3

[*113'll.*100-6] = Nc'a . D I- . Prop

#116*321. hr/ieNC-t'A.D./^sm'V [#116-32]

It would not be an error to write
{>1 = yu." instead of "^ = am"fi" in the

above proposition. For if the " sm" is typically determined so that sm"/* et'fj,,

then sm"/i, = /Lt. Thus in virtue of #116-321, /£ = /* is true whenever it is

significant. But the above form gives more information, since it preserves

the typical ambiguity of
fj}

and sm ff
/i.

#11633. h.l Nc'" = l

Bern. K #113-11. Dhrael.D.aV/SCl.

[#115-144.*10r2] D . Nc'Prod'a | "/3 = 1 (1)

h . (1) . #101-2 . D 1- . Nc<{(t'#) exp £} = 1 (2)

h . #101-2 . #116-25 . D h . lNc'" = Nc'{(i'a>) exp /3} (3)

V . (2) . (3) . D h . Prop

#116-331. H^eNC-t'A.D.l^l
Dero. r . #103-34 . D h : Hp . D . (a#) . /* = N c^

.

[#13-12-15] D . (a/3) . 1**= lNoo'fl
.

[(#11604)] D.(a/3).l* = l
No''J

.

[#116-33] D . 1* = 1 : D '+
. Prop

#118-34. b . ft? = fi x fi

Dem.

I- . #241 . #101-3 .Dh.('Au(fV62.

[*1 16-222] D I- : p= N c'a . D . fi? = Nc'Prod'a 1 "(t'A w t'V)

[#53-32

1

= Nc'Prod'(t'a 1 A u t'a
J,
V)

[#1 15'13.#55-233.*38-2] = Nc'(a 4, A x a I V)

[*113-ll-25-13] = Nc'ax Nc'a

[#113-24] =/*x o/i (1)

h
. (1) . #103-2 .Dhj/ieN.C.D./i^/iX^ (2)

r . #116-205 . D I- : /i^eN C . D . m2 = A
[#113-205] =/*xo/i (3)

h . (2) . (3) . D r- . Prop

R&WII 10
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*116'35. h : /x* = . = . /x= . v eNC - t'O - t'A

Dem.

h . #1 16-311 . h : /* = . y e NC - t'O - i
lA . D . /x* =

F. #101*12. Dh^'-O.D-a!^.
[#116-203] D./*,* eNC -t'A

h. (2). #116-21. #54-102. D

K-./x* = 0.D
[#73'47] D

[*1 16-18] D

[#13195] D

[*10ri.*100'45.(2)]D

V . (1) . (3) . D I- . Prop

f = A . = . (ga, /3) . a e p . /3 e v . £ sm (a exp 0) :

(ga, /3).ae/A./3ei*.a exp # = A

:

(ga, /3).«e/i.^ev.a = A.^=f= -^ :

A e
fj.

. v 4= t'A . a ! v :

/i = . v e NC - t'A - ('0

(1)

(2)

(3)

#116-351. h: /A eNC-t fA.* = A.v = 0.D./x"^ nNc f* = 1

[#116-301. #114-2]

#116-352. H/^O.veNC-i'A.tfev.Aetf.D. ^"^IINc'a: =

[#116-311. #114-23]

#116-353. I- : n = . v e NC - t'A . k e v r\ CI'/* . D . /*" = nNc'«

Dem.
h . #60-362 . #54-1 . Dl-:.Hp.D:/c = A.v.A: = t

fA (1)

h . #100-45 . *101'1 . D h : Hp .* = A . D . v = .

[#116-351] D . /x" = IINc'« (2)

K #51*16. Dh:Hp.tf = i*A.D.AeA:.

[#116-352] D . /** - nNc'« (3)

K(l).(2).(3).DKProp

#11636. h :. Mult ax . D : /*, v eNC - i'A . k e v n Cl'/x . D . IINc'a: = /**

2)em.

h . *113'12. #100-45. D I- : /x, v eNC . ae/x . /3 e v . 3 ! a . D .«
J,
"& e v r\ Cl'/x (1)

h.(l). #114*571. Dh-.Multax.D:

/x.peNC.ae/x.jSep.ala.tfei/n CIV . D . IINc'a: = IINc'a 4, "/3

[*11614.*114-1] = Nc'(aexpy8)

[#116-271] =fjL> (2)

h.(2).D

h :. Mult ax . D : /*, p eNC - t<A . g ! /x - t'A . « e v r\ CI '/x . D . IINc'a; = /x" (3)

h . #51-4 . #541 . D I- : /i e NC - i
fA .~ g; ! M - t'A . D . ,i = (4)

h . (4) . #116-353 . D
!-

: /x,p eNC- t'A .~a - ^ _ t<A . * e i> r\ Cl'/x . D . IINc'*: = /x" (5)

h.(3).(5).Dh.Prop
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In the above proposition, "yeNC" is sufficient hypothesis as to v, since

"v4=A" is implied by xevr\ Cl'fi. But /*=j=A is essential, since if /-t=A,

fji" = A and k = A (provided v — 0), whence IINc'/e = 1.

The above proposition connects exponentiation with multiplication.

#116 361. r : . Mult ax . D : ^ v e NC ~ t'A . k e vr\ CI excl^ . D . ProdV e^
Dem.

r . #11512 . D h : K e v n CI excl'/* . D . Prod'* e nNc'« (1)

h.(l). #116-36. Dh. Prop

The following propositions, which illustrate certain generalizations of the

relations of rows and columns, may be made clearer by the accompanying

R'z

y^d'R

r) R =M'w

^ D<R=:D<M'w

= D"Jif"8

Tz

figure, in which, for the sake of simplicity, all the classes concerned are taken

to be finite.

Let k be a set of classes, constituted by four rows of five dots in the

figure, which are each given as similar to a given class 7, represented by the

top row of five dots in the figure, namely the row enclosed in an oval. We
assume that an actual correlating relation is given correlating each member

of k with 7. Let X be the class of these relations, and assume that X consists

of one correlator for each member of k, and that AreCls2 excl. Thus D"\ = k,

and ReX. D . d'R = y. Put T— s'X. Then, if zey, T relates to z every
—

>

member of the column below 2, i.e. T(z consists of the four dots which are

vertically below z; assuming, what in the circumstances is possible, that each

dot is placed below its correlate in 7. Thus T"y represents the columns,

while D"X represents the rows.

We prove, in #116'41, that 2* f
7, the class of rows, has double similarity

with X I "7, or, what comes to the same thing, with « I "7. Hence it follows
ft >7

that T"y, which is the whole class of dots, is similar to 7 x X or 7 x k, and
—

*

that Nc'e^T'fy which is the product of the numbers of the columns, is equal

10—2
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to (Nc r
A.)

Nc<? or (Ncf
«)
Nc'v. The correlator which is used for proving these

propositions is W, where, if R is a member of X and z is a member of y, W
correlates R'z with R^z.

Similarly, by correlating Riz with z
J, Rt

calling the correlator U, we

have U" I R"y = R<% i.e. Ue'y LR = !>'-#, whence Ue"y J, "X = D"\. Hence
)3 it

D"X, i.e. the class of rows, has double similarity with 7 I
'
'X or y I "it, whence

the product of the numbers of the rows is (Nc'y)^
'
1^ or (Nc'7)No'".

Finally, we take a class 8 similar to k or X (illustrated in the figure by

the column of dots enclosed in an oval), and calling M a correlator of X and S,

we replace X by M"8 and k by T>"M"8. We thus End that, if M \ 8 corre-

lates with 8 a class of relations whose domains are mutually exclusive, and

which each correlate their domains with a given class y, then D"M"8 has

double similarity with 7 i "8, whence the same results as before with 5 in

place of k or X.

The following propositions are useful in connecting multiplication with

exponentiation, and in proving the formal laws of exponentiation.

*116-4401 are lemmas for #116*41.

*1164, b :.XCl-*l -. R,S eX .QlD'R *D<S .1RiS . R = S

:

d"X C I'y . TT = $P {(rR, z).ReX.x=R'z.P = Rlz};
D. Wel-+l.a iW = 7x\.D'F = D fs fX

Bern,

h . *21-33 . D r :. Hp . D : xWP . xWQ . = .

(kR,S,z,w).R,S€X.x=R'z = S'w.P=R I z.Q--= 8 lw.
[*33-43] = . (rR, S,z,w).R,SeX.x = R'z = S'w . x e B'R r\ B'S

.

P*=Rlz.Q = Slw.
[Hp.*13-195] 1.(ftR,z> w).ReX.x=R'z = R'w.P = Rlz.Q=Rlw.
[*7l-532.*l3'l95]3.(ftR,z).Re\.x = R'z.P = Rlz.Q~Rlz.
[*13-172] D.P = Q (1)

r . *2133 . D h :. Hp . D : xWP .yWP. = .

(giZ, 8,z, w) . R> SeX . x = R'z . y = S'w . P = R I z = Q J,
w

.

[*55-202] D . (ai2, S,z,w).R,SeX.x = R'z.y = S'io.R = S.z = w.
[*13-22-172p.# = ^ (2)

H . *33131 . D h :. Hp . D : P e d'W . =

[*7l-411] =
[Hp]

[*113-101] =

h.*3313. Dr:.Hp.D:# e D<tiF.=
[*5512.*71-36] =
[*41-ll.#3313j =

K(l). (2). (3). (4). Dr. Prop

(rx, R,z) . ReX . x = R'z. P = R I z .

(rR, z).ReX.ze d'R .P=Rlz.
(QR,z).ReX. z ey.P = Rlz.
PeyxX (3)

(ftP,R, z) . ReX . x = R'z . P = R I z.

(ftR, z).ReX. xRz

.

x e D's'X (4)
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#116*401. h : Hp#116'4 . T=*s'X . D .~T"y*= Fe"X i "7

D<?m. h . #3711-1 . #38-2 . D h :. Hp . * e 7 . 3 :

# e We'X lz.= . faR) . .# e X . W (R I z) .

[#21-33]
'

=.('RR,S,w).R,SeX.x = S
iw.Riz =8iw.

[*55-202.*13-22] = . (<&R) .ReX.x = R l
z.

[#71-36] = . (gig) .ReX. ooRz

.

[#4111] ==.a;(s<\)s.

[Hp.*3218] h.^A (1)

t-.(l).*37'68.DI-.Prop

#116-41. b:.XCl-*l.a"\Ci'yiR,Se\.Rl'D<RKD iS.'}B> s<R=S:T~s'\:

D . T«ysm sm X 4 "7 . T'^ysm 7 x X . T eCls -*1 . T"7 e Cls2 excl

.

Nc'eA'? f
7 = NcTd'7 = Nc'ProdT'^ = Nc'(X exp 7) = (Nc'X)Nc'v

Dem. _^
h . *116'4-401 . #111-4 .#113-1 . 3 V : Hp . D . T"7 sm sm X J,

"7

.

(1)

[*lll-44.*40-5] D . r"7 sm 7 x X (2)

h . #72-321 . #8514 . D h : Hp . D . Te Cls -* 1 . Nc'eA'T"7 = Nc<2V7 (3)

r . (3) . #84-51

.

Dh:Hp.D.r"7eCls2 excl. (4)

[#115-12] D . Nc'eAf7^f
7 = Nc'Prod<r"7 (5)

h . (1) . #114-52 . D h : Hp . D . Nc'ca'"?"? = Nc'eA'X 4,
"7

[#11614] = Nc'(Xexp 7) (6)

[#116-25] = (Nc'X)Nc'*
(7)

Ml) . (2) . (3) . (4) . (5) . (6) . (7) . D h . Prop

The following proposition is merely another form of #116"41.

#116-411. h :. * e Cls2 excl : a e k . Da . M'a e a sm 7 : T= s'M"/c : D .

T"7 sm sm * I
'
'y . T"y sm 7 x x . T e 01s -* 1 . T"y e Cls2 excl

.

Nc'£a'?'7 = Nc f2V7 = Nc'Prod'T"7 = Nc'(* exp 7) = (Nc'*)Nc'?

Dem.

r- . #7303 . D h : Hp . D . M"k C 1 -» 1 . a"M"ic C t'y (1)

K*liri6.Dr:.Hp.D:«*
>
/3e*.Jf'a=J»f'£.3.« = £ (2)

K #14-21. Dh:.Hp.D:a € A:.D,E!if<« (3)

h . (2) . (3) . #73-24 . D I- : Hp . D . M"k sm k (4)

h . #73-03 . D h :. Hp . D : « e k . D . D'lf'a = a

:

[#13-12] D : a, e « . 3 ! V'M'a n D'M'jS .D.glan^.
[#8411] D.O-/3.

[#30-37.(3)] D . ilf<a = Jfcf'jS

:

[#37-63] D : R,SeM"K . 3 ! V'R * D'S. D . R = S (5)

h . (1) . (4) . (5) . #116-41 -V^ *H8'18 * #11619 . D h . Prop
X
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T

#116'412-413 are lemmas for #116-414.

#116412. I- :. \ C 1 -» 1 : JB, £ e X . a ! B'R * D'S . DAi9 . R = S : d"X C t
r

7 :

tT = &P {{rR,z) . R eX . x = #<* . P= z \ R] :

D . U e (s
fD"X) sm (X x 7) [Proof as in #116-4]

#116413. I- : Hp #116-412 . D . D"X = U<"y I "X [Proof as in #116-401]

*116'414. h:Hp*116-412.D. f/e(D"X)smsm(7 i "X) .(D"X)smsm(7 i "X)

[#116*412-413]

*116'42. h:.XCl-*l:.#,£eX.g! WR rsD'S .1BtS . R = S : d"\ C t'y :

D . D"X sm sm (7 J,
"X) . (D's'X) sm (X x 7) . (€A'D"X) sm (7 exp X)

.

Nc'Prod'D"X = nNc'D"X = (Nc'y)Nc
'*

[*116'41 4-25 . #115-51 . #111-44 . #41-43]

#116-422. \- :* M[ 8 el -*1 : w,v e 8 .Rl D'M'w r\ D'M'v . D Wf „ . w = w

:

w e & . Dw . Af<w e 1 -* 1 . (I'M'w « 7 : D . D"ilf"8 sm sm 7 1 "S

h. #116-42^-Ad
A,

h:.ilf"SCl^l:5 J ^eilf"S.a!D fi2nD^.DB)S .i2 = 5:a"if^SCt r
7:

D. D'^'Ssmsm 7 J,
"lf"S (1)

V. #14-21. Dh:.Hp.D:weS.D.E!ilffw: (2)

[#33-43] D : S C (PIT

:

[#73-15] D:(Jtf"S)sm$ (3)

I- . #51-15 . D I- :. Hp . D : w e 8 . D . (I'ilf'tt- e t'7 :

[#37-61] D : a«M"8 C t'7 (4)

K (2) . #30-37 . D h :. Hp . D : w, v e S . 3 ! D'M'w n D'M'w . Dw>1> . Jf'w = ilf'v :

[#37-63] 3:R,Se M"8 . 3 ! D'iZ n WS . 1S>

'

S . tf = 8 (5)

I- . (1) . (4) . (5) . D t- : Hp . D . V"M< '8 smsm^i "M"8 .

[(3).*113-13] D . D"ir"8 sm sm 7 1 "S : D I- . Prop

#116*43. h:.M[8el-*l:w,ve 8 . 3 ! WM'w n D'M'v . DWjt>
. w = v

:

we8.0w - M'w € 1 -* 1 . a'M'w = 7 :

D . Prod'D"Jtf"S sm sm (7 exp 8) . nNc'D"J/"S = (Ncf

7)
Nc 's

Z)e»i.

h . #115-51 . #116-422 . D h : Hp . D . Prod'D"ilf"S sm sm (7 exp 8) (1)

h . #116-422 . #114-52 . D h : Hp . D . WNc{D (lM {(8 = nNc'7 4 "S (2)

K #116*14-25. D(-.nNc'7|"S = (Ncf

7)
Nc's

"
(3)

r.(l).(2).(3).Dh.Prop

The above proposition is used in #116-534-61,
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#116-44. h : . a ! 7 : (*) . M<z e 1 -* 1 . d'ilf'a = V :

w, v e S . g; ! (M'w)"y r\ {M'vY'y . DW( v . w = w :

D . D" f 7"ilf"8 sm sm 7 I "5 . Prod'D" f 7"if"S sm sm
(7 exp S)

Dew.

h. #71-29. #35-65. D
I-:. Hp:(a).iVr^ = (ilf^)[

w 7:D.(a).^^ e l^l.a f
iV

r(a = 7 (1)

h.#37-401.Dh:.Hp.Hp(l).D:w;,y6S.a!D f^wnD^^.D
tt,ii; .w=rJ (2)

V .#35-7-. D h :. Hp.Hp(l).D: iK e7.w?,?;eS.iV
rw=iVrfv.D.(iVrf

w;)
f
/i!=(JV

7'^) £«.

[(2)] D.««« (3)

K (3) . #10-ll-23-35 . D h :. Hp . Hp (1) . D : w, v e 8 . N'w^N'v . D . w » v

:

[#71-55-166] D:iVr3€l-*l (4)

r . (1) . (2) . (4) . #116-422 . #115-51 . D
h : Hp . Hp (1) . D . D"N"8 sm sm 7 1 "8

. Vrod'D"N"S sm sm (7 exp 8) (5)

h . #38-11 . D h : Hp . Hp (1) . D . D'&'z = D< f 7'it/<*

.

[*37-353] D . D"#"S = D" [ y"M"8 (6)

I- . (5) . (6) . D h . Prop

*11645. \-:.(z).M(zel^>l.a<M'z = V:
w, v € 8 . a ! (if'w)< 'y n (M'v)"y . Dw> „ .w= v : D . Prod'D" |*y«M"8sm (7exp S)

Dem.
h . #116182 . #115*142 . #37*29 . D

l-:Hp.7 = A.a!8.D. Prod'D" f y"M"8 = A . 7 exp S = A (1

h . #115-1 . #83-15 . #116181 . D

I- : Hp . S =A . D . Prod'D' ' f y"M"8 = t'A . 7 exp S = t'A (2

h. (1). (2). #116-44. Dh. Prop

The above proposition is used in #116'676.

We have now to prove the three formal laws of exponentiation, namely

and (fi
vY = fi

vX^.

Of these the first is an immediate consequence of the distributive law, while

the second and third result from forms of the associative law of multiplication-

#116'5. l-:/3n7 = A.D.(a exp 0) x (a exp 7) sm a exp (/3 w 7)

Dem.

h. #113-191. D
I- : Hp . a I « . D . a I '<& n a | "7 = A .

[#114-301] D . eA'a X "/3 x e*'a I "7 sm e4'(a X "/3 u a ! "7) .

[*116-14.*113-13] D . (« exp £) x (a exp 7) sm ed'(a I "ft u a 4 "7)

.

[*37-22] D.(«exp/3)x(«exp7)smeli

f
aJ, "(yS w 7) .

[#116-14] D. (aexp/3) x(aexp7)sm«exp(/Su 7) <1)



152 CARDINAL ARITHMETIC [PART III

K*116'182.Dh:« = A.a!/3.3.aexpj3=*A.

[*113'114] D.(aexp^)x(aexp 7) = A (2)

h.*116'182.*24.-56.Dh:a = A.a!£.D.aexp(/3u 7)«A (3)

h.(2).(3). Dh:a = A.g;! j3.3.(«exp/S)x(aexp7)smaexp(^u7) (4)

Similarly h :a = A . g; ! 7 .3 .(a exp ft) x (a exp 7) sm a exp (ft u 7) (0)

H.*116181.5l-:« = A./3 = A.7=A.D.(aexp y
8)x(aexp7) = t

fAxt fA(6)

h.*116181.Dh:a = A./8=A-7 = A.D.aexp(j9w 7)=: t'A (7)

K (6). (7). #113-611. #73-43.3

h:a=A./3=A. 7 = A.D.(a exp /3) x (« exp 7) sm a exp (ft w 7) (8)

K (1) . (4) . (5) . (8) . D h . Prop

In the last line of the above proof, #73"43 is required because the two A's

involved have not been proved to be of the same type. They are in fact of

the same type, but it is unnecessary to prove this,

#116'51. b . (a exp ft) x (a exp 7) sm a exp (ft + 7)

Dem.

b . #116-19 .#11012 . D V . (aexp/3)sm(aexp I Ay"L"ft) .

(a exp 7) sm (a exp A^ j. "t' r

7) .

[#113-13] D h . (a exp ft) x (« exp 7) sm

(a exp 4, A/V/3) x (a exp A
fi 4, "i"7)

.

[*110-11.*116'5] DK(« exp ft) x (a exp 7) sm

a exp
( I Ay

"/"/3 u A^J, <V7) (1)

h. (1).(*1 1001). Dh. Prop

*116'52. V .fi
v x c fi

sr = fjL'
+Bm

Dem.
h.*116'51. #110-22. D

h . (No
c'«)Noc<0 x c (N c'a)N°c'v = (N^'a^+.N.tfy

(1)

h . (1) . #1032 . D h : p, 1/, w e N C . D . /*" x ^ = ^+^ (2)

K #116-205. #1 13-204. D

h/i<veN C.D./i'x c /i
ff =A = /i

,'+« ff
(3)

K #116-205. #113-204. D

l-:~(i/,-sreN6C).D. Ai
,'x c /i

w = A (4)

h . #110-4 . #116-204 . D I- : ~(„, « e N C) . D . /i"+. w = A (5)

h.(4).(5).Dh:~(,lW eN C).D./x ^ =M^ (6)

h.(2).(3).(6).Dh.Prop

The following propositions are lemmas for

fM
v x vw = (/J, x v)w.

The principal previous propositions used in the proof are #115-6 and #11643.
The proof proceeds as follows.
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(a exp 7) x 09 exp 7) is Prod'a I "7 x Prod'/S I "7. This, using #115-6,

and putting a j, , # 4 ^n place of i£ and $ of that proposition, is similar to

€*'fi {(ftz) . z ery . /* = a I z x I z\, ie. to eA'£ {(g^) . s e 7 . /* = I z"a x I z"@}.

Now by *113'65, putting Rf = R\\R Dft,
J,
s"a x I z"$ = ( I z)-f"(a x £).

We now apply #116-43, taking (lz)f as the M'z of that proposition, or

rather, taking ( I z)f f (a x #). Thus we find

€a'a* {(32) . £ <? 7 • ^ = 1 ^"a x i z lt
fi) sm (a x ft) exp 7.

Hence our proposition follows.

*I16<529. R\ = R\\R Dft[*U6]

In #150, this notation will be introduced as a permanent definition. For

the present, we only introduce it to avoid ( j, z |j
Cnv' ^ z), which is awkward.

*116'53. Figla.al^.D.
(a exp 7) x (@ exp 7) sm €&'$ {(qz) . z e 7 . fi = I zila x I z

lt
$)

Dem.

h . #113104-111 . D h . 7 C d'.a 1 . 7 C d'j3 | . a | "7, /8 i "7 e Cls2 excl (1)

(-.#113*105. DF:Hp.D.(a4"7)^a4,/94 r 7 el->l (2)

«i,/84
K(l).(2).#115-6-^—^.D

F : Hp . D . (a exp 7) x (/S exp 7) sm e^'Jl {(ftz) . z e 7 . p = a | # x & j, z) (3)

K (3). #38-2. Dr. Prop

The hypothesis g ! a . g ! /3 is not necessary in the above proposition

;

but the proof is simpler with the hypothesis, and we do not need the proposi-

tion without the hypothesis.

#116-531. V :. M« Rz {z e 7 . R =
( | z) f f (a x £)J . D :

Dem K #74-772. #55-12. #72-184. DK(i*)t el-*l (1)

F.*21'33.Dl-:.Hp.267.D: RMz . = .R = (iz)\ [(ax fi):

[*30-3] D:if^ = (l^)tr(«x^): (2)

[(1).*43-122] 1 M'z el-* I. d (M*z = a x fi (3)

K (2). (3). Dr. Prop

#116-532. h : Hp #116-531 .ala.gl/S.D.ifel^l. d tM= 7

Dem. r. #116-531. #14-21. #7116. DF:Hp.D.^el->Cls (1)

h . #116-531 . D F- :. Hp . ^, w e7 . M'z-M'w . D :

(l*)tt(«x/8)-(iw)tr(«x^)s
[#71-35] D:J2e(ax/3).D.(|z)t'B='(iw)t'-Bs

[#113-101] ^ixea.yeQ. D.(lz)\<(y J,
*>) = ( 1 «0 f% 4*)'

[#113-123] D.(y.l«)i(«i«)-(y4w)4(*4 w)-
[#55202] D.z = «/ (2)
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K(2). Obi.H.-p.D:s,wey.Mez = M'w.D.e = w (3)

b . #116*531 . #14*21 . #3343 .Db :B.ip.zey .D .ze d'R (4)

b . #21-33 . D b :. Hp . D : iSJIffc 3R ,
Z -zey:

[*33'351] D-.d'RCy (5)

b . (1) . (3) . (4) . (5) . *71-55 . D h . Prop

*U6*533. b :. Hp #116*531 . D : D"Jtf"7 = £ {(a*) « e 7 . /* = 1 *"« x 1 z"{3} :

s, w e 7 . 3 ! D'M'z n D'ifw . Dz> w . £ = w
Dem,

F.*116-531.DF:Hp.^e7.D.D fif^ = D f
l(|^)tr(ax^)}

[#37-401] = U*)t"(«x£)
[#113-65] =lz"uxlz"{3 (1)

f-.(l).*37-6.Df-:Hp.D.D"Jf"7 = ji{(a^).«e7./*=|«"ox|*"/3} (2)

b . #113-19 . D b : a ! ( 1 z"a x | *"£) n ( | w"a x | w"/3) 3 •

[*55-232] I).s = w (3)

h.(l).(2).(3).Dh.Prop

#116-534. b : Hp *116'532 . D . e4'D"Jf"y sm (a x ft) exp 7

Dem.

h.*116-531*532-533.D

b:. Hp.D:ifel-^l:^we 7 .a! D<itf<s n D 'ilf'w .Dz>w .z = wi

Z€<y.'2z .Mtzel-+l.a<M<z=ax/3:

[*116-43] D : Prod'D"if"7 sm (a x 0) exp 7

:

[#115-12.#30-37 .#84-11] D : eA<D"\¥"7 sm (a x £) exp 7 :. D b . Prop

#116*535. F:gIa.g!/3.D.(a exp 7) x (/S exp 7) sm (a x /3) exp 7
[#116-53-533-534]

The hypothesis 3 ! a . 2 ! $ is not necessary, as we shall now prove.

#116*54. b . (a exp 7) x (/3 exp 7) sm (a x 0) exp 7

Dem,

K #116*182 .DF:a = A.g!7.D.aexp7 = A.
[#113-114] D. (a exp 7) x (£ exp 7) = A (1)

b . #113*114 . #116-182 . D b : a = A . g ! 7 . D . (a x /3) exp 7 = A (2)

I- . (1) . (2) . D h : a = A . g[ ! 7 . D . (a exp 7) x (/3 exp 7) sm (a x j3) exp 7 (3)

Similarly b : /3 = A.^ly .0 .(a exp 7) x (/3 exp 7) sm (a x /3) exp 7 (4)

I- . #116181 . D b : 7 = A . D . (a exp 7) x (£ exp 7) = t'A x i'A .

[#113-6ll.*73-43] D . (a exp 7) x (£ exp 7) sm i
rA (5)

h.*116-181.DI-:7 = A.D.(ax^)exp7 = i
fA.

[(5)] D . (a exp 7) x (# exp 7) sm (a x /9) exp 7 (6)

r- . (3) . (4) . (6) . #116-535 . D h . Prop

In obtaining (5), we use #73'43 as well as #113-6.11, because A's of different

types are involved.
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#116'55. I" .fA
w X vv ^(ji X y)

w

Dem.

h . #116-54222 . #113-222 . D h . (N c'a)N°c'* x (N c
f
/3)

N^'v

= (N c'ax cN c'/3)Vy (i)

h.(l). #103-2. Dh^^sreNoC.D.^x^^^x,^ (2)

h . #116-205 . #113-204 . D h : OT~ e N C . D .^ x vw = A = (/* x c vy (3)

I- .#116-205 . #113-204 . D h :~(^ v eN C) . 3 . pF x v« = A (4)

h . #113-204 . #1 16-204 . Z> f- :~ (^ „ eN C) . D . 0* x v)<* = A (5)

h.(4).(5). Dh:~(^ V€ N C).D.^x o
v»«(/*x 8 i;)- (6)

h.(2).(3).(6). Dh.Prop

This completes the proof of the second of the formal laws of exponentiation.

The following propositions are lemmas for the third of these laws, namely

#116-6. I- : a ! a . D . a exp (£ x 7) sm Prod'Prod"a
J,

"</3 1 "7

.

«l
f"/3l"7eCls3 arithm

al
r- . #113*105 . #84-53 ~- . #113-111 . D h : Hp . D . a | "'/? i "7 e Cls* excl (1)

I- . #40-38 . D h . s'a | <"/3 1 "7 = a 1 "*'£ 1
"7"

(2)

[#113-111] Dh.s'ai"</3i"7eCl"2 excl
'

(3)

h . (1) . (3) . #115-2 . Dh:Hp.D.ai"'/3|"7eCls3 arithm (4)

h . #113-141 . #116-19 . Z> F . Nc'{« exp (£ x 7)} = Nc'{a exp (7 x $)]

[(#116-01 .#113-02)] = Nc'Prod'a | "s</3 | "7

[(2)] = Nc'ProdVa
J,

"</3 1 "7

[#115-35.(4)] = Nc'Prod'Prod"a | '"£ 1 "7 (5)

h . (4) . (5) . D h . Prop

#116-601. K[(Cnv'|^)el-»l [*74'774 .#72184]

#116-602. \-z.M=R2[zey.R = {\(Cnv<lz)} e f(aexp0)].D:

Z€ry.D.M'z = {\(Cnv<lz)} e t(aexV i3):(I<M=<Y
Bern.

h . #21-33 . D

h :: Hp . D :. zey . D : .RJfe . = . R=
{ |

(Cnv< I z)} e f(aexV f3) (1)

h . (1) . #30-3 . D h :. Hp . D : z e 7 . D . if^ =
{ |

(Cnv< 4 z)) e [ (a exp £) (2)

h . #21-33 . #33131 . D b : Hp . D . d<M= 7 (3)

I- . (2) . (3) . D h . Prop

#116-603. h :. Hp #116-602 . D ; z e 7 . D . <Fif<z = a exp £
[#116-602 . #37*231 . #35'65]
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#116-604. h : . Hp #116*602 . D : zej . D . D'M'z = Prod'a I "$ I z

Bern.

h. #37-401. #116-602.3

b : Hp . z e 7 . D . D ri/<* =
{ |

(Cnv<
J, *)} e"(a exp /3)

[*115-4.*lie-601.#48-301] = Prod<{
|

(Cnv< | *)} e"a | "£

[#113*125 ^ .#50-7516] = Prod'a £ " | *"£

[#38-2] = Prod'a
J, "£ J, z : D h . Prop

#116605. r- :. Hp #116'602 .D izey.D , M'zel-*1

Dem.

h.*116'601. #72*451.3

h.fKCnv'l^l^Cm'KCnv'l^el-^l.
[#43-301] D h -

{ |
(Cnv< ; z% \ (a exp £) e 1 -> 1 (1)

K (1). #116*602. DK Prop

#116606. I- :. Hp #116*602 . g ! a . g ! /3 . D :

if e 1 -> 1 : «, w e 7 . D lM*z = D'M'w . DZ(W . z = w
Dem.

h . #116-602 . #14*21 . D f- :. Hp . D : zed'M . D2 . E » if^ :

[#71-16] D:ifel-*Cls (1)

F. #3037. DF:.Hp.D:^W67.if^ = ifrM;.D.D rif^ = D riffw (2)

r . #116604 . D r : . Hp . D : 5, w e 7 . 1)'if'^ = D'M'w . D .

Prod 'a 1 "£ I * = Prod'a | "/3 1 w

.

[#30-37] Z> . s'Prod'a 1 "/3 | *= s'Prod'a | "£ I w

.

[#116-171.#115-141.(*116-01)] 0.s'al"i3lz = s'a L"@ Lw.

[#113-1] D.@lzxa = /3lwxa.

[#113'182] D./3lz = @lw.
a tt

[*113-105.Hp] D.z = w (3)

I- . (1) . (2) . (3) . #71-55 . #116-602 . D h . Prop

#116-607. I- :. Hp #116602 . 3 ! a . 3 1 $ . D :

M e 1 -» 1 . D"i/"7 = Prod"a
J,
"<8 1 "7 :

z,wey. D'M'z = D'M'w . Dz>w ,z = w:

zey.3z .M'z€l-+l. d'M'z = a exp £ [*116-606-604-605-603]

#116-61. (-:a!a.aI/3.D. Prod'Prod"a^ "</3 1 "7 sm (a exp /3) exp 7

[#116-607-43]

#116-611. I- : g ! a . 3 ! . D . a exp (£ x 7 ) sm (a exp j3) exp 7 [#116-6-61]
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#116-62. b , a exp (/9 x 7)am (« exp /3) exp 7

Dem.

b . *116*181 . #113*114 . D b : £ = A . D . a exp(£ x 7) = t'A

b . #116*181

.

D I- : £ = A . D . (a exp 0) exp 7 = (t'A) exp 7
I- . *116-33-25 . D K Nc'{(VA)exp 7] = 1

(1)

(2)

(3)

K(l). (2). (3). #52*22. #100*31. DF:/3=A.D.aexp03x7)sm(aexp/3)exp7 (4)

b . #113107 . #116*182 . D b : a = A . 3 ! £ . 3 ! 7 . D . a exp (/3 X 7) * A (5)

h. #116*182. Z>h:a=A.a!£.3!7-3'(aexp/3)exp7*.A (6)

b . (5) . (6) . D f* : a = A . g ! ft . g ! 7 , D . a exp (# x 7) sm (a exp £) exp 7 (7)

1-. #113*114. #116*181.3 h: 7=A. D. a exp(/3x7>=i<A.(aexp/3)exp7=st'A.

[#73*43] D.aexp(/3x7)sra(aexp/S)exp7 (8)

h . (4) . (7> . (8)

.

Dh:.a = A.v./3 = A;v.7^AO.
aexp(/3 X7)sm(aexp/?)exp7 (9)

h. (9). #116-611. DK Prop

#116*63. b , fir**" - (pry*

Dem.

b . #113*222 . D h . (Noc'a^^x.Noc'y « (Noc'a)^'^)

[*1 16'222.(*116*04)] = Nc<{a exp (/3 x 7 )j

[#116-62] = Nc r
{(a exp /3) exp 7}

[#116*222] = {N c'(« exp £)p*'v

[*116*222.(*U6*03)] = {(N c'a)Noc^NocV (1 )

K(l). #103-2. Dh^v.nrfNoC.:.^ -(a*")* (2)

I- . #116*204*205 . D h : ~(/i, » e N„C) . D . (/*")» = A (3)

b . #113-205 . #116*204*205 . D h :~(/i, y e NDC) . D . ycx"**" = A (4)

(-.#116-205. DK-t!r~ e N C.D. (/*")* = A (5)

h . #113*205 . #116*204 . 3 b : CT~e N C . D . ^' x.* *= A (6)

h . (3) . (4) . (5) . (6) . D b : -(/., v, <* eN C) . D . p*** = 0**)» (7)

K(2).(7). DKProp

This completes the proof of the third of the formal laws of exponentiation.

#116*64 b.W = (n"y [#116-63 . #113-27]

#116*651. I- : Q e Cls -* 1 . k e Cls2 excl . D . e^PS'Q"'* sm PSQ"s<tc

Dem.
b . #84*53 . D b : Hp . D . Q

ii{K e Cls2 exel

.

[#85*43] D . eA'P-4"Q'"* sm P^s'Q^k .

[#40*383 D . e*'P±"Q'"K sm PSQ^'k : D b . Prop

#116*652. b : Q e Cls -> 1 . k e Cls8 excl . D . e^'e/'Q"'* sm eA 'Q"$',c

[#116-651 I,
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The following propositions are lemmas for #116'661, which is an extension

of *1 16*52.

*116 653. b : k e Cls2 excl . D . a 1 '"* e Cls2 arithm

Dem.

b . #113'105 . #84-53 .Dh:Hp.a!a.D.a| '"* e Cls2 excl (1)

b . #113111 . D b . a 1 "s'/c e Cls2 excl

.

[#40-38] Dh.s'al "<*

e

Cls2 excl (2)

b . #113-112113 .DF:.a = A.D:/3e«.a! /8.D.«i"/3 = t
rA:

/3e*./3 = A.D.aj/</3 = A (3)

b . (3) . D I- :. a = A . D : a | "<* C iVA w t'A :

[#24-43-561] D : p, <r e a 1 '"tc .g[!pna-.D.p,o-e t't'A .

[#51-15] 3.p = cr:

[#84-11] D : a | '"* e Cls2 excl (4)

b . (1) . (4) . Z> r- : Hp . D . a I
'«K e Cls2 excl (5)

K(2).(5).DI-.Prop

#116-654. \-:k€ Cls2 excl . D . {Prod'(a exp)"*} sm {a exp (s
t
*))

I- .
#38-13 . (#11601) . D f- . Prod'(a exp)"* = Prod'Prod"a | <"*

(1)

h. (1). #116-653. #115-34. D

b . (Prod'(a exp)"*} sm {ProdVa | "<*} (2)

b . (2) . #40-38 . (#116-01) . D h . Prop

#116-655. h : * e Cls3 excl . D . nNc ((a exp)"* = (Nc fa)2No
'K [#116-654]

This proposition is an extension of #116-5.

The hypothesis * e Cls2 excl is unnecessary in the above proposition, as we

shall now prove.

#116*656. h : a I a exp /S r\ a exp 7 . D . # = 7

Dem.

h. #116-11. #52-16. D
I- :. fx € (a exp @) r\ (a exp 7) . D : 2/ e j3 . D - (g#) -#ea.#,|,2/€/A:/AC7Xa:

[#113-101] D :?/ efi.'D.('R%)*%€a.%lr yefjL:ccl yejju.D.yey:

[Syll] D : y e $ . D . (gp?) .ccea .oc ly e/x.yey .

[#10-35] 3-2/6 7 (1)

Similarly bz. fiea exp $ n a exp y.Dzyey.'D.yeft (2)

h.(l).(2).Dh.Prop
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#116-657. h.(aexp)"*<:Cls2 excl [*116'656]

*116'658. h . a exp (e J /3) =
{ |

(Cnv< 1 /9)} €"(a exp /3)

Dem.

h . #116-602-604 . #37-401 . D h .
{ |

(Cnv' 1 £)}*"(« exp /3) = a exp (/3^ /3)

[#85-601] = a exp (e J /3) . D h . Prop

#116-659. r = ^{(g[^).^e/c./i€«exp/3.v = !(Cnv f

4r
/3/>}.D.

Te (a exp)"e J "* sm sin (a exp)"*

h.#40-4. Dh:'Ry.'D.a<T=s*(aexp)"/e (1)

h . #21-33 . D I- :. Hp . D : iffy , *r2> . Z> .

(aft 7) ft 7 € K /* e a exP # /* e a exP 7

v =
I

(Cnv< i /3)"> . «r =
|

(Cnv< 1 7)">

.

[#116-656] D . (aft 7) . £=7 H(Cnv' 1 £)"/* *H(Cnv< J, 7)->.

[#13195] D . y = ot (2)

h . #21*33 . D h :. Hp . D : wjfy .rsTv.D.

(aft 7) . ft 7 e * . /i e a exp /3 . j> e a exp 7 .

w =
J

(Cnv< I /3)"> =
I

(Cnv< 1 7)"i;

.

[#116'658] D . (g/3, 7) . ft 7 e « . fi e a exp £ . 1/ e a exp 7 .

w =
I

(Cnv< I /3)-> =
I

(Cnv< 1 7)"!/

.

st e a exp (e J /3) n a exp (e J 7) .

[#116-656] D . (a/3, 7) . ft 7 e « .
|

(Cnv' J, /3)<V = I

(Cnv' | 7)"V

.

e J£ = ej7.

[#85-601] Z> . (3)3) . /? e * .
j

(Cnv' j /3)"/^ =
|

(Cnv'
J,
0)"v .

[*1 16*601.*72-441] Z> . fx = v (3)

f- . (2) . (3) . DF:Hp.D.r c lT-»l (4)

h . #116-658 . D h :. Hp . D : /3e« . 3 . T"(a exp /3) = a exp (e J /3) s

[#37-69] D : Te"(« exp)"* = (a exp)"e J "* (5)

h . (1) . (4) . (5) . #111-1 Oh. Prop

#116-66. h . Prod'(a exp)"* sm {a exp (2'*)}

Dem.

h . #116-659 . #115-51 Oh. Prod'(a exp)"*sm Prod r(a exp)"e J"* (1)

h. #85-61. #116-654. D h . Prod'(a exp)"e J "k sm {a exp (s'e J"*)} (2)

h . (1) . (2) . #112-1 Oh. Prop

#116-661. h . nNc'(a exp)"* = (Nc<a)*N [#116-66-657 . #11512 . #112-101]

This proposition is an extension of #116*52.
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The following propositions are concerned in proving #116"68, which is an

extension of #116*54, where the a and of that proposition are replaced by

the members of a class «.

#11667. \-up = \ {(get) . a e k . X = a
J, "7} . 3 : k e 01s2 excl . 3 . p eCls

3 arithra

Dem.

h . #20-3 . 3 h :Hp . X, p, e p . g ! X « /* . 3 .

[#37-6] 3 . (ga, /3, 2, w) . a, £ e «: . «, w e 7 . a 1 2 = 1 w . X = a 1 "7

[#55'262.#38-2]3 .(ga, z, w) . a e *: , *, w e 7 . X = a | "7 . ^ = a
J,
"7

.

[#13-172] 3.X = /a (1)

K#37 6.*40'11.3

r-jHp-^es'yxglfr^O.
(ga, j3>

2,w).a
) /3eK.2,we'Y.g=alz.ij = ftlw.Qlgniij.

jf Ji

r*55-232.*38-2] 3 . (ga, /3,,z).a,/3eA-.£e7.£*=ai£.77 = /?j,s.g!aA/3 (2)
tt ft

K (2). #84-11. 3

f : Hp . * <? Cls2 excl . £, »; es'p . g I £ n 7; . 3 . (ga, /?,£). £= a 1 z.r)=j3 | z.a~0 .

[#13-195-172] 3.1 = 7? (3)

h . (1) . (3) . 3 h . Prop

#116-671. h :. o- = £ S(g^) .z€ry.ji=l z'"K } . 3 : Hp #116-67 . 3 . s'p = sV

Dew.

F . #40-11 . 3 h :. Hp #116-67 . 3 : £ e s'p . = . (go) . a e « . £ e a | "7 .

[*38'3] = . (ga, ^) . a e * . ^ e 7 . £= j «"a

[#37-103] = . (a*) . ^ e 7 . £ e | s"<« .

[#40-11] =
. £ es<£ {(a*) « e 7 • /* = 1 z'"*) •

3 h . Prop

#116-672. h : Hp #116-671 . tc e Cls2 excl . A~e k . 3 . <t e Cls2 excl

Dem.

h . #37-103 . 3 h : Hp . p,, v e <r . a ! p, n v . 3 .

(g^, w, a, /3) . z, w e 7 . a, /3 e *: . | ^"a = | w"/3 .

H = lz"<a.v = lw<"$.
[#55*262] 3 . faZ) Wt a) . z, w 67 . a e k . I z"a = | w"a .

p, = I z'"a . v — I wiU
fx .

[#113-1 05.#38-2.Hp] 3 . (gs, a) . p, - J, ^"'a . v =
J, ^'"a

.

[#13-172] 3.^ = ^:31-. Prop
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#116673. h : Hp#116672 . D . e4'(exp 7)"* sm eA 'eA"<r

Dem.

h . #38131 . (#116-01) . D h . e4'(exp 7)"* = e/f {(3«) a e * . £ = Prod'a
J,

"7}

[*37-6] - e4'Prod"\ {(ga) . a e * . X = a I "7} (1)

h. (1). #115-33. #11667. D

h : Hp . D . ei
r(exp 7)"* sm e*VX {(ga) . a e k . X = a I "7}

.

[#116-671] D . eA
r(exp7)"* sm eAV<r

[#85-44.*l 16-672] Z> . e4
r(exp 7)"* sm e4'eA"o- : D f- . Prop

#116-674. Vi.M=h{R = {lz) ||
Cnv'( | *)*1 • 3 :

(z) . M'z e 1 -» 1 . D'(if^) T eA'« = <*' I z
1"k

Dem.

K*30-3. D\-:B.v.D.M'2 = (lz)\\Cnv<(lz)t (1)

h . #72-184 . #1 1 1-14 .DK|*r*e(| s<"«) sm sm « .

[#11451] I) h .
{
| s

||
Onv'( | *)£} f

e

a <* e (e4 < | *"<*) sm (eA<*) (2)

h.(l).(2).#73-03. DKProp

#116-675. b :. Hp #116 674
.
3 !«'* . D : g ! (itf'w)"*-*'* n(JI/<t>yW* . D . w=«

I- . #116674 . D h :. Hp . D : g ! (M<w)"e±'K n (M'vyW* . D .

[#8032] D . I w("« = i v'"k .

[#4038] D . I w"s
{k = J tf

rV/c

.

[#113-105.*38-2] D.«/ = v:.DK Prop

#116676. h : Hp*116*672-675. D.Prod <D"|k

(ei
t«)"i/"7sm(6d'«)exp7.

Dem.

h . #116-674-675 . #116-45^^ . D
7, 6

h : Hp . D . Prod'D" [ (ea^)"M"7 sm (e/«) exp 7 (1)

h . #116-674 . D h : Hp . D . D" [ (e4'*)"^"7 = j& {(a*) . z e 7 . fi = eA ' | *"<*}

[#37-6.Hp] = eA"<r (2)

I- . (1) . (2) . D h . Prop

#116-68. h : k e Cls2 excl . D . eA'(exp y)"/c sm (e./«) exp 7 .

IlNc<(exp i)"K = (nNc<*)Nc
'
v

Dem.

b . #115-12 . #8455 . D h . Prod'e^'o- sm e^"* (1)

h.(l). #116-673-676. D

I- : Hp . A~ e * . a ! s'* . I) . eA'(exp 7)"*: sm (e^/c) exp 7 (2)
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h . #53-24. D F: A~e«.~g[!s f
A: . D.« = A.

[*8315.*116-33] D . €i
r(exp 7)"* = t

rA . (e4'«) exp 7 e 1

.

[#73'45] D . e/(exp y)
(iK sm (eA<*:) exp 7 (3)

I- . *83'11 . #116182 .Ih-.AeK.Kly.D. et'tc = A.Ae (exp 7)"* .

[*116-182.*83-11] D.(e4^)exp7=A.e^(exp7)"A;=A(4)

h . #116181 .DF-:Ae*. 7 = A.D. (eA'«) exp 7 = t'A (5)

b . #116181 .DF:AeA;.7=A.D. (exp 7)"* = tVA

.

[*83"41] D.eA r(exp7)"*smt<A (6)

h . (4) . (5) . (6) . D h : A e tc . D . eA'(exp 7)"* sm (e*<*) exp 7 (7)

h . (2) . (3) . (7) . *114\L . *116'25 . D b . Prop

The above proposition is an extension of #116"54-55.

The following propositions are lemmas for

Nc'Ct'a = 2Nc<«.

The proposition and its proof are due to Cantor.

*116-7. b . Nc'{(t'A u I'V) t «}a'« = 2Nc
'a

Bern,

b . *24-l . #101-3 . D b . Nc'(t rA u t'V) = 2 (1)

I- . *116'15 . D h . Nc< {(t'A w i'V) f «}/« = Nc'{(i'A u t'V) exp a}

[#116-25] = {Nc'(i'A w t'V)Pc'°

[(1)]
= 2Nc'» . D h . Prop

In this and following propositions, the class i*A w i'V is introduced solely

as a known class consisting of two terms. Any other class of two terms will

serve equally well.

*11671. b-.Re {(i<A u t'V) f «}*'« . D . &V = « - £<A

Dem.

b . #116'12 . D F : Hp . D . R e 1 -* Cls . D'R C t'A u t'V . <!<£=« (1)

[*37-271] D . a = £"(t'A u t'V)

[*53-302] = R<A w £'V (2)

I- . (1) . #71-18 . D h : Hp . D . S*A a%Y = A (3)

I- . (2) . (3) . #24-47 . D K Prop

*116-711. h : R, S e {(i'A w i'V) f a}A'a . Itf'A =V'A . D . 22 = £
Dem.

K #116-71. DI-:Hp.D.i2<V =W (1)

h :(1) . #116*12 . D b :. Hp . D : 7 e D'iZ u D<£ . Dy
. S*7 = £'7 :

[#33*48] D^^tfi.Dh.Prop
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#116-712. h :. T= £R [R e {(t'A u t'V) f a}^a . fi =%A] . D :

R e {(t'A u t'V) | «}/« .3.7*5 = S<A : (FT- {(t'A u t'V) f a} d'«

Dem.

K*21-33.DH::Hp.D:.22e{(L'Au*'V)f a}4 'a. D :/*Ti£. =*./* = £'A :

[#30-3] D:T'i2 = S"'A (1)

I- . (1) . #14-21 . D I- :. Hp . D : R e {(t'A u t'V) f «}*'« . D . E ! T'22

.

[#33-43] D.TJea'T7

(2)

t- . #2133 . #33131 . D I- : Hp . D . (I'TC {(t'A u t'V) t «U'« (3)

H . (1) . (2) .
(3) . D K Prop

#116-713. l-:Hp*116-7l2.:>.Tel->l

Dem.

\-
. #116-712 . #14-21 . D I- :. Hp . D : 22 eCFT. D . E ! T*R :

[#7116] S-.Rel-tCh (1)

K #116-712-711. D 1- :. Hp-D :£,£«• (FT. T'i2 = TSSM)..R = # (2)

1- . (1) . (2) . #71-55 . D V . Prop

#116-714. H:Hp#116-7l2.^eCI'a.#=<9&{7=A.#€^.v.Y=V.#ea-/*}.D.

i2 e {(t'A u t'V) t a} A'a *n = T'R
Dem.

V . #21-33 . #3313 . Dhi.H.p.DzyeV'R.D.yel'Avi'V (1)

1- . #2133 . #33131 . DM: Hp. :>:.#€ d'R . = :

(3t) 1 y = A.xefi.v .<y = V .xeOL— /* :

[#10-42.#1319] =:x€(jl.v .xea-fi: (2)

[#24-41 l.Hp] =:#ea (3)

I- . #21-33 . #30-3 . D I- :. Hp . D : at eft . Dx R'x = A : #€ a -p . D, . £'# = V :

[(2).#14-21] Di^ea'^.^.E!^'^:
[#71-16] 0:Rel->Cte (4)

H . #21-33 . Df-::Hp.D:.7 = A.:>: ^ifcz . =„. . x e /*

:

[#32-181] D:5"'7 = /t (5)

I- . (1) . (3) . (4) . #116*12 . D I- : Hp . D . R e {(t'A u t'V) f aj^'a (6)

I-
. (5) . (6) . *116712 . D h : Hp . D . /* = T'i2 (7)

K(6).(7).:>KProp

#116715. H:Hp #116-712. D.D'T= Cl'a

V . #116-714 . #33-43 . D I- : Hp . D . Cl'a C D'T (1)

f-. #21-33. #3313.3

h :.H.p .2 : fteD'T .3 .(&R) . Re{(i<Av l'V)1 a\Sa . ft = R<A.

[#33-151] D . (gS) . R e {(t'A u t'V) f <*}*'« . /* C d'R

.

[#80-14] D./iCa (2)

f- . (1) . (2) . D I- . Prop

11—2
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#11672. KNc'Cl'a=-2Nc
'a

Dem,
I- . *116-712-713715 . D Y . Cl'a sm {(t'A w i'V) | a}A<a (1)

K (1). #116-7. Dh. Prop

#1168. I- . Rl'(p t o) = *"01'(<r x p)

Dew.

!- . #60-2 . D h :. Res"CV(a x p) . = : (g\) . \C o- X p . i2 = s'A,:

[*113-101]=:(a\):PeXOp.(a^,2/).^ep.yeo-.P =a!^:B = s'X:

[#4111] = : ('gX) :PeX.Dp. fax, y).xep.y€o-.P = a;ly:

uRv .
=

Wj v . (gP) . P e X, . wPv :

[#10'56] D : wifo . DW) » . (ga?, y).a;ep.ye<7.M(a;,l,y)'y:

[#55*13] D : ttflv. ^Ujl) . uep .v ea:

[#35-103] -D:RGp\<r (1)

K #35103. #113-101. D

h:RCp^<r.\ = P{('&x
> y).xRy.P=xly}.0.\C<rXp (2)

K #41-11. #13195. D

f- :. Hp (2) . D : m (s'\) v . = . fax, y) . xRy . u (x
J, y) v .

[#55-13] = . uRv (3)

I- . (2) . (3) . D I- : R G p f <r . D . (g\) . X C a X p . R = s<\ (4)

h . (1) . (4) . D I- . Prop

#116-81. H . i [ G\'(<r x p) e 1 -> 1

Dew.

I- . #41-13 . D h :. a, £ e CI'(<7 x p) . s'a = s'£ . a?
J, y e a . D : a; j y G s'/3 :

[#4111] Z>:(aP).Pe/3.a42/ G -P:

[#113101.Hp] D : (gP, ^tO-Pe^.P^J^.a^yGw^:
[*55-134-34] D:(<&P,ui v).Peft.P = ulv.xly = ulv:
[#13-172-13] 3:xlye0 (1)

I- . (1)^ . D I- : a, £ e CI<(<7 x p) . s'a = s<£ . a?
J, y e£ . D . a?

J, y e a (2)

K(l).(2). #113-101. D I- :a,£eCl'(o-xp)-s'a = s'£-3-« = # (3)

I- . (3) . #71-55 . #72-163 . D h . Prop

#116-82. I- . Rl'(p -| a) sm Cl'(<7 x p) [#116-8-81]

#116-83. h . Nc'Rl'(p f a-) = 2Nc'p*oNc<«t [*H6'82'72 . #113-25]

#1169. I- : TSqH'x = /* . D . Nc'-;2
<a; = 2* [#116-72 . #63-66]

#116-901. I- : Nc%<a = p . D . Nc'f'a= 2* [#1 16"72 . #63-65]

*116-91. h : NcV« = p 3 . NcV« = 2*2 [#116-83 . *64-511]

#116-92. I- : NcVa = /* . D . Nc'V'a = 2**« 2M
. Nc'*u'a= 2^xc^ . etc.

[#116-83 . #64-16 . #116*901]



#117. GREATER AND LESS

Summary of #111.

A cardinal ft is said to be greater than another cardinal v when there is

a class a which has fi terms and has a part which has v terms, while there is

no class which has v terms and has a part which has ft terms. The relation

"greater than" is transitive and asymmetrical; and by the SchrSder-Bernstein

theorem, if ft is greater than or equal to v, and v is greater than or equal to

ft, then p. — v. But we cannot prove that of any two cardinals one must be

the greater, unless we assume the multiplicative axiom. The proof then

follows from Zermelo's theorem that on that assumption every class can be

well-ordered. This subject will be dealt with at a later stage.

The form of the definitions is so arranged as to allow of the inequality of

two cardinals in different types. The relevant considerations are the same as

for the definitions of addition, multiplication and exponentiation.

Our definition of "
ft > v " is

#117-01. fi>v. = . (ga, 0) . pi =N c'a . v =N c'£

.

3 ! Cl'a * Nc'/3 .~a ! Cl'£ r> Nc'a Df

We also define "
ft > Nc'a " as meaning "

ft > N„c'a " and " Nc'a > v " as

meaning "N c'a>i>," for the reasons explained in #110. It then easily

follows that if ft > v, ft and v must be homogeneous cardinals (this is part of

#11715); that if ft and v are homogeneous cardinals, and ft"> v, the same

holds if we substitute sm"/* and sm'V for one or both of ft and v (#11716)

;

that

#11713. h : Nc'a > Nc'£ . = . g ! Cl'a n Nc<£ .~ft I Cl'£ n Nc'a

and that

#11714. h : fi > v . h . (ga, 0) . ft =N c'a . v =N c'£ . Nc'a > Nc'£

We cannot define "
ft^ v" as "

fi > v . v . ft = v," because "fx = v" restricts

ft and v too much by requiring that they should be of the same type, and

restricts them too little by not requiring that they should both be existent

cardinals. To avoid both these inconveniences, we put

#11705. fi^v. = ifA>v.v.fxf
P€N C . ft ~ sm ftv Df

The use of this definition is chiefly through the propositions

#117108. f- :. Nc'a> Nc'£ . = : Nc'a > Nc'£ . v . Nc'a = Nc'/3

#117-24. h : p> v . = . (ga, /3) . /* - N c'a . v = N„c'£ . Nc'a> Nc'£
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t

In #117*2, we repeat the Schroder-Bernstein theorem (#73*88), which is

required in most of the remaining1' propositions of this number. It leads at

once to the propositions

#117-22. f- : 3 ! Cl'a n Nc'/3 . = . Nc'a> Nc'£

(which practically supersedes the definition of "^ ")

#117 221. r : Nc'a^ Nc'£ . = . (jjp) .pCa.pam/3

#117-222. H:/8Ca.D.Nc'a>Nc<£

#117-23. h : Nc'a> Nc'/S . Nc'£> Nc'a . = . Nc'a = Nc'£

This last proposition may be called the SchrcSder-Bernstein theorem with

as much propriety as #73*88 ; the two are scarcely different.

If we now revert to the definition of ft > v, or to #117*13, and apply

#117*22, we see (#117-26) that f'Nc'a>Nc'/?" may be conveniently regarded

as asserting Nc'a^Nc'/9 .~(Nc'/8^Nc'a); in fact, the best ideas to work

with are ^ and its converse ^, which for practical purposes we regard as

defined by #117'22, and from which we derive > and <. The relation >
will be the product of ^ into the negation of its converse ; this holds for p
and v (#117-281) as well as for Nc'a and Nc'/3.

#117-3'31 constitute an important use of #110-72, namely to prove that

one existent cardinal is greater than another or equal to it when the first can

be obtained by adding to the second (where what is added must be a cardinal).

That is to say, we have

#117-3. r : Nc'a> Nc'/3 . = . (gw) .weNC. Nc'a = Nc'£ +c m

#117-31. h:.fjt^v. = :fi,veN C : (*jw) . m € NC . /* = v +c
nr

#117*4—'471 are concerned in proving that > and ^ are transitive, that

> is asymmetrical (#117'42), and allied propositions.

Our next set of propositions is concerned with and 1 and 2. We prove

that a homogeneous cardinal is whatever is greater than or equal to

(#117"501); that a homogeneous cardinal other than is whatever is greater

than (#117*511) ; that a homogeneous cardinal other than is whatever is

greater than or equal to 1 (#117'531) ; and that a homogeneous cardinal

other than and 1 is whatever is greater than 1 (#117*55), and is whatever

is greater than or equal to 2 (#117-551).

We next prove a set of propositions concerning^ which have no analogues

for >, except when the cardinals concerned are finite. Thus e.g. we prove

#117-561. V : ft,> y . nr eN C . D . /* + w^ v +c or

If we substitute > for >, this no longer holds. Thus e.g. put /* = 2, v = 1,

«r = N (cf. #123); then /**>!>, but /* +c vr = v + w = vr. Similar remarks

apply to the analogous propositions (#117-571-581-591) on multiplication and
exponentiation.
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We prove next that a sum is greater than or equal to either of its sum-
mands (*117"6); that a product neither of whose factors vanishes is greater

than or equal to either of its factors (#117'62); that, assuming p and v are

existent cardinals, then if they are neither nor 1, their product is greater

than or equal to their sum (#11
7
'631), and if fi is neither nor 1, then

/*">/* x. * (#117-652).

The last important proposition in this number is Cantor's theorem

#117-661. r : /* e N C . D . 2* > /*

which follows immediately from #102 -72 and #116-72.

The propositions of this number are much used in the following section,

on finite and infinite.

#117-01. fi > v . = . (ga, 0) . p = N c'a . v = N c'/3 .

3 ! Cl'a n Nc'/3 . ~ a ! Cl'/3 r» Nc'a Df

#11702. /* > Nc'a . = . fi > N c'a Df

#117 03. Nc'a > v . = . N c'a > *> Df

#11704. /*o . = . i/ > /* Df

#11705. /t>i'. = :/i>i-.v./t,!/eN C./t = sni"v Df

#11706. /*<*>. = . v> /* Df

The analogues of #117-0203 are to be applied also to #117-0405"06.

#1171. r :/i>*. = .(aa,/3)./i = Noc'a.i> = N c'/9.

3 ! Cl'a n Nc'/S . ~ a ! CI'/3 n Nc'a [(#117-01)]

#117101. I- :/*> Nc'£ . = ./*> N«c (
/9 [(#11 7-02)]

#117102. H : Nc'a >*/. = . N c'a > */ [(#117-03)]

#117103. V:p<v. = .v>ti [(#117-04)]

#117*104. H :.;*> *. = :/*>*. v. /4,*eN C./* = sm"v [(#117-05)]

#117-105. !-:;*<*. = .*>/* [(#117-06)]

#117106. V : Nc'a > Nc'£ . = . N c'a > N c'/3 [#117-101-102]

#117107. r : Nc'a> Nc'/? . = . N c<«> N c',3

Dew.

K*117-104-106.D
H:.Nc'a>Nc'/3. =

[#100-511.#103-22] =
[#103-16] =
[#10321] =
[#103-16] =

[#103-2] =

[#103-4] =

[*103-21.#117-104] =

N c'a > N c'£ . v . Nc'a, Nc'/9 e N„C . Nc'a = sm"Nc'£ :

N c'a > N c'/3 . v . Nc'a, Nc'/3 eN C . Nc'a = Nc'£

:

N c'a > N c'/8 . v . Nc'a, Nc'£ e N C . Nc'a = N c'£ :

N c'a > N c'£ . v . Nc'£ eN C . Nc'a = N c'/3 :

N c'a > N c'yS . v . Nc'£ eN C . N c'a = Nc'/3

:

N c'a > N c'/3 . v . N c'a = Nc'£ :

N c'a > N c'/8 . v . N c'a = sm"N c'/3

:

N c'a^N c'£:.I)f-.Prop
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#117108. h :. Nc'a> Nc'£ . = : Nc'a > Nc'£ . v . Nc'a *= Nc'/3

[#117107106104 . #10316-4]

#11711. t-:,asma\/9sm£\:>:alCl'anNc'#.==.a!ClVnNc'#

Dem.

V . #100-321 . D h :. Hp . D : g ! CIV ^ Nc'/3 . = . a I CIV r> Nc'/3' (1)

I- . #7321 .

r : R el -> 1 . T>'R = a. (I' JR = a' . yC a .7eNc'£ . D .

[#60-2]D. a iCl'a'nNc^ (2)

K (2) . #1011-23-35 . #731 . D
h : a sm a' . g ! Cl'a n Nc'£ . D . a ! CIV a Nc'£ (3)

K(3)^. DH:asma'. a !ClVnNc'£.D.g!Cl'ariNc<£ (4)
a, a

I- . (3) . (4) . 3 f- :. asm a' . D : a ! Cl'a ^ Nc'/3 . s . 3 '. Cl'a' n Nc'/3 (5)

r . (1) . (5) . D r . Prop

#11712. t-:./i>*>. = :/4,i/eN C:
yep. Be v. D7, s

. 3 I Cl'y n Nc'S . ~ g ! Cl'S a Nc'7
Dem.

h. #117111.3
I- :. /* > v . 3 : (go, j8) : /* =- N c'a . v= Nc%g ! Cl'a nNc'/9.~a!Cl'/3 a Nc'a:

7 e/* . 8 e v . D
7] « . 3 ! C1'7 a Nc'S . ~a ! Cl'S n Nc'7 :

[#10312] =:(aa,
/
e):/i =N c'a. I) =N c'y8.ae^.y8ey.a!Cl'anNc'/3.

~g!Cl'/9riNc'a:

7 e
A* . 8 e y . D% 8 . a ! C1'7 " Nc'8 . ~3 ! Cl'S n Nc'7 :

[#10-55] = : (aa, $) '• P = N c'a . v = N c'/3 . a e /* . £ e v :

7 €/* . 8 e y . Dyji . a 1 C1'7 o Nc'S . ~a ! C1'8 ri Nc'7 '

[#10312-2]s:/*,i;eN C:7e^.8ev.DY,a.a!CI'7riNc'8.~a!Cl'8ftNc'7:.

D I- . Prop

#117121. h:.fi>v. = :fi, v eN C

:

a e/* . Da . (a/3) . ^e y . a ! Cl'a n Nc'/8 . ~ 3 ! Cl'/3 n Nc'a
Dew.

h. #117111. D
I- :. /* > 1/ . = : (aa, /3) : /* =N c'a . v = N c'£ . a ! Cl'a n Nc'£

.

~alCl'/3nNc'a:

yefM.Dy. (38) . 8 e v . a ! 01*7 n Nc'S . ~3 ! Cl'S rx Nc'7

[#10312.#10'55] = : (3a, j3)ip =N c'a . v =N c'£ . a e /*

:

7 e /i . 3Y . (38) .8^.3! Cl'7 n Nc'S . ~3 ! Cl'S ^ Nc'7
[#10312-2] = : ^ v eN C : 7 e p . Dv . (38) .8^.3! Cl'7 n Nc'S .

~3 ! Cl'S n Nc'7 : 3 H . Prop

The above proof is given shortly because it proceeds on the same lines as

#11712. In applying #10-55, the <f>as of that proposition is replaced by a e /*,
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and the tyx is replaced by

(g/S) . £e v . a ! Cl'a n Nc'£ . ~ a ! Cl'£n Nc'a.

#11713. h : Nc'a > Nc'£ . = . g ! Cl'a a Nc'/3 . ~a ! Cl'/3 n Nc'a

JDewi.

f- . #117*106 . D
f* :. Nc'a > Nc'£ . es : N c'a > N c'£ :

[*103-2.*117-12] = : 7 eN c'a . 8 e N c</3 . DY,s •

a ! CI'y n Nc'S . ^ a ! C1'8 n Nc'7

:

[*100-31.*117-11] = : 7 e

N

c'a . 8 eN c'£ . Dy,a

.

3 ! Cl'a n Nc'£ . «- a ! 01'^ n Nc'a :

[#10-23] = : a ! N c'a . a ! N„c'£ . D .

3 1 Cl'a n Nc'/3 . ~a I Cl'£ * Nc'a

:

[#103-13] = : a ! Cl'a * Nc'£ . ~a ! Cl'£ n Nc'a :. D 1-
. Prop

#117-14. V : /* > v . = . (a«, £)/* = Noc'a . v = N c'£ . Nc'a > Nc'£

[#1171-13]

#117-15. V-.fi>v. = .fi,veN C . a ! a'Cl"/* * sm"v . ~ a ! s'CV'v r\ sm'V
Dem.

r. #103-4. #1171. D
f- :. /n > v . ==

: (a«, £) . /* =N c'a . v =N c'£ . a I Cl'a n sm'^

.

~a!Cl'/3nsm"/A:
[#103-2-26] s:/i,»»eN C : (a«, £).ae/*.£ev.a! Cl'a n sm"v

.

~a!CI'ySnsm"/i:

[#117-11] = : /*, y eN C : (a«, $) . a e /a . £ e v . a I Cl'a n sm"y

:

8 e v . Dj . ~a I CI '8 n sm"/* :

[*10313.#10-51] =:/i,i/eN C: (a«) . a e /* 3 ! Cl'a n sm"*/ :

~(aS) . 8 e v . a I C1'8 n sm"/*

:

[#40-4.#602] = : p, v

e

N C . a ! s'Cl"/* a sm"i>

.

~a ! 5'C1'V n sm"/i :. D h . Prop

The advantage of this proposition is that it expresses "/* > v" in terms

of /a and v alone, without the auxiliary a and $ of the definition.

#11716. l-:./A,i/eN CO:/t>i;. = .sm"/i>v. = ./i>sna"v. = .sm"/A>sm"i/

[#11714. #103-4]

#117-2. l-:asma'./3sm,8'./3'Ca.a'C£.D.asm£ [#73-88]

This proposition (which is the Schroder-Bernstein theorem) is fundamental

in the theory of greater and less.

#11721. \~ : a ! Cl'a n Nc'/3 . a I Cl'£ r> Nc'a . D . Nc'a = Nc'y3

[#11 7-2. #100-321]

#117-211. h : a I Cl'a a Nc'/3 . a 1 Cl'£ * Nc'a . = . Nc'a = Nc'£

Dem.

V . #100-3 . #60-34 . D I- : Nc'a = Nc'/3 . D . a e Cl'a n Nc'£ . & e Cl'£ * Nc'a (1)

I- . (1) . #117-21 . D r- . Prop
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*117'22. H : a ! Cl'a n Nc<£ . = . Nc'a> Nc'£

K #11713. D H :Hp.~a!Cl'/9rt Nc'a. = . Nc'a >Nc'/8 (1)

I- . #117-211 . D h : Hp . g ! Cl'/3 n Nc'a . = . Nc'a = Nc'/3 (2)

K(l). (2). #117-108 . D H . Prop

#117221. h : Nc'a> Nc'tf . = . (gp) .
p C a .

p sm j3 [#117-22 . #602 . *100'1]

#117'222. f- : y8 C a . D . Nc'a> Nc'/9 [#117-221]

#117-23. h : Nc'a>Nc'£.Nc'£> Nc'a. ee. Nc'a = Nc'£ [#117-211-22]

#117-24. h : /*> y . = .
(3a, £)./* = N c'a . v = N c'/3 . Nc'a> Nc'£

Dem.

K #117-104-14. D h :./*>!>. = :(aa,£)./* = Nft
c'a.*, = N c',8. Nc'a >Nc'/3. v.

(ga, /8) . /* = N c'a . v = N c'y3 . p; = sm"i;

:

[#103-4.#13'193] = : (ga, £) . /* = N c'a . * = N c'/3 . Nc'a > Nc'£ . v

.

(3«, /8) . /* = N c'a . v = N c'£ . N c'a = Nc'/3 :

[#103-16] = : (g a, £)./* = N c'a . v = N c'£ . Nc'a > Nc'/S . v

.

(a«, 0) p = N c'a . v = N c'£ . Nc'a = Nc'/3 :

[*11-41.*117108] = : (a«, &) a*
= N c'a . * = N c'/3 . Nc'a> Nc'yS :.

D I- . Prop

#117-241. f- : ft> v . = . (a«, £)./* = N c'a . * = N c'£
.
a ! Cl'a * Nc</3

[#117-24-22]

#117-242. H : . ^, v 6 NO . D : ^i> ^ . = . (ga, /S) . a e ^ . /8 e v . a ! Cl'a n Nc'/8

[#117-241. #103-26]

#117-243. I- :. ft> v . = : (30, £):/* =N c'a . 1/ = N c'/3 : (gp) . p C a . p sm £
[#117-24-221]

#117'244. h:./i, *>eN C. D :/*>!>.= .sm>^j'.= ./*>sm"i>.= .

sm'V^sm'V [#117-24. #1034]

#117 -

25. H:/*^i/.i/^/*. = . /*,»>€ N C . sm"p. = sm"y

Dem.

K #11 7-24. D

h-.fi^v.v^fi.^. (aa, ft 7, 8) . 11 = N c'a = N c'y . v = N c'£ = N c'8 .

Nc'a> Nc'/S . Nc'8> Nc'7

.

[#117-107] = . (30, ft 7, 8) . /* = N c'a = N c'7 . *> = N c'£ = N c'8 .

N c'a^ N c'£ . N c'8> N c'7 .

[#13-193] = . (aa, ft 7, 8) . /* = N c'a = N c'7 . * = N c'/3 = N c'S .

N c'a> N c'/S . N c'^^ N c'a .

[*H7-107-23] = . (ga, ft 7} 8) . p, = N c'a =N c'7 . v =N c'/3 = N c'S .

Nc'a = Nc'£.
[#ll-45.*103-2] = . (aa, £)./» = N c'a . * = N c'/3 .p,ve N C : Nc'a = Nc'£ .

[#103-4] = . (ga, ff) mfl = N c'a . v =N c'y3 . fi, v eN C . sm"M = sm"c .

[#ll-45.#103-2] = . fx t v €N C . sm"p, = sm"» :Dh. Prop
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*11726. H : Nc'a > Nc'/3 . = . Nc'a> Nc'/3 . Nc'a + Nc'£

Dem.

h . #11713 . #1312 . Transp .31-: Nc'a > Nc'£ . 3 . Nc'a=f=Nc'£

:

[*1 17-108] 3 I- : Nc'a > Nc</3 . 3 . Nc'a> Nc'/3 . Nc'a=f Nc'£ (1)

H . #117-108 . #5-6 . 3 f- : Nc'a> Nc'/3 . Nc'a + Nc'£ . 3 . Nc'a > Nc'£ (2)

t-.(l).(2).Dh.Prop

#117-27. h : Nc'a < Nc'£ . = . Nc'a < Nc'yS . Nc'a + Nc'£

[#117-26'103*105]

#117-28. \- : Nc'a > Nc'£ . = . Nc'a^ Nc'£ . ~(Nc'£> Nc'a)

[*117-22-13]

#117'281. \-:n>v. = .
fi^v.~(v^[i) [*117-14-28'24]

#117-29, h : Nc'a <Nc'/3. = . Nc'a<Nc'/3.~(Nc'£< Nc'a) [#117-28]

*117291. l-:/*O. = ./*0.~ (*></*) [#117-281]

#117-3. h : Nc'a> Nc'/3 . = . (jjw) . w e NC . Nc'a = Nc c
/3 +c «r

1- . #11 7-221 . 3 H : Nc'a> Nc'£ . = . (a8) . 8 sm /3 . 8 C a

.

[#110-72] = . (aw) . a- 6 NC . Nc'a = Nc'/S + « :

3 1- . Prop

#117-31. f- :./*>!/. = : /a, ^e N C : (a*r) *r <?NC . /* = v +e ot

7)em.

(-.#117-24-3. D
(- :. /a> v . s : (ga, &«-)./* = N c'a . v = N c'/3 . Nc'a = Nc'£ + *r :

[(#110-03)] = : (a«, ft w) . fM = N c'a . ^ = N c'/3 . Nc'a = v + « :

[*103-16.*110-42] = : (jja, ft w) . /* = N c'a . i/ = N c'£ . /* = ? +c or

:

[#103-2] = : /*, * eN C : (jjot) . /* = i> +c a- :. 3 h . Prop

#117-32. V : /*> v . g ! sm"/i n £'a . 3 . g ! sm'V n t'a

Dem.

1-. #117-241. #103-4.3

1-
: Hp . 3 . (a/9, 7) . /* = N c'/3 . v = N c'7 . a ! Cl'/S * Nc'7 . am"/* = Nc'/3

.

sm"f=Nc'7 (1)

i- . #63-105-371 . #73-12 . 3
\- zJRepmp.pet'a.aQfi.crsmv.O. R"a e t'a . R"a sm 7 (2)

h . (2) . #73-04 . 3 h : p e Nc'/3 n t'a . <j e Cl'/8 n Nc'7 .3.3! Nc'7 n <«a (3)

i- . (1) . (3) . 3 1- . Prop

The above proposition shows that if a cardinal /* exists in a given type, so

do all smaller cardinals.
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i

#117-4. h:/*>y.v>t!r.D./i>CT

Dern.

h . #1 17-243 .. D h :. Hp . >: (a«, ft 7) : fi «N c'a . *> = Noc',8 . w =N c'7

:

(3p) • p C « • p sm £ : (go-) . cr C /S . o- am 7

:

[*117-11.*60-2.#100-1] D : (fta, ft 7) = /* = N c'a . j> = N c'£ . tsr = N c'7 :

(3p> T).pCa.psm/9.TCp.Tsm7:

[#22'44] D : (g;a, 7) : /i =N c*a . ct =N c*7 : (^t) . tC a . t sm 7

:

[#117-243] D:/t> OT :.DH.Prop

#11741. f-:/*<*>.i/<isr. !>./*<*- [#117-4]

#11742. f- :~ (/* > fi) .~ (/* < /*)

h . #117-15 . #13-12 . Transp .Dh/i>v.D./i^OK Prop

#117-43. f-:^>y.~(/t>OT).D.~(^^«r) [#117-4 . Transp]

#117-44. h : v> w . ~(/4> er) . D . ~(>> v) [#117*4 . Transp]

#117*45. h:/*^i'.i'>'Er.D./t>«

Dem.
(-

.
#117-281

. D h : Hp . D .,*>*•.*•> *r

.

~(ot> y)

[#117-4-44] D./Lt>cr.^(i!r>/i).

[#117-281] D . ;* > w : D K Prop

#117-46. H:/i>i*.v>CT.D./i>i!r [Proof as in #117-45]

#117-47. !-:/*>». v>«.D./i>«r [#117-45*104]

#117-471. Vin<v.v<'B.^.tL<<n [#117-47-103]

#117-5. h:/*eN C.D./*>0
Dem.

\- . #60-3 . #100*3 . D I- . g ! Cl'a n Nc'A .

[#117*22] D f- . Nc'a>Nc'A .

[#117*107.#101-1] D h . N c<a^ (1)

H . (1) . #103-2 . D H . Prop

#117-501. l-:/*eN C. = ./t>0 [#117-5104]

#117-51. h:/teN„C-t'0.D./i>0

Dew.
H.#l 01-15. Dh:Hp.D./i + sm"0 (1)

I-. (1). #117-5*104. DK Prop

#117-511. ly /* € N C - t'O . = . /* > [#117-51-15-42]

#117-52. l-:a!£.D.Nc'f>l
Dem.

h . #51-2 . D I- : Hp . D . (ga?) . t'#C £

.

[#117-222] D . (ga?) . Nc<£> Nc< .<#

.

[#101-2] D . Nc'f> 1 : D h . Prop
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#117*53. h^eNoC-^O.D./i^l
Dem.

h . #101-16 . *103-2 . D h : Hp . D . (a«) . N c'a = /a. a I a.

[#117-52] D . (ga) . N c'a = n . Nc'a^ 1

.

[#117107] D./i>l:DK Prop

#117-531. h^eNoC-t'O.s./i^l

h. #117104. Dh:^>l.D./ieN C (1)

h . #117'51 . #101-22 . D h . 1 > .

[#117'45] Dh:^>l.D./*>0.
[#117-42] D./i + O (2)

h.(l). (2). #117-53. Dh.Prop

*117'54. h:.l> /i . = : /i
= 0.v. /i = l

h . #117-241 . #1012 . #52-22 . D

h :. 1 >/* . = : (ga,tf) . fi =N c'a . a I Nc'a n Cl'i'ar :

[#60362] = : (ga, «) : /m =N c'a : a 1 Nc'a n t'A . v . g ! No'a n tV#

:

[#51-31] = : (a«, a?) '• ^ = N c'a : A e Nc'a . v . l'x e Nc'a

:

[#101-17-29] = : (a«, #) : fi = N c'a : Nc'a = Nc'A . v . Nc'a = NcVa?

:

r*10316] s : (ga, a?) . /x= N„c'a : /x = Nc'A . v . p = Nc'i'x

:

[#101-1-2] = : (3a) . /* = N c'a : /*« . v . ** = 1

:

[#1032-5-51] = :/i= 0,v.
/
i=l:.Dh. Prop

#11755. h : fi > 1 . = . /*eN C - i'O - fc'l

Dew.
h . #117-281 . D h

: /x > 1 . = . /*> 1 .~(1 >/*)

.

[#117-531-54] = . p e N C - i'O . p + . /* * 1

.

[#51-15] =./ieN C-i'0-t'l: Dh.Prop

#117-551. h :. fx e N„C - t'0 - t' 1 . = :

(ga) : /* = N c'a : (a«,y) .#, yea. x^y : = ./*> 2

Z)em.

r.#103-2.Dr:./* eN C-t'0-i'l. = :

(3«) . /x = N c<a . N c'a 4= . N c'a * 1

:

[*101'14] = : (g«) . ^ =N c'« . a ! a . N c'a 4= 1 :

[#103-26] = : (&a) . //,- N c'a . a I a . a~e 1

:

[#52-41] =:(ao):/*-N c'«:(aflr>
y).fl?

>
yeo.*4s y! (1)

[#54-26.#51-2] = : (ga) : /* =N c'a : (gar, y) . l'x vi'yCa .l'x u t'y e 2 :

[#13-195] = : (go) : /* = N c'a : (gar, y, £) . £ = t'a? u t'y . /? C o . e 2 :

[#54-101] = : (g«) : /i = N c'o : (a/3) . /3 C a . /3 e 2 :

[#117-241] =:/*>2 (2)

h . (1) . (2) . D h . Prop
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#117-56. I- : Nc'a> Nc'£ . D , Nc'a + Nc'7 > Nc'/3 + Nc'7

I-. #110-12. #117-221. D

h : Hp . D . (gS) . 8 C 4 A/'i"a . S sm j Av
"t"/3 .

[#110-11.*73-71.(*110-01)] D . (aS) . 8 u Aa J,
'V7 C a + 7 .

S u A a 4 "i"7 sm (j9 + 7) .

[#117-221] D . Nc'(a + y)> Nc'(/8 + 7) .

[#110-3] D . Nc'a + Nc'7> Nc'/3 + Nc'7OK Prop

#117-561. l-:/i>y.OT6N C.D./i+ «r>z;+o «r [#117-56]

The proof of #117'561 follows from #117'56 in the same way as the proof

of #117'31 follows from #117'3. In the remainder of this number we shall

omit proofs of this kind.

*117'57. I- : Nc'a > Nc'/3 . D . Nc'a x Nc'7 > Nc'/9 x Nc'7

Bern.

h . #37-2 . D r- : p C a . D . 7 J,
"p C 7 J, "a .

[#40161.#1131] D.px 7 Cax7 (!)

K #11313. 3Kpsm/?0.p X7sra
/
8x 7 (2)

I- . (1) . (2) . Dh:pCa.psm
/
Q.3.pX7CaX7.pX7sm

/
Qx7.

[#117-221] 3 . Nc'(a x 7)> Nc'(,S x 7) (3)

(-. (3). #1 17-221. DK Prop

#117-571. K/*^i/.«reN C. D.^x ot>i/x ct [#117-57]

#117-58. I- : Nc'a> Nc'/3 . D . (Nc'a)^'*> (Nc'/3)w<>'?

I- .
#35-432-82 .D(-: p Ca.D.pt7 Ga t7-

[#80-15] ^.(pt7)^7C(«t7)A'7 (!)

I- .
*116-15-19 . D h : p sm ^ . D . (p 1 7)4*7 sm (/3 1 7V7 (2)

h.(l). (2). #117-221. D

KpCa.psm/30. Nc'(a 1 7)4*7 ^Nc'(£ f 7)4*7 .

[#116-15-25] D . (Nc'a)w*> (Nc'£)Nc'>
(3)

K (3). #117*221 OK Prop

#117 581. K/*^i/.isr<-N CO.j*w ^i>-* [#117-58]

The two following propositions are lemmas for #117'59.

#117-582. K 3 ! 7 . £ C a . o- e 7 exp (a - /3)O . (u 0-) f (7 exp /3) e 1 -» 1

.

(u <r)"(7 exp /3) C 7 exp a

h . #116-183 . D I- : p e (7 exp #) . 0- e 7 exp (a - £) . D . p C /3 x 7 . a C (a-£) x 7

.

[*113-19.#24-21] D . p n a- = A
'

(1)

h . (1) . #24-481 O K: HpO :. p, p' e (7 exp £)O : p v <r = p' u o- . = . p = p' :.

[*7l-58] D:.(y -)|
:
(7exp

/
8)€l->l (2)
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h #113-191 . 3 h :. Hp . D : 7 J,
"£ n 7 1 "(a - £)= A :

[*115-14.(*116-01)] D :p e(7 exp£) . D ./>w<r <?Prod'{7
J,

"^u7 J, "(a-/3)}.

[*37-22.#24'411] D.puffe(7expa):

[*37'61] 3:(u -)"(7exp
/
8)C7expa (3)

I- . (2) . (3) . D K Prop

#117-583. hi^Ca.^I^.D. (gr) . t C 7 exp a . t sm (7 exp 0)

2)em.

I- . #116-171 . D h : Hp . 3 . g ! 7 exp (a - /3) (1)

I- . (1) . #117-582 . #73-15 . D h . Prop

#117-59. I- : Nc'a> Nc'/3 . g ! 7 . D . (Nc'7)
No'a> (Ncf

7)
N^

H . #117-221 . D h :. Hp . D : (gp) .pCa.psm/Sraly:
[#117-583] D : (gp, t) . p C a . p sm/9. tC 7 exp a . t sin (7 exp p)

:

[#116'19] D : (jtjt) . r C 7 exp a . r sm (7 exp #) :

[#117-221] 3:Nc'(7expa)^Nc'(7exp/3) (1)

h. (1). #116-25. Dh. Prop

The hypothesis is essential in the above proposition, for 0° = 1 while
1 = 0, so that 0° > 1

.

#117591. (-:^>y.^eN C-t'0.D.^> OT" [#117-59]

#117-592. h:«s = l.« + 0.a + l.D.S«0
Dera.

h .#116-203 . D h :. Hp . D : a,S eN C :

[#117551'53] D:a^2:S + 0.D.S>l:
[#117-581-591] D:8 + 0.D.a»>21

.

[*116-321.*117'244] D.as >2.
[*117'551] D.as 4=l (1)

I- . (1) . Transp .DK Prop

The above proposition is used in #12053.

#117-6. V : fi, v e N C .D./*+ v^/*.jt+c i^i'

I- . #117-561-5 . D h : Hp . D . /* + v^ ^ + . /* + v> + v (1)

h . (1) . #110-6 . #117-244 . D I- . Prop

#117-61. h:v>/*.D. At+ i^>/* [#117-6-45]

#117-62. I- : /*, y eN C -t'0.D./iX o
y>/i./tx o i'^)/

I- . #117-571-53 .Dh:Hp.D./ix ^/iX l./tx oy>lxo i' (1)

h . (1) . #113-621 . #117-244 . D h . Prop
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*117'63. h : o,£~ e u 1 . D . Nc'a x Nc'/9> Nq'o +a Nc</3

Dew.

h . #524 . Transp . D h : Hp . D . (ga?,^, 2/, 2/') #X* a.y,y'e@. x^x . y^y (1)

h . #113*101

.

D h : Hp . x, x e a . y, y e ft . x =j= x. y 4= y' . p = I y"a

.

<r = x), "(/9 - i*y) u iV 4 y' . D . p y o- C /3 x a (2)

h . *55-15 . D h :. Hp (2) . D : 72 e p . 3R . WR = i'y :

[#51-23] D:i2 e/>.,Sfei7.DAa .<ri2=l=(I'£:

[#24-37 .#30-37] D : p n o- = A (3)

h. #73*61 611. Dh:Hp(2).D./>sma.fl?J
r
"(/3-tcy)sm(/3-tV) (4)

h . #55-202 . D h : Hp(2) . D . # jy'^etf
J, "(£ - *'y) (

5 )

I-. (4). (5). #73-71. Dh:Hp(2).:>_.psmo.<rsm£ (6)

(-.(3). (6). #110-13. Dt-:Hp(2).D.pu -eNc'(a + /3) (7)

h . (2) . (7) . #117-221 . D h : Hp (2) . D . Nc'(/3 x«)> Nc'(a + 0) (8)

h . (1) . (8) . #113-141-25 . #110-3 . D h . Prop

#117-631. h : ^ v eN C - t'O - t'l . D . p, x v^ p + v [#117-63]

The two following propositions are lemmas for #117 '64.

#117632. I- : k e Cls2 excl .K~eOul.p,ore Prod**: .pft<r = A.
T= %% ((go, j3).a,@eic. a$j3 . a e £ . /* - (p - a-/9) u (<r n a) u i'a;}

.

D . T e 1 -* 1 . D'fC Prod** . a'T= s'«

h . #115-11-145 . D h :. Hp . a, j3 e k . a ={= /3 . D : p - a - £ e Prod'(* - i'a - 1'0)

:

[#115-11-145] D : (p - a - 0) u (<r n a) 6 Prod'O - i'£)

:

[#115-145] DiireyS.D.Cp-o-^u^A^ut^eProd'/c (1)

h.(l). #21-33. DI-r.Hp.praj.D.peProd'* (2)

I- . #52*4 . Transp . D h :. Hp . 3 : e/c.xe/3 .3 . (go) .fle/c.a^.
[*21*33.#33-131] D . # 6 (IT (3)

h . #21-33 . #33-131 . 3 h :. Hp . 3 : x e d'T . D . (g£) .fietcxep (4)

h.(3).(4). Dh:Hp.D.(I«T=s<* (5)

h . #2133 . #13-172 . D h :. Hp . D : pTa? . vTx . D . p = v (6)

h . #2133 . #13171 . D h :. Hp . D : fiTx . pTV . D .

(go, a',/3,/3') . a, a'e * . &/3' 6 * . a*/3 . a' =|=/3'.

(p — a — /3) u (o- r\ a) u t'x = (p — a'— (3') r\ (a n a') u tV

.

[*2448.Hp]D.t'ir=tV (7)

h. (2). (5). (6). (7) Oh. Prop

#117-633. h:.K€ Cls2 excl . *~ e u 1 : (gp, <r) . p, a- e Prod'* . p n <r = A : D .

nNc'*>2Nc'*

h . #117-632 . D I- : Hp . D . (g7) . y C Prod'yc . 7 sm sV.
[#117-221] D.Nc'Prod'*^NcV* (1)

I- . (1) . #11512 . #112-15 . D I- . Prop
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#117-64. \- :. * e Gls2 excl : (ftp, er) . p, a e Prod'* . p n <r = A : 3 .

nNc'«^ £Nc'*

H . *112321 . #114-21 . D I- : * e 1 . 3 . IINc'* = 2Nc'* (1)

I- . #114-2 . #112-3 . 3 h : * € . D . IINc'* = 1 . 2Nc'* = ,

[#117'51] D . IINc'* > SNc'* (2)

h. (1). (2). #1 17-633. Dh. Prop

#117-651. h : a~ e u 1 . D . (Nc'a)Ne'0> Nc'a x Nc*£

h . #52*4 . Transp . D H : Hp. D .(aa?,y).*,ye« -a + y (1)

I- . #116-152 . #55-23-202 . D I- : a, y e a . x
=f= y . D . x I "& y J,

"/3 e (a exp /3)

.

# I "£ « y I "/3 = A (2)

h. #113*111. DI-.aj,"/3 e Cls2 excl (3)

h
.
(1) .

(2) . (3) . #117-64 . #113 1141-25 . #116-25 . (*116'01) . 3 I- . Prop

#117-652. hi/ieNoC-i'O-iq.z-eNoC.D./^/ix,,!- [#117-651]

#117 66. h . Nc'Cl'a > Nc'a

_Dem.

V. #102-72. 3K~(a/3)./3Ca.£smCl'a (1)

h . #1006 . #60-61 . D h . i"a C CI'a . i"a sm

a

(2)

h. (1). (2). #117-13. Dh. Prop

#117-661. l-: /li eN C.D.2't > /i [#117'66 .#116-72]

The above proposition is important. (See, however, the Introduction to

the second edition.)

#117-67. h : * € Cls* excl . g ! Prod'* . D . NcV*> No'*

Bern.

V . #1151611 . D h : * e Cls2 excl . [i e Prod'* . D . p sm * . fi C s
1k .

[#117-22] D . No's'*> Nc'* Oh. Prop

#117-68. V -. R,S € €±'k . R h S = k .T= Pp\p e k . P= R[ - t'pv S\ i'p\

D . Te 1 -> 1 . D'T C eA'* • d'^= *

7)em.

I- . #21-33 . #13172 . D h :. Hp . D : P2> .QTp.5.P = Q (1)

I- . #23-631

.

D I- : Hp . p e * . D . (2» A S = S f l'/> :

[#13-17] Dh:Hp./>)0-6*.^ = ycr.D.£ri'p = £h'o-.

[*35-65] D . t'p = t'o-

.

[#51-23] D.p = o- (2)

h.(l).(2). Dr-:Hp.D.Tel->l (3)

I- . #21-33 . #33-131 . D h : Hp . D . <PT= * (4)

h. #80-36. Dh:Hp.D.D'TC e4'* (5)

I- . (3) . (4) . (5) . D h . Prop

#117-681. l-:(ai2,^).E)(Sfee4'*.i2A^ = AO.Nc'eA'*^Nc** [#ll7'68-22]

R&W II 12
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t

#117 682. I- : k C X . 3 ! eS(X - *)O . Nc'e4 '\.^ Ne'e/*

Bern.

h . #80-65O h :. HpO : 22 e eA'« . £ e eA '(\ -k).3.RvS€ e4'X (1

)

h . #8014 . D h : R e e*'X . S e eA\\ - *) . D . d'22 n d'S = A .

[#3333] 5.BnS = A.
[#25-4] 3.(RuS)^S=R (2)

I- . (2) . #13171 . 3 h : & R e eA'\ . Se eA'(\ - /e) . Qv S=Rv 8 .0 .Q = R (3)

I- . (1) . (3)O h : Hp . S e eA'(\ - *) . D . (a £) f
e4'* e 1 -> 1 . (a S)"eA 'ic C e4 '\.

[#117-22] D . Nc'ed'X^ Ne'e/* Oh. Prop

#117-683. h :. k CX . g ! eA'(\ -*) : (^22, S) . 22, See/* . 22 A £ = AO .

Nc'eA'X>Nc'« [*117'681-682]

#117684. h:*C\. a U/\:(a22,,Sf).22,£ e e4'*.22r>,Sf = AO.
Nc'e/A-^ Nc<* [#117-683 . #88*22]

The above proposition is used in #120'765.



GENERAL NOTE ON CARDINAL CORRELATORS

The correlators established at various stages throughout Section B present

certain analogies to each other, and they or others closely resembling them
will be found to be the correlators required in relation-arithmetic (Part IV).

We shall therefore here collect together the most important propositions

hitherto proved on correlators.

When we have to deal with correlators of two different functions of a

single class, as e.g. e^K and Prod'vc, the correlator is usually D or s or s
\
D,

with a suitable limitation on the converse domain. Sometimes it is t
j
D or

e
|

D. Thus for example the class e J "k, by means of which X'k is denned

(#112), has double similarity with k if k eCls2 excl (#11214); in this case, the

double correlator is l
|

D with its converse domain limited, i.e.

b : k e Cls2 excl . D . t
j

D |" X'/c e re smsm(e ~["k).

In the case of Prod'« and e&'/c, the correlator is D, i.e.

V-.k€ Cls2 excl . D . D T €A'k e (Prod'*) sm (e4 '*).

In the case of e^'s'/c and e^'e^"*, the correlator is s
|

D, i.e.

h-.fce Cls2 excl . D . s
|

D p e4'eA"* e (e4V*) sm (e^e.^'fc).

s\D also correlates <z\'k with e4'ej"/c (#85'61) and iVa with e4'PJ"a
(#85-53), and Pa's'k with ed'PA"* (*85-27*42) if k e Cls2 excl.

The correlator of (a f 0)±'0 with (a exp/3) is s (#116131).

Another kind of correlator arises where we are given a correlator of k and

X, and we wish to construct a correlator for some associated classes W'k and

W~k, or where we are given correlators of a with 7 and of /9 with 8, and we

wish to construct a correlator of a$/9 with 7$S, where $ is some double

descriptive function in the sense of #38. In this case, the correlator will

usually be of the form R
||
S (with a limited converse domain). Sometimes

R and S will be identical; sometimes S will be Re . Such correlators always

depend upon

#55-61. h : E ! R'x . E ! S'y . D . (R
\\
S)'(x \,y) = (R'x) I (S'y)

together with the propositions #74-77 seq. giving cases in which (R
|j £)f X is

a one-one relation. It follows from #55-61 that if R and S are correlators

whose converse domains include the domain and converse domain respectively

of a relation P, then (R
\\
S)'P will be a relation holding between R'x and

S'y whenever P holds between x and y. Examples of such correlators as

R
|j
S are

#112153. h:Te*sm-ii5A ( .D.(2,

||2
,

e)I
h *'eI"Xe(eI"*)smsm(eI"\)

12—2
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*113127. \-:R\'ryectsmry.S\'8e/3m8.'}.

(R\\S)\> (S x y)e (a I "0)smm(y I "8)

*113-65. h . i z"<x x I z"/3 =U *
[|
CnV I z)"(a x 0)

*114 51. h : Tfs'X e k sm sm X . D . (T|! T€)
|* *4 'X e (<m'«) sm ( 6A 'A,)

*116192. \-iR[yeasmy.St8e/3mi8.^.

(
R

||
£) f (8 x y) e (a exp /3) sm sm (7 exp 8)

.

(R
||
S)e f (7 exp S) e (a exp 0) sm (7 exp 8)

An exceptionally simple correlator is given by

#115-502. h : Tfs'X e k sm sm X . 3 . Tf s'Frod'X e (Prod'*) sm sm (Prod'X)

Another exceptionally simple case is

*73 63. H : £ c a sm £ . T
J*
a, Tf £ e 1 -> 1 . a u £ C CI'Z

7

. D .

T\S\Te(T"a)m(T"l3)

By means of the above correlators, most correlators that are required can

be calculated. Thus it will be seen that *116"192 in the above list is an

immediate consequence of #113'127 and #115'502, since

a exp = Prod'a 1 "£ and s'Prod'7 1 "$ = 8 x 7.
)i »

In order to develop the subject, it is almost always necessary, not merely

to prove that two classes are similar, but actually to construct a correlator

of the two classes. This applies equally to relation-arithmetic, in which

analogous correlators are used to prove ordinal similarity.



SECTION C

FINITE AND INFINITE

Summary of Section C.

The distinction of finite and infinite is not required, as appears from

Section B, for the definition of the arithmetical operations or for the proof of

their formal laws. There are, however, many important respects in which

finite cardinals and classes differ respectively from infinite cardinals and

classes, and these differences must now be investigated.

There are two different ways in which we may define the finite and the

infinite, and these two ways cannot (so far as is known at present) be shown

to be equivalent except by assuming the multiplicative axiom. As there

seems no good reason for regarding one of these ways as giving more exactly

than the other what is usually meant by the words " finite " and " infinite,"

we shall, to avoid confusion, give other names than these to each of the two

ways of dividing classes and cardinals. The division effected by the first

method of definition we shall call the division into inductive and non-inductive
;

that effected by the second method we shall call the division into non-reflexive

and reflexive.

The division into inductive and non-inductive, which is treated in *120, is

defined as follows. An inductive cardinal is one which can be reached from

by successive additions of 1 ; that is, an inductive cardinal is one which has to

the relation (+ 1)# , where (by *38'02) + 1 is the relation of a + 1 to a, and

the subscript asterisk has the meaning defined in #90. Hence we put

NCinduct = &{a(+ l)# 0} Df.

By applying the definition of #90, this gives

I- :: a eNC induct . = :. £e/A. 3f . %+ lefii 0ejt: D^.ae/it.

This proposition may be regarded as stating that an inductive cardinal is

one which obeys mathematical induction starting from 0, i.e. it is one which

possesses every property possessed by and by the numbers obtained by

adding 1 to numbers possessing the property, In elementary mathematics,

it is customary to regard mathematical induction, as applied to the series of

natural numbers, as a principle rather than a definition, but according to
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the above procedure it becomes a definition rather than a principle. This

procedure is unavoidable as soon as it is perceived that there are cardinals

which do not obey mathematical induction starting from 0. (This only holds

on the assumption that the total number of objects in any one type is not

one of the inductive cardinals. This assumption, in a slightly different form,

is introduced below as the "axiom of infinity.") Thus for example 0^1, and

f 4= £ +o 1 ^ £ +o 1
=r" £ +o 2. Hence if a is any inductive cardinal, a 4= « + 1.

But we know that J*t0) the first of Cantor's transfmite cardinals*, satisfies

No = ^o +o 1- Thus mathematical induction starting from cannot be validly

applied to prove properties of N . It follows that the inductive cardinals as

above defined are only some among cardinals; nor does it appear that there

is any way of defining them except as those that obey mathematical induction

starting from 0. It follows that mathematical induction is not a principle, to

be either proved or assumed as an axiom, but is merely a characteristic

defining a certain class of cardinals, namely the class of inductive cardinals.

By a syllogism in Barbara, it is evident that is an inductive cardinal

;

hence by the definition 1 is an inductive cardinal, and hence 2, 3, ... are

inductive cardinals. Thus any given cardinal in the series of natural numbers

can be shown to be an inductive cardinal. The usual elementary properties

of inductive cardinals, such as the uniqueness of subtraction and division, are

easily proved by mathematical induction.

We define an inductive class as a class the number of whose terms is an

inductive cardinal. More simply, we put

Cls induct = s'NC induct Df.

It is then easily shown that an inductive class is one which can be reached

from A by successive 'additions of single members. That is, if we put

then Cls induct = M%1A.

Thus we have

h : : p € Cls induct . = : . tj e ft . D^ y
. t) \j i

l
y e fi : A e p, : D^. . p e fi.

We might equally well have begun by defining inductive classes, and pro-

ceeded to define inductive cardinals as the cardinals of inductive classes; in

that case, we should have used the above relation M to define inductive

classes.

Some of the properties which we expect inductive cardinals to possess,

such for example as a4=a+ l, can only be proved by assuming that no
inductive cardinal is null, i.e. that

a. e NC induct . Da . g ! a.

This amounts to the assumption that, in any fixed type, a class can be found

* For the definition of K , cf. *123-01 and p. 186 of this summary.
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having any assigned inductive number of terms. If this were false, there

would have to be some definite member of the series of natural numbers
which gave the total number of objects of the type in question. Thus suppose

there were exactly n individuals in the universe, and no more, where n is an
inductive cardinal. We should then have 2n classes, 22* classes of classes, and
so on. In that case, in the type of individuals we should have n +c 1 = A,

n +e 2 = A, etc. Hence we should have

n+ l=(n+6 l)+c l, etc.

In the type of classes, we should get similar results for 2W, and so on. It is

plain (though not demonstrable except in each particular case) that if the

assumption a e NC induct . Da g ! a fails in any one type, it fails in any other

type in the same hierarchy, and if it holds in any one, it holds in any other

;

for if n be the total number of individuals, then if n is an inductive cardinal,

the total number of any other type is an inductive cardinal, while if n is not

an inductive cardinal, no more is the total number of any other type. Hence

the assumption a eNC induct . Da . g ! a is either true in any type or false in

any type in one hierarchy. We shall call it the " axiom of infinity," putting

Infin ax . = : a e NC induct . Da . g ! a Df.

This assumption, like the multiplicative axiom, will be adduced as a hypothesis

whenever it is relevant. It seems plain that there is nothing in logic to ne-

cessitate its truth or falsehood, and that it can only be legitimately believed

or disbelieved on empirical grounds. When we wish to use a typically definite

form of the axiom, we shall employ the definition

Infin ax (#). — : a e NC induct . I)a . g '. a (x) Df,

which asserts that, if a is any inductive cardinal, there are at least a terms

of the same type as a.

It is important to observe that, although the axiom of infinity cannot

(so far as appears) be proved a priori, we can prove that any given inductive

cardinal exists in a sufficiently high type. For if the total number of individuals

be n, the numbers of objects in succeeding types are 2", 2s
, etc., and these

numbers grow beyond any assigned inductive cardinal. Owing, however, to

the fact that we cannot add together an infinite number of classes whose

types increase without limit, we cannot hence show that there is a type in

which every inductive cardinal exists, though we can show of every inductive

cardinal that there is a type in which it exists. I.e. if a is any inductive

cardinal, there must be a type for x such that g ! a (at) is true ; but there need

not be a type for co such that if a is any inductive cardinal, g ! a (x) is true.

The axiom of infinity suffices to prove the existence, in appropriate types,

of N , 2
N
°, 2 2 °, ... Nj, K2 , ...*. It does not suffice, so far as we know, to prove

* For the definitions of X
x , X2 , etc., see +265.
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the existence of K„, or any Aleph with a greater suffix than «, because the

existences of 8lt K2 , . . . are proved in successively rising types, and no meaning

can be found for a type whose order is infinite.

The other definition of finite and infinite is of less importance in practice

than the definition by induction. It is dealt with in #124. According to

this definition, we call a class reflexive when it contains a proper part similar

to itself, i.e. we put

G\&r& = a{(RR).Rel^\.T)<R = a.(l iRCa.a iR^a.} Df,

or, what comes to the same thing,

Cls refl = a \(rR) . R e 1 -> 1 . d'R C D'R . g ! B'R . a = D'R} Df.

We call a cardinal reflexive when it is the homogeneous cardinal of a reflexive

class, i.e. we put
NC refl = N c"Cls refl Df.

It is easy to show that

NCrefl = a{a !a.a = a+c l}.

We find that inductive classes and cardinals are non-reflexive, and reflexive

classes and cardinals are non-inductive. We find also that reflexive cardinals

are those that are equal to or greater than K„, while inductive cardinals are

those that are less than bt . By assuming the multiplicative axiom, we can

show that every cardinal is equal to, greater than, or less than K , whence

it follows that every cardinal is either reflexive or inductive, thus identifying

the two definitions of finite and infinite. But so long as we refrain from

assuming either the multiplicative axiom or some special axiom ad hoc, it

remains possible (so far as is known at present) that there may be cardinals

neither greater than, nor equal to, nor less than N . Such cardinals, if they

exist, are neither inductive nor reflexive: they are infinite if we define

infinity by the negation of induction, but finite if we define infinity by

reflexiveness. It is possible that further investigation may either prove or

disprove the existence of such cardinals ; for the present, their existence

must remain an open question, except for those who regard the multiplicative

axiom as a self-evident truth.

In #121 we shall consider intervals in a discrete series; i.e. in a series

generated by a one-one relation between consecutive terms. If P be the

generating relation of such a series, and <v and y be two members of the series,

of which y is the later, the terms which lie between as and y are the terms z

for which we have

where P^ has the meaning defined in #91. Henpe we put

P(.-y) =P;^P^ Df,

where "P(as — y)" means "the P-interval between co and y." We want also
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symbols for the interval together with one or both of its end-points. For
these we put

P(a-Hy) = p
Po'^?*'y Df,

P{x^y)=%'x«~P
v>0
<y Df,

P(*iH
3o = P*

,**'?*'y Df*

Thus, for example, if x and y be inductive cardinals, and P be the relation of

n to n -f 1, and x<iy, P (x ~~ y) will be the numbers greater than x and less

than y, while P (x —\y) will be these numbers together with y, P {x\—y) will

be these numbers together with x, and P(x\-*y) will be these numbers to-

gether with both x and y. By means of intervals, we define a class of relations

P„ (where v is any inductive cardinal), where "xPvz" means that we can pass

from x to z in v steps. In order to fit the case in which x and z are identical,

and to insure that no relation such as P„ shall hold between terms which do

not both belong to the field of P, we put

Pv = tc§{Nc'P(x^y) = v+e l} Df.

Then, provided Pp0 GJ, P = I[ C'P, and if further P e 1 -> 1, then P, = P,

P2 = P2
, etc. IfP is a transitive serial relation, Py is the relation "immediately

preceding," which has great importance in well-ordered series. In this case,

P^ = P — P*. If P is a transitive serial relation generating a finite series or a

progression or a series of the type of the negative and positive integers in

order of magnitude, we have
P = (P1)po-

In #121 we shall only consider P„ in the case where

Pe(l->Cls)u(Cls-»l),

and generally we shall have the further hypothesis Ppo G J. We can then

prove that the interval between x and y is always an inductive class (it will

be null unless xP%y); this proposition is useful in its application to the

number-series and to progressions generally.

When P e (1 - Cls) w (Cls -+ 1) . Ppo G J, the class of such relations as P„

(where v is an inductive cardinal) is identical with Potid'P, the class of powers

of P (cf. *91 seq.). This identification (which does not hold in general without

the above hypothesis) leads to many useful propositions. In *91 seq., we

treated powers of a relation without the use of numbers, i.e. without defining

the vth power of P. When the powers of P are the class of such relations as

P„, we can of course take P„ as the vth power of P. The general definition

of the vth power of P (where v is an inductive cardinal) will be given later,

in *301 ; we shall denote it by P", thereby including the notation P2 already

defined.

* These symbols ate suggested by those given in Peano's Formulaire, Vol. iv. p. 116.

(Algebre, § 46.)
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In #122 we shall deal with progressions, i.e. with series of the type of the

series of natural numbers. In this number, we shall deal with such series as

generated by one-one relations; they will be dealt with at a later stage (#263)

as generated by transitive relations. We define a progression as a one-one

relation whose domain is the posterity of its first term, i.e.

Prog = (1 -» 1) n j£ (D'R = *R*'B'R) Df.

According to this definition, there must be a first term B'R ; d'R will be

R"R*'B'R, i.e. R^'B'R, which is contained in R* (B'R, i.e. in D'R ;
since

(I'R C D'R, every term of the field of R has a successor, so that there is no

end to the series ; since C'R = D'R= R% (B'R, every term of the series can

be reached from the beginning by successive steps. These characteristics

suffice to define progressions.

In #123 we proceed to the definition and discussion of N , the smallest of

reflexive cardinals. This is the cardinal number of any class whose terms can

be arranged in a progression ; hence it is the class of domains of progressions,

i.e. we may put
N = D"Prog Df.

With this definition, remembering that A is a cardinal, we can prove that N
is a cardinal ; but to prove that N is an existent cardinal, we need the axiom

of infinity. The existence-theorem for N is then derived from the inductive

cardinals, which, if no one of them is null, form a progression when arranged

in order of magnitude. It should be observed that this existence-theorem is

for a higher type than that for which the axiom of infinity is assumed. In

order to get an existence-theorem for the same type, we need the multiplicative

axiom as well.

After a number on reflexive classes and cardinals (#124) and a number
on the axiom of infinity (#125), the Section ends with a number (#126) on

" typically indefinite inductive cardinals." The constant inductive cardinals

are the typically ambiguous symbols 0, 1, 2, ...; thus we want to define the

class of inductive cardinals in such a way that a variable member of the class

shall be typically ambiguous. This is not possible without a sacrifice of rigour,

but in #126 it is shown how to minimize the sacrifice of rigour, and how to

obviate the resulting logical dangers. A variable whose values are typically

ambiguous is said to be " typically indefinite."

A proof that all inductive cardinals exist has often been derived from

#120*57 (below). But according to the doctrine of types, this proof is invalid,

since >+ l" in #12057 is necessarily of higher type than *>."



#118. ARITHMETICAL SUBSTITUTION AND UNIFORM
FOEMAL NUMBERS

Summary o/#118.

A difficulty arises respecting substitution in arithmetic. For if /a is a

formal number and its occurrence in
f/j,

is arithmetical, then by IIT fi is

always to be taken in an existential type. Hence we can only substitute a

real variable £ for p under the hypothesis g ! £, and we can only substitute

another formal number <r for /a provided that the equation /* = <r, which

justifies the substitution, is arithmetical, i.e. provided that in this equation

the type of /a is such that g ! fju.

The result is that the application of #20*18 is apt to lead to fallacies

owing to the different meanings which a formal number may possess in

different occurrences. Hitherto we have considered each case in detail, e.g.

note on #11061, and proof of #110'56.

The condition for the safe application of #2018 is given in #11801, namely

#118 01. b :. a ! ft . p. = <r . D :/^ . = .fa [#20*18]

This question is more fully discussed in the prefatory statement of this

volume. The first reference to #118*01 is in #120*222. Another way of

evading the difficulty is to work with formal numbers which, together with

all their components, are of the same type. This leads to the consideration of

Uniform Formal Numbers, which with the exception of #11 8*01 occupies the

rest of the number.

The dominant type of a formal number as used in any context is the type

of the formal number itself in that context, and the subordinate types of the

formal number are the dominant types of its component formal numbers.

When the dominant types of some of the formal numbers are not expressly

indicated by an explicit notation (cf. #65), the rules according to which the

dominant types thus left ambiguous are to be related, so far as they are

related, including the rules governing the relation of subordinate types, if left

ambiguous, to dominant types, are given by conventions IT, II T, and AT of

the prefatory statement in this volume.

We have now to consider an important special case which arises when

types are explicitly indicated by the use of #65*01*03. A formal number,

whose subordinate types are the same as its dominant type, is called uniform;

and if some of its subordinate types are the same as its dominant type, it is

called partially uniform. A formal number can only be partially uniform, or

at least so designated as to be necessarily partially uniform, when the dominant

type and those subordinate types identical with it are expressly indicated. by
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#65*01 03. For otherwise the conventions IT, IIT, and perhaps also AT,

apply ; and these do not secure uniformity, and may perhaps in some contexts

be inconsistent with it.

Common sense in its consideration of arithmetic habitually disregards the

possibility of a formal number representing A. In other words, it always

applies conventions IIT and AT. But also, owing to its disregard of types,

it assumes that the formal numbers are all uniform. The assumption which

is really essential to this common sense reasoning, so far as the form of its

arithmetical conclusions are concerned, is the assumption that none of the

numerical symbols represent A. This assumption is secured here, when no

types are expressly indicated, by IIT and AT. We have now to consider

the effect on arithmetical operations of the other assumption, that the formal

numbers are uniform, or partially uniform. There is no difficulty arising from

any change of convention for symbolism, since, as stated above, partial or

complete uniformity is secured by express indication of type. Accordingly

conventions IT, IIT continue, as always, to apply when the types of formal

numbers are left ambiguous.

Convention AT will not be applied either in #118 or #119 or #120 : in

#118 the fact is entirely unimportant since the dominant types of equational

occurrences are always indicated, so that no case arises when it could apply.

Apart from its intrinsic interest and its bearing on substitution, the

arithmetic of uniform formal numbers is necessary for #120, where the

fundamental arithmetical properties of inductive numbers are investigated.

The propositions of this number are proved by the use of the results of

#117. The basis of the reasoning is

#11813. h :. n< v . D : a ! sm^v . D . g ! sm/V
In #118 -2'3"4 the meaning of the symbolism for dominant types is stated,

namely

#118-2. h . (fi +c v )t
= v {(a«, /S) . fi = N c'a . v = N c'/S . v smf (a + 0)}

#118-3. h . (ji x v)e = v {(a«, &)./*, = N c'a . v =N c'/3 . v smj (a x £)}

#118-4. h . 0**)f = $ {(aa, £) . fi = N c'a . v = N c'/S . v sm £
(a exp &)\

The important propositions which are finally reached for addition are

#118-23. h:
j
it)I/fNC.D.(/i +c^ = (sm f

"/* +c smf"y)t

#118-24. h : v €NC . D . (jjl +c j/)e
= (p + Bm t"v)f

#118-241. h : fi e NC . D . (^ +c v)$ = (smf
'^ +c *)*

#118-25. h . Q, + v +c w)e =
[
{fJL +c v)t +c^ = {fl +c („ +c v)t]t

The important propositions for multiplication are

#118-33. h : ft, v e NC - t<0 . D . (p x v)t
= (sm^fi x c am/'^

#118-34. h : v eNC . p 4= . D . O x v)t =O x c Bm{"j/)f
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#118 341. h : fi e NC . v 4 . D . fa x c v)$ = (smf
'> x c^

*118'35. h : w 4 . D . fa x c *> x c «r)f = {fa x c *>)* x c &}{

#118 351. h : /* 4= . D . fa x c „ x<s w)f
= {/* x c (i; x c m)( } (

The important propositions for exponentiation are

#11843. h : p, v eNC - t'O . p 4 1 . D . fa*)t = f
(smf"/*)

Bm*",

'U

#118-44. h:veNC./A + 0.A*+1.3. (/**)* = fa
am

t"
v
)i;

#118441. h:/*6NC.^40.D. fa^ = {(smj' V)"}j

#11845. h:/tt4=0.At + l.D. (y Xosr
)j = {/*

,rXeW}
f(e

#118-451. h : w 4 . D . fa"
x
<")t = [{(/**)*("]«

#11846. h:^4=0.^+l.D. (/*•+•')*=
{ /
Lt<"+^»i} f

#118 461. h . fa'+") t
= {(,•)« x c 0*-) 4 ) t

with two analogous propositions #118'462"463,

#118-47. h : =r 4 . D . {fa x c „)-}* = [{(^ x cv)^
#118-471. h:./i40.j'40.v.w = 0.v.~(

/
a,^'oreN C): D.

with two analogous propositions #118-472'473.

It is thus seen that, apart from some exceptional cases connected with

and 1, in all arithmetical operations uniform, or partially uniform, formal

numbers can replace those constructed in obedience to convention II T.

#11801. h:.al/i,
i
» = (r.:!//t . = ./(r [#20*18]

As far as the symbolism is concerned, this proposition with the omission

of g ! /j, from the hypothesis is a transcript of #2018. But if /* or a (not ex-

cluding both) is a formal number, g; ! /j, is required in case the occurrence of

/j, in //j, is arithmetical. In fact this proposition embodies the three funda-

mental propositions of the Principle of Arithmetical Substitution arrived at

in the Prefatory Explanations on Types. Its necessity arises from the con-

vention IIT which is explained there.

#11811. h : a ! Nc (£)'£ . a C £ . D . a ! Nc (£)<a

Dem.
h. #100-31. Dh:.Hp.D:
7<?Nc(f)'/3.D.ysmf /9.

[#731] D . (a#) . R e 1 (£)- 1
. 7 = D'# . £ = <Pi2 .

[#22-55] D . (gi2) . E e 1 (f) -» 1 . a C d<R . R"a = R"a .

[#73-12] D . (gi2) . U"a sm
f
a

.

[#100-31] I) . ;j ! Nc (f)'a : D h . Prop
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*11812. h :. Nc'a< Nc'/S . D : a ! Nc (f)
(
j3 . D . a ! Nc (f)<«

[*117-32-107. #100-5113

#11813. h!.
/
i< v .D: a !sin f"i/.D.a!smf"/* [#117:32]

#1182. h . (/a +c v)t = v {(gof, £) • ^ = NoC'a . v = N c'£ . 77 sm* (a + £)}

[(#6501-03). #1102]

#118201. h : a ! <> + ?) . D . 8m f
"(/t +c *>) = (/* + *)f

[#110'44. Note change in enunciation]

#118-21. h : a ! (p +c v){ . D . a ! smf
r
'/* . a ! sm f

"p

h . #1104 . #118-2 . D h : Hp . D . ^ 1/ e N C .

[#117*6] D - f^+o v'^fi.fi+ v'^v.

[#118-13-201.(IIT)] D . a ! sm^V a * smj"v Oh. Prop

Here the reference (II T) is to the convention IIT explained in the

prefatory statement.

#118-22. h : . fjt, v e NC . D : a ! (fi +c v)t . = . a I (am^'fi +c sing"*)* . = .

a ! (/i +c smf
"
v)i . = . a ! (smf"/j + i/)f

h . #118-21 . D h :. Hp .
D : a ! (/* +c *0* = 3 ! (/* +c ")f 3 ! stVV • 3 ! smt"v

[#110-25-4] = . a ! (smf'V +c sin*' *p)t (1)

h . #118-21 . #103-43 . #110-4 . D

h :. Hp . D : a ! O + v)t • = 3 ! (/"• + c v)t 3 I sm<V n £„',* . a ! smf'V .

[#103-43.*110-25-4] = . a ! (/* + c sm*"i/)f (2)

Similarly h :. Hp . I) : a ! O +c *)* = • a ! (snW +c *)f (3)

h.(l).(2).(3).Dh.Prop

#118-23. h : p, v eNC . D . (/* + v)f = (smf
'V +c 8mf"i/)4

Dem.

h. #118-21. #110-4-25. 3btRl(f<b+ v)t .'D.(fj,+c p)e = (smt
tt
iiL+ 8mt

tt
v)t (1)

h.*118-22.Dh:Hp.~a !(AA +c ^.D.( /tA + ^ = (sm f"/*+oSm £"^ (2)

h . (1) . (2) . D h . Prop

#118-24. h:^NC.D.(^+c^ = (^+c smf
"
P)f

Dem.

h . #118-21 . #1 10-4-25 . #103-43 . D
h

: 3 * 0* +c ")lO U +„ *0* = 0* +0 smf"y)f (1)

h. #110-4. Dh^^eNC.D.^+.^^^+oSmf"!/^ (2)

h.(l).(2).(3).Dh.Prop

#118-241. h:/i6NC.D.(/i+
c^ = (sm^V+o»')f [#118-24 . #110-51]
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#118 25. h . (fi +c v + m)
t
=

{{fj, +c p)4 + w} £
= \fJL +c (y +c nr)

f }£

h . #1HH2 . #118241*201 . (IIT) . D
H : ^ v e N C . D . O +c v +c Br)f = {(fi +c *>)i +c *r)f (1)

h . #110'4 . Dhi^pe

N

C) . D . p +c *> = A . (a* +c v)f
= A .

[*H0-4] D . (p +c „ +c m)t
= {fa +c i,)f + w

} f (2)

h . (1) . (2) . D h . (/i +„*, + w)
f
= {(/A+o^f

+

w}« (3;

Similarly h
. (ti+Q p+a w)t

*= {fi+a (p+ *r)tU (4)

h . (3) . (4) . D h . Prop

#118 3. r . (p x c v)t = ^ {(a«, /S) . ^ = N„c'a . v = N c</3 . 77 smf (a x £)).

[(#6501-03). #113-2]

#118-301. h : g ! (^ x 1/) . D . smj'^ x c 1/) = (> x c i/)f
[Proof as in #118'201]

#118-31. h : a ! (ji x 1/)4 . v + . D . g ! srW

h. #101 -15-12. Dh: yU,
= 0.D.a!smf

"
/
Lt (1)

h . #113-203 . #118-3 . D h : Hp . p =f=
. D . ^ *> e N C - t'O .

[#117-62] D.^x !/>/*.

[#118-13-301.(IIT)] D . a ! sm^V (2)

h . (1) . (2) . D h . Prop

#118311. h^I^Xe^./i + O.D-aSsm^ [#118-31 . #113-27]

#118-32. h :. y e NC . /i=|= . D : a ! (/x x c v) f . = . g ! (/* x sm
t
"v)j

Dem.
h . #113-203 . D h : 3 ! fa x *)* . D . p e NC (1)

r- . #1 13-203 . Z> h : 3 ! fa x c sm f
"
P)f . D . //, e NC (2)

h. #113-203. #118-311. D
h :. Hp . D : 3 ! O x i/)f . D . g ! p . 3 ! smf"v

.

[#103-43] D . a ! sm rV a «„> . g ! sm^V

.

[(l).#113-26.#103-43] D.ftlfax smt"v)s (3)

h. #113-203. #1 03-43. D
h :. Hp . D : g ! (/* x sm f

u^ . D . g ! sm"/i a £//* . g; ! sm^V.
[(2).#113-26.*103-43] D.g!(/tx *)* (4)

h . (3) . (4) . D h . Prop

#118-33. h : //,, v e NC - t'O . D . O x c i>)f = (sm/V x c sm$"v)g

[Proof as in #118-23, using *U8-31-311 . #113203-26]

#118-34. h : v e NC . /x =}= . I) . fa x c i/)f
= (/* x sm$"i/)f

2)em.

h . #118-311 . #1 13-20326 . #10343 . D
h : 3 ! (At x c ?)* . ft + . D . O x c v)t = fa x smf

u^ (1)

h . #118-32 . D h : Hp . ~g; ! (^ x v)
{

. D .~a ! (/x x c smf"i/){ .

[#24-51] D . (^ x c „)f= (/* x c smt«^ (2)

h.(l).(2).Di-.Prop
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#118341. h: fju€^C.v^O.D.(fji,x v)i = (smi
((

fJiX c v)i [#118-34 . #113-27]

#11835. h : ar + . D . (fi X c v X vr)
t
= {(//, X c v)f X c *r}f

[Proof similar to #11825, using #118-341-301 . #113-203-23]

#118-351. h:/i4=0.D.(/i xcV x o OT)| =
{ /
ax c (^x w)j}. [#11835 .#113 27]

#118352. h : fi 4= . « + . D . {^ x c {v x c w)f

)

f
= {(/* x c^ x c ra-} f

[#118-35-351]

#1184. h . (/*")* = ^ {(a«, £) H>
=N<>c<a . v = N„c'£ . t? sm f (a exp £)}

[(*65-01 03). #116-2]

#118-401. h : aV . I> . snW = 0")£ [Proof as in *1 18-201]

#118-402. h :. fi, v e N„C . p% . ^+ 1 . D : a ! 0O$. I) . a ! (/* x c i/)g

h . #103-2 . D h :. Hp . D : (3a, /3) . fi = N c'a . v = N c'/S .a~e0ul:
[#117-651] D : (go, /3) . /* = N„c'a . y = N c

r
/3 .

(N c<a)N°c'e^ N„c'a x cN c'/3

:

[#118-13-301-401.(IIT)] D : a ! (^ . D . a I (^ x ^ :. D h . Prop

#118-41. h : a ! (rt . v + . 3 . a ! sm*<V
D&m.

h. #118-402-31. DhiHp./tt+l./tt + O.D.alsnif"^ (1)

h . #101-12-15-241'28 .Dhi.^O.v.^lsD.al snW (2)

h.(l).(2)Oh.Prop

#118-411. l-:a!(^.^4=0./*=j=l.D.a!smf'V [*118"402-311]

#118-42. h :. y e NC . ytt + . /i =)= 1 . D : a ! (/*")f = 3 ! (/«"")£

[Proof as in #118-32, using #116-203"26 . #118-411]

#118-421. hi.fieNC.v^O.O-.Rl 0**)e • = 3 ! {(sm^)*}*

[Proof as in #118-32, using #116-203-26 . #118-41]

#118-43. h :w eNC - i'O .^ 1 . D . 0*')* = {(sny^yn"^
[Proof as in #118-23, using #118-41-411 . #116-203-26]

#118-44. r : v eW . ft + .
fj,

4= 1 . D . (^ = (^V)*
[Proof as in *1 18*34, using #116-203*26 . #118-411-42]

#118-441. hi/ieNC.y + O.D. (j?)t
= {(sm e

"»*}
e

[Proof as in #118-34, using *116-203'26 . #118-41-421]

#118-45. h : /x =(= . /i =j= 1 . D . ( /
Lt
vX«^= {/i'"

x
^)f}f

Bern.

V . #113-23 . #118-44-301 . (IIT) . D
h : Hp . v, sr e N C . D . O"*^ = {//.<"*^>f}f (1)

h . #1 13-203 . D h : ~(„, m eN C) . D . * x c m = A .

[#116-203] D . (/*»
x.«)

f
= ^'x.^ (2)

h.(l).(2).Dh.Prop
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*118 451. I- : ur =j= . D . (*.»*. «*-)

f
= [{(/•**•>} "]*

Dem.

h . #116-63 . h : Hp . n e NC . D . (p
vX

'v
)i = {(/*")"}«

[*116'23.#118-441-401.(IIT)] = [{(^M (1)

h .#116-204 . D h : ^~eNC . D . O***.")* = [{(rtM* (2)

h.(l).(2).DI-.Prop

#118-46. hi^+ O.^ + l.D. (^"+0^= {fi,<*
+>

v)
t}i

[Proof as in #11845, using #118-44-201 . #116-203 .#110-4*42]

#118-461. h . (,•+.*)* = R^)f x (»»)(

U

Bern.

h . #116-52 . D h : At + 3 . ->*+.««-> = (^ x mw)*

[*11635-23.*118-33-401.(IIT)] = {(^)f x (p")t}t (1)

I- . *1104 . #113-203 . #116-203 . D
h : <-(„, v e N C) . 3 . (,*'+.-)« = {(/,"> X (z*-)^! (2)

I- . #116-311 . #113-601 . #110-62 . 3
h : v, m e N C - t<0 /* = . D . (/*"+••)* = {(^> x (/*-)f } s (3)

I- . *116-311-301 . #110-6 . #113-601 . D
h : v e N C - t<0 . « = . im - . D . 0*"+.

w
fc
= Krt x (>«•»* (4)

Similarly h : m e N C - t'O . v = . p = . D . <>» x
")s = {(/**)* x (>**>}* (5)

h . #116-301 . #113-621 . D
hrv-O.tr. =0.^ = 0. D. (/**•+.-* ={</*')* *.(*•)*}« (6)

h.(l).(2).(3).(4).(5).(6).Dh.Prop

#118-462. I- . •>*+. ff
)f
= {fi

v x O°0^ [Proof as in #118-461, using #118*34]

#118-463. h . 0"+. ")t = {(fi")t x /*»}* [Proof as in #118-461, using *l 18*341]

#118-47. h : t? 4= . D . [(^ x *)-}* = [{(/* x v)f}»]*

[Proof as in *118'45, using #118-441]

#118-471. h:.
At + 0.i/ + 0.v.«r = 0.v .~<>, -, w eN C) : D .

{(^o")1r(Wf x«Wflf
Dew.

h . #116*55 . D h : ^ + . v * . 3 . {(/•* x j,)**} f * l^
07 x o »"}*

[*116-35-23.*118-33-401.(IIT)] - {(/*")* xo(^)f}f CO
h . #110-4 . #113-203 . #116-203 . D

h : ~(/*, v , « eN C) . 3 . {(/* x c „)»fe
= {0*-> x (v-)^ (2)

h. #116-301. #113*621. 3
h : p, v e N C . « - . 3 . {(^ x i-)-}* « {G*»> x (i,»)«}f (3)

h.(l).(2).(3).Dh.Prop

#118-472. h :. ^4=0 . v . *r=0 . v .~(/*,i*,w«rN„C) : D - {(/* x *)*}*= {^x^i-^h
[Proof as in #118*471, using #118*34]

#118-473. h :. v+0 . v , ur=0 . v .~(^v,weN C) : D . {(/" x i')
tiT

]f={(/4
tF
)f x,*-}*

[Proof as in #118*471, using #118-341]

R&W II **



*119. SUBTRACTION

Summary o/*119.

The treatment of subtraction follows the same general lines as that of

addition, and is simplified by the results in #110. A difficulty arises from

the fact that subtraction (in any ordinary sense of the term) is not always

possible; and also from the fact that the result, when possible, is not always

a cardinal number.

We put

*11901. 7- i/ = f{Nc'f+ i/=*7.a!Nc'£+ i/} Df

Thus when subtraction (in the ordinary sense of the term) is not possible,

7 -o v - A.

The question of existential adjustment of types is dealt with by IIT of

the prefatory statement combined with the following definitions:

*11902. Nc'a- i> = N c'a- i/ Df

*119 03. 7-o Nc'/3 = 7-oN c</3 Df

We then proceed to deduce the elementary properties derivable from

these definitions.

#11911. r-:a!7- i/.D.7,i>eN C

*11912. h:£eNc'a- Nc'£. = .asm£ + /
8

*11914. h:£e 7 - i>.D.N c'£C7- x>

*119-25. h : 7> i; . 3 . a ! (7 - 1/) n t<>
l

j

*11926. h:a!7- i/.D.7>j/

The next group of propositions is concerned with some simple results of

subtraction.

*119-32. h : (7 + v) -c v €N C . 3 . sm"7 = (7 + v) -c v

*119 34. h : 7 - v eN C . Z> . (7 - v) + v = sm"7
*11935. h: 7 -8 i/ eN 0.3.«+ 7=(o+ v)+ (7- i')

Associative laws are then considered.

*119'44. \--.fi+ e (v- ^)C(fi+ v)- ^
*119'45. h :(Af+ v)- we NC. a! {/t+e^-.w^.D. /t+ (i/- iir) = (/[*+, v)-c

tB-

The question of types is then dealt with

:

*119'52. h : smS]y"(^ - v)y = (/j,
- v)$ r\ D'sms

, y
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A difficulty arises from the fact that if rt and t8 are two complete types
whose members are classes, we cannot prove that, either Ti = sm'fT8 or

T2 = smuT1 . We put

#119-54. SM(Sj7). = :£<S = D<smii7 .v.£'7 = D'smYi a Df

Then we obtain

#119-541. h:SM(8, 7).0*-cV)ye NoC.0*-a i/)B eNC.D.
sm6,/V -0 »)y = (^ -0 *0«

Finally we show that any existential adjustment of types will suffice for

the components:

#119-61. I- :
fj,

eN C . a ! snW . D . p - v = snif' 'p, - v

*11962. h : 1/ eN C . g 1 smf 'V . 3 . /* - v = p - sm|"r

Also #119-25*26 are now extended to

#119-64. I- :. 3 ! sm^'V . 3 : /*> * - = a ! 0*-o»0*

The only applications of the propositions of this number are in connection

with Inductive Cardinals (cf. #120).

#11901. 7-.*~£lNc'f+ i/ = 7.a!Nc'£+ *} Df

Here the suffix to the sign of subtraction is introduced to show that we

are concerned with cardinal subtraction. It will be found that 7 — v is not

an NC except under hypotheses for 7 and v.

#11902. Nc'a - v = N c'a - v Df

#11903. 7- Nc'/3 = 7- N cV3 Df

#11904. h . Nc'a - Nc'£ = N c'a

-

N c'/3 [#119-02-03]

Note that the occurrence of a formal number in the place of 7 or v in

7 — v is an arithmetic occurrence, and accordingly IIT applies to it.

#1191. f-:fe7- v.s.Nc'£+ *« 7 .a!Nc'f+ i/ [(#119-01)]

#119-101. h : £ e Nc'a -c v . = . Nc'£ + v = N c'a [(#119-02) . #103-13]

#119-102. h : %e 7 - Nc'£ . = . Nc'£ + Nc'£ = 7 . g ! Nc<£ + Nc'/9

[(#119-03) . #110-3]

#119-103. h : £ € Nc'a -c Nc'/3 . s . Nc'£ + Nc'/3 = N c'a

[#119-04 . #110-3 . #103*13]

#11911. r:a!7-cJ/.D. 7,*eN C [*110"4'42 . *103'34]

#11912. h:£eNc'a- Nc'£. = .asm£+/3

Dem.
h . #119-103 . 3 h : £eNc'a- Nc'/3 . = . Nc'£+e Nc f

/3 =N c'a

.

[#110-3] = .Nc'(£ + £) = N c'a.

[*100-35.*103-13] =.«Bmf + j8:3h. Prop

Thus Nc'a - Nc'/3 is an NC when £ (a sm £+ 0) is an NC.
13—2
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i

#11913. I" : N c'7 C ft c*a - Nc'£ . = . a sm (7 + /3)

Dem.

h . #22-1 . 3 h :. N c'7 C Nc'a - Nc'/3 . = : £ eN c'7 . D* . f e Nc'a - Nc'/3 :

[#103*12.#1 19-12] D:asm(7 + /3) (1)

h . #1 101 5 . #100-31 . D h : . a sm (7 + £) . D : £ e N c'7 . D . (f + £) sm (7 + £)

[*73-32] D. asm (£4-/5).

[#119-12] D.£eNc'a- Nc'/3 (2)

h . (1) . (2) . D h . Prop

#119-14. h : £ e 7 - v . D . N c'f C 7 -e 1/ [#119-1 . *100'31-321]

#119-21. h : y8 C a . D . 3 ! (Nc'a - Nc'£)a

The notation is defined in #65*01.

Dem.
h . #24-411 -21 .Dh:Hp.D.« = j8u(a-

J
8).^A(a-

J8) = x\.

[#110-32] D . Nc'a = Nc'jS + Nc'(a - £)

.

[#10-24] D . (gf) . £ e i'a . N c'a = Nc'£ + Nc'f

.

[*1 19-103] 3 . g ! (Nc'a - Nc'/3)a : D h . Prop

*11922. h : Nc'a> Nc'/3 . D
.
a ! (Nc'a

-

Nc'/3)a

Dew.
h . #117-221 . h : Hp . D . (aj») .pCa.psm/3.

[#119-21] D . (gp) . a ! (Nc'a - Nc'^ . p sm /3 .

[#100-35 .#119-04] D . a ! (Nc'a - Nc'/3)a Oh. Prop

#119-23. h : g ! (Nc'a -c Nc'/?) . D . (38) . 8 sm /3 . 8 C a

.Dem.

h . #119-103 . 3 h : Hp . D . (gf) . N c'a = Nc'/3 +c Nc'£

.

[#110-71] D . (38) .Ssm/3.SCaOh. Prop

#119-24. l-:a!(Nc'a-c Nc'/3).3.Nc'a>Nc
t
/3 [#119-23 . #117-221]

*11925. h : 7

>

v . D . 3 ! (7

-

v) n

£

'

7

Z)ew.

h . #117-24 . D h : Hp . 3 . (aa, j3) . 7 = N c'a . 1/ = N c'/3 . N c'a> N c'/3

.

[#117-107] D . (30, £) . 7 = N c'a . v = N c'/3 . Nc'a> Nc'/3

.

[#1 19-22-04] D . (aa, /?) . 7 = N c'a . v =N c'/3 . a I (N c'a - N c'/3)a .

[(#63-02).*l 3-193] D . a ! (7
-

c v) n t 'y : D h . Prop

#119-26. h:a!7-o^-^-7>^
Dem.

h . #119-11 . 3 h : Hp . D . (aa, /3) . 7 = N c'a . v =N c'£ . a I (N c'a ~ c N c'/3)

.

[#119-04-24] D . (aa, £) . 7 « N c'a . v = N c'/3 . Nc'a> Nc'/?

.

[*117*107.*13-193] D. 7>»OK Prop

#119-27. l-:7>j;. = .a!(7- j/)n^7 [#119-25-26]

For the extension of this theorem cf. #119-64.
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#119 31. I- : 7, v e N„C , D . sm"7 C (7 + v) - v

Dem.

F.*119'l.(IIT).Dh:f e (7+aV)-aV .s.Nc'f+c i; = 7+.».a:!7+ci' (1)

I- . *10051521 . 3 I- :. Hp . D : £ e sm"7 . 3 . Nc'£ = 7 .

[*103-22.*118-01] 3 . Nc'£ + v = 7 + c *

.

[*110-22-03.*103-13] D . Nc'£ + v = 7 + v . 3 ! 7 + v

.

[(1)] D.fe(7 +oV)-oV :Dh.Prop
The penultimate step in the proof employs the principle, explained in

the prefatory statement, that, since in the previous line the equation

Nc'f

+

v = 7+o»'

has its sides undetermined in type by the conventions IT and II T, any con-

venient type can be chosen for them. The type chosen in this line is such

that g[ ! 7 + v, and the references indicate the existence of at least one such

type.

*U9'32. h : (7 + v) - v e N C . D . sm"7 = (7 + v) -c v

[#119*11-31 . #103-22 . *100-52-42]

#119 33. I- : Nc'a - Nc'/3 eN C . 3 . (Nc'a - Nc'/3) + Nc'£ = Nc'a

Dem.

r . #119-13 . D h : N c'7 ;= Nc'a -c Nc'/3 . 3 . a sm (7 + 0) (1)

h . #2018 . #118-01 . D h : . Hp (1) . D :

(Nc'a - Nc'0) + Nc'/3 = N c'£ .
=

t . Nc'7 +c Nc'/3 = N c'£

.

[*110-3.*100*35] =( f sm (7 + £)

.

[(l).*103-42] =f.N c'f=Nc'a (2)

I- . *103-2-34 . 3 h :. Hp . 3 : 3 ! Nc'a . D . (g£) . N c'£ = Nc'a

.

[(2).*1 0-1] 3 . (Nc'a - Nc'/3) + Nc'/3 = Nc'a (3)

h . #110*42 . #103-34-2 . D h :. Hp . D :

a ! {(Nc'a - Nc'/3) + Nc'£} . O . (gf) . Nuc'f = (Nc'a - Nc'yS) + Nc'/3

.

[(2).*101] D. (Nc'a

-

Nc'/?)+ Nc'/3 = Nc'a (4)

h . (3) . (4) . D h . Prop

#119-34. h : 7 - v e N C . D . (7
- v) + v = sm"7

[#119-11-33 . #103-2 . #100-51 . *118'01]

#119-35. I- : 7- v eN C . D . a + 7 = (a + y) + (7 -c 1/)

Z)em.

I- . #110-51-56 . D h : Hp . D . (a +c v) +c (7
- *) = a + {(7

- v) + *}

[#119-34] =a+ sm"7
[*118-24.*11911] = a+o7 :Dh.Prop
#119-41. h : . 8 £ Nc'/3 - Nc'7 . D :

I e (Nc'a +c Nc'yS)
-

e Nc'7 - {(a + 8) + 7} sm (f + 7)

h . #119-12 . #110-3 . D h : f « (Nc'a + Nc'/3) -c Nc'7 . 5 . (a + /3) sm (f + 7) (1)

h. #119-12. Oh:Hp.=.ySsm(8 + 7) (2)

h . (1) . (2) . #110-15-53 . 3 h . Prop
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*119'42. h :. Nc'/3 - Nc'7 €N C . y e Nc'a + (Nc'/3 - Nc'7) . D :

£ € (Nc'a + Nc'/3) - Nc'7 . == . (v + 7) sm (f + 7)

h . #118-01 . #1103 . #103-2 . #100-31 . D h :. N c'S = Nc'/3 - Nc'7 . 3 :

97 e Nc'a + (Nc'/3 - Nc'7) s . 97 sm (a + 8) (1)

h . #119-41 . (1) , #10312 . #11015 . D h . Prop

Note that if 7 be an infinite class, it does not follow from (97 + 7) sm (£ + 7)

that v sm £. This will be proved, however, when y is an inductive class

(cf. #12041).

#119-43. I- : Nc'/3 - Nc'7 e N C . D .

Nc'a + (Nc'/3 - Nc'7) C (Nc'a + Nc'/9) - Nc'7

h . #119-42 . D h :. Hp . v e Nc'a + (Nc'/3 - Nc'7) . 3 :

?7 e (Nc'a + Nc'yS) - Nc'7 . = . (ij + 7) sm (97 + 7) :

[#73-3] D:ve (Nc'a + Nc'/3) - Nc'7 (1)

h . (1) . #22-1 . D I- . Prop

#119-44. h : /i + (v - m) C (/a + i/) - «

J)em.

h. #11911-43. #103-2. D
h:v- flreNoC.^eNoC.D.jtt+ (»- «r)C(/*+ i/)- w (1)

h. #110-4-42. #11911. D
h :~ [v - -bt eN C . fi eN C} . D . /* + (v —e -st) = A .

[#24-12] D./*+ (i/- «r)C(At + v)- i!r (2)

K(l).(2).DKProp

#119-45. I- : (p+cv)-9w eNC . g ! {/i+ (v- ur)} . D . /* +c (v
- w) = (/*+. v)-«w

[#119-44 . #100*33-321 . #11042]

#119-51. 1- : sm
6> y"(Nc'a

- Nc'£)y
= (Nc'a - Nc'/?)a n D'smS) y

h . #119-12 . D h : 17 e (Nc'a

-

Nc'/3)y . £smSiy 97 . = . a sm 97 + £ . £"smS(y 97

.

[#110-15] = . asm^ + ^S. ^smS)y 99.

[#119-12] = . %€ (Nc'a - Nc'/5)s . £sms
, y 97

:

[#371.#33*13] D h . smi;y"(Nc'a

-

c Nc'/3)y= (Nc'a

-

Nc'/?)5 n D'sm8>y : D h . Prop

#119-52. b'm amitr"(ji- v)y = (ji- v)s r\~D tBms , y [#119-51-11]

The difficulty in respect to types, which arises from the fact that

smSjV"(/i— v)y and (p—e v)s have not been proved to be identical, does not

exist when v is an "inductive number"; cf. #120*413.

#119*53. h :. t'$ = D'sms>y . D : sm5
, y '
V - *)T

= (p - *)s [#119-52 . (*65'01)]

#119-531 h:i'S = D'sms>y . (p - v)s eN C . D . sm^'V - *> e N„C
Dem.

h . #65-13 . D h : Hp. . (/*
-

c i/)s C D'sms ,y .

[*37-43.*103-22.(*65*l)] D . a I smy>8"0* ~e ")«

[*100-52.#103-34] 3 . sm7iS"(At
- v), eN C : 3 h . Prop
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#119532. I- : t'8 = D'sms y . (/*
- v)s eN C . (ji - v\ e NC . 3 .

smy , s"(/i
- *)• = (/*

- v)y
Dem.

r . #119-52-531 . D h : Hp . D . a ! (ji- v)
y

.

[*119"52-531.*100-34] D . sm^./V ~o *0e = (/*-. i>)y : D I- . Prop

#119-54. SM(8j7).=::^ = D'smSj7 .v.^7 = D'smy>5
Df

*U9'541. h : SM ($, 7) . (/*
- v), eN C . {n - 1/), e NC . D .

smSi7"0 -„ v)
y
= O -

1/)8 [#119-53'532]

#11961. h : p e N C . a ! sm/'/t . D . /i
-

c v = am*"/*. ~ i>

I- . #1191 . D h :. Hp . 3 : 17 e yti
- y . = . Nc^ + v = yu. . a ! p .

[#103-16.#118-201.#37*29] = . (Nc't? + *)* = smt
"/*

.

[#119'1] = . 17 e smf"/* — v :. D h . Prop

#119-62. I- : v e N„C . a ! smf
"1/ . D . /*

- 1/ = /u,
- sra^'v

Dem.

h . #119-1 . D I- :. Hp . D : 17 e/i ~ j; . = . Nc't? + 1/ *= ^ . a '• /*

[#110-25] = . Nc'jy + smf"i/ = fi . a ! ft .

[#119 ,

1] =.77e/i- sm^"i;:.D h . Prop

#119"63. h : yu,, 1/ eN C . a ! sm|"/u, . D . fi
— v = sm^"p - sm^"1/

Dem.

I- . #1 19-26 .DhiHp.al/A-^.^./i^i;.
[#118-13] 3.a!sm^"i/.

[*119-61"62] D . p - v = am*"/* - sm/'v (1)

h. #11911. #10313. D

h : Hp . a ! sm$"yu, —„ sm^"i> . 3 . g ! sraf"y

.

[*119-61-62] 3./i- r = sm^V-oam^ (2)

I- . (1) . (2) . D h . Prop

#119-64. h :. a ! amf"/i, . D : fi> i> . = . a ! (/*
-

v)f

Dem.

b . #117-24 . D h :. Hp . D : ^> v . D . /u, v eN C . a ! smf
"/i

.

[#119-61] ^.(^-ei/^-Csmf'V-o^ (1)

I- .#117 24-244 .Dhi.Hp.^i/u-^y.D. smf"/4> ^

[#119-27] D. a !(sra^V-o^)f

[(1)] .
3-aJO*-.^ (2)

h . (2) . #119-26 . D h . Prop



*120. INDUCTIVE CARDINALS

Summary of *\20.

Inductive Cardinals are those that obey mathematical induction starting

from 0, i.e. in the language of Part II, Section E, they are the posterity of

with respect to the relation of v to i>+ l, or, in more popular language, they

are those that can be reached from by successive additions of 1. In former

days, these were supposed to be all the cardinals, and mathematical induction

was treated as a kind of self-evident axiom. We now know that only certain

cardinals obey mathematical induction starting from 0. It is these cardinals

which are to be considered in this number. They embrace 0, 1, 2, ... and

generally all those cardinals which would be commonly called finite, all those

which can be expressed in the usual Arabic system of numeration, and no

others. The propositions to be proved concerning them in this number are

elementary and familiar; the interest lies entirely in the definition and

method of proof, not in the propositions themselves.

Put NC induct = S {a (+ 1)*0} Df.

Since (+c 1)^ has necessarily its domain and converse domain of the same

type, it is important to be careful in noting the relations of type. Accordingly

we also put

N^C induct = a {a (+ 1 )* 0* } Df.

We begin by applying the propositions of #90. Thus we have

#12011. h :. a e N,C induct : <££ . D^ . <p (£ + 1) : <£0„ : D . <pa

#12012. h.OeNC induct

#120121. 1- : a e NfC induct . D . (o + 1)$ e NfC induct

#12013. h :. a e N„C induct : £ e N,C induct . 0£ . Df . <£ (f + 1) : <£0„ : D . <pa

#12015. I- : a e NC induct . 3 ! a . D . sm"« e NC induct

#120151. h : a e NC induct . g ! a . O . a + 1 e NC induct

#120152. h : a e NC . sm"a e NC induct - t'A . D . a e NC induct - i
lA

We then proceed to deduce the elementary properties of inductive classes,

putting

Cls induct = s'NC induct.

We have

*12021. h : p e Cls induct . = . N c'p eNC induct

#120-211. h : Nc'p e NC induct - i<A . D . p e Cls induct

(We do not Jaave an equivalence here, because, for aught we know, it

might be possible to determine the ambiguity of Nc'p so that Nc'p = A,

even when p e Cls induct. This will not be possible, however, if the axiom of

infinity is assumed.)
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*120 212213. 1- . A, i
lx e Cls induct

*120'214. \- :. psma- .0 : pe Cls induct . = . <r e Cls induct

We have a set of propositions applying induction to classes directly, and
not through the intermediary of cardinals. Thus we have

*120 251. I- : 7} e Cls induct . D . 77 <j i
l
y e Cls induct

*120-26. h :. p e Cls induct : <£»? . D^ x . <p (y v i'x) :<f>A:D.(pp

We then state the axiom of infinity, and prove (*120"33) that it is

equivalent to the assumption that if a is an inductive cardinal, a =j= a + 1. To
prove this, we first prove various propositions about a +c 1, among others the

following:

*120'311. h:a!tf+ l.o+ l«/3+ 1.3.a = sm"/3 . a ! a

*120'322. h :. aeNC induct .D:g!a. = .a4=a+ 1

We then proceed to consider subtraction (#120'41—'418), which only

gives a cardinal number when the subtrahend is an inductive cardinal,

We have

*120 41. h :. v eNC induct . g ! a + 1> .D : a+ v=P + v . D .a = sm"/3

We might validly put a = /3 instead of a = sm"/3, since a = /3 will be true

whenever it is significant.

We have

*120411. h :. v e NC induct . 3 :

ft\y- v .D .y- veN C : 7> v . = . (7 -c v) n t *y e N C

*1204111. h :. v e NC induct . g ! S1V7 . D : 7> ^ . = . (7 ~ v)t eN C
Hence we arrive at the conditions requisite for the usual point of view of

subtraction; namely,

*120-412. h : v € NC induct . 7> v . g ! smf
"7 . D . (7 - v> = {(?a) (a + v = 7)}*

Also from #120'4111 we deduce

*120 414. I- : ft eN C - t'O . g ! snW . D . (^

-

l)f e

N

C

And from *120'411 . *1 19-34, we find

*120'416. h : v eNC induct . g ! 7 - v . D . (7 - v) + v = sm"7

We prove next that no proper part of an inductive class is similar to the

whole (#120*426), i.e. that inductive classes are non-reflexive, and various

connected propositions, e.g.

*120-423. h : a e N,C induct - t'O . = . (g£) . £ e N„C induct . a= (ft + 1),

*120 4232. h : a e N,C induct - t'O . = . (g/3) . /3 e N,C induct- t'A. a=(/9+ l)„

#120 428. h : y e NC induct .a!a+o v.a={=0.D.a+o i/>i/

#120 429. h :. v eNC induct .3 ; p,>v . = . p,^v+e l

The last two of the above propositions do not hold in general when v is

a cardinal which is not inductive/
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We prove next that if a is an existent inductive cardinal, then any

existent cardinal is greater than, equal to, or less than a (#120"441); that

if a, are inductive cardinals, so is a+o yS(*120'45
-

450), and if a-i-o is an

inductive cardinal other than A, so are a and 8 (#120'452). We then have

some propositions dealing with mathematical induction starting from 1 or 2,

e.g.

*120'4622. h :. a eNC . eNC (17) . a I sm^0 . D :

(+c 1)* am,"« . = . smf"0 (+ 1)* smf"a

*12047. I" :: eN„C induct- t'O . = :.£<>/*. Df . (£+„!)„ e/t : 1, e fi 1 DK .£e/*

From #1 20-452 we deduce

#120'48. h : /3 e NC induct . £> a . D . a e NC induct - t'A

so that any number less than an inductive number is inductive. Hence

#120481. h : 17 e Cls induct . £ C v 3 - £ e Cls induct

which is a proposition constantly used, and

*120-491. I- :. £~e Cls induct . = : e NC induct . Dp . 3 ! n Cl'f

We then prove that if a, are inductive cardinals, ax o and a3 are

either inductive cardinals or A (#1205 -

52), while conversely if a x a or a?

is an existent inductive cardinal, a and # are so also, with exceptions for

and 1 (#120*512 ,56 ,

561). Hence we infer the uniqueness of division and

the taking of roots (#120"51'53 -

55) so long as inductive numbers are concerned.

We have next a set of propositions on the axiom of infinity and the

multiplicative axiom. We prove (#120"61) that if there is any existent

cardinal which is not inductive, the axiom of infinity is true. From #83'9'904,

we infer by induction that if k is an inductive class of which A is not a

number, ca'k exists (#1 20*62), whence it follows that either the multiplicative

axiom or the axiom of infinity must be true (#120" 64).

Finally, we have a set of propositions on inductive classes. We prove

#12071. h : p, <r e Cls induct . s . p u <r e Cls induct . = . p + cr e Cls induct

#12074. h : p e Cls induct . = . Cl'p e Cls induct

#12075. h-.s'ice Cls induct . = . k e Cls induct . k C Cls induct

with analogous propositions (involving however a hypothesis as to k) on the

subject of e^K.

The propositions of the present number are essential to the ordinary

arithmetic of finite numbers. In the present work, however, they are not

much used after the present section until we reach Part V, Section E, where

we deal with the ordinal theory of finite and infinite.
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120-01. NC induct = £{«(+« 1)^0} Df

Note that in virtue of our general conventions for descriptive functions of

two arguments (*38),

+c l=a£(a = /3+ l).

That is, + 1 is the relation of a cardinal to its immediate predecessor.

It is the number written in the usual mathematical notation as + 1 in the

series of positive and negative integers, just as its converse is the number — 1.

(It should be observed that if v is any cardinal, + v is not identical with v,

since + v is a relation, while v is a class of classes.)

120011. N*C induct- a {a(+ 1)*0*} Df

All members of N$C induct belong to the same type as 0$, so that, if a is

any member of N$C induct, "£eec" is significant.

120-02. Cls induct = s
lNC induct Df

120'021. Clsf induct = s'NfC induct Df

In virtue of these definitions an inductive class is one whose cardinal is an

inductive cardinal.

120-03. Infinax. = :aeNCinduct.Da .g!a Df

" Infin ax," like " Mult ax," is an arithmetical hypothesis which some will

consider self-evident, but which we prefer to keep as a hypothesis, and to

adduce in that form whenever it is relevant. Like " Mult ax," it states an

existence-theorem. In the above form, it states that, if ec is any inductive

cardinal, there is at least one class (of the type in question) which has a terms.

An equivalent assumption would be that, if p is any inductive class, there are

objects which are not members of p. For in that case, if m be such an object,

Nc'^ u i*cc) = Nc'p + 1. Hence by induction, every inductive cardinal must

exist. Another equivalent assumption would be that V (the class of all objects

of the type in question) is not an inductive class. The assumption that N
exists in the type in question is, as we shall see, a stronger assumption than

the above, unless we assume the multiplicative axiom.

If the axiom of infinity is true, the inductive cardinals are all different

one from another, i.e. ee+ /3, where a and yS are inductive cardinals, is not

equal to a unless j3 = 0. But if the axiom of infinity is false, then, in any

assigned type, all the cardinals after a certain one are A. (Except in the

lowest type, the last existent cardinal must be a power of 2.) That is, if (say)

8 were the largest existent cardinal in the type in question, we should have,

in that type, 9 = A, and the same would hold of 10, 11, .... This possibility

has to be taken account of in what follows.
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In order to give typical definiteness to the axiom of infinity, we write

$12004. Infin ax (#) . = : a e NC induct . Da . g[ ! a (#) Df

Then " Infin ax {%)" states that, if a is any inductive cardinal, there are at

least a objects of the same type as x.

#1201. h:aeNCinduct. = .a(+
ffl

l)# [(#120'01)]

#120101. h :: a e NC induct . = :. £e /i . D* . £+ 1 e /u : e ^ : D^ . a e ,u

[#1201. #90-131. #38-12]

The right-hand side of the above equivalence gives the usual formula for

mathematical induction. Observe that the conditions of significance require

that £+ l should be taken in the same type as £. This fact is specially

relevant in the proof of #12015.

The symbol "NC induct" is of ambiguous type not necessarily the same

in different occurrences; also, according to the convention explained in the

prefatory statement as holding for NC and NC induct, "a, /3 e NC induct" will

not imply that a and $ are of the same type. Accordingly to avoid error in

connection with #1201101 typical definiteness is required as in the three

following propositions.

#120102. h:aeNnCinduct. = .a(+cl)*0, [(#120-011)]

#120-103. Vv.ae N,C induct . ~ :. geft . Dt
. (£+ 1), e /* = 0, e fi : 0„ . « e fi

[#120101]

#12011. I- : . a e N,C induct :
<f>£

. Df . <£ (£ + 1 ) : <f>0„ : D . <f>a

[#120-102 . #90-112]

#120-12. h . e NC induct #120-101 -"]

#120121. h:aeN*C induct. D. (a + l)f eNfC induct [#90172 .#120102]

By means of this proposition and #12012, any assigned cardinal in the

series of natural numbers can be shown to be an inductive cardinal ; thus e.g.

to show that 27 is an inductive cardinal, we shall only have to use #120-121

twenty-seven times in succession.

#120-122. h . 1 e NC induct [#120-12121 . #110-641]

#120123. h . 2 e NC induct . eta [#120122-121 . #110-643]

#120124. Ka+c l +
Dem.

b . #110-4 . Transp . D h : a~eNC . D . a +c 1 = A .

[#10112] D.«+ 1 + (1)

h . #110-632 . D I- :. a e NC . D : | e a +c 1 . D . 3 ! f

:

[#24-63] D:A~ea+ l:

[#54102] D:a+ 14=0 (2)

b . (1) . (2) . D h . Prop
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#12013. h : . a e N„C induct : £ 6 N,C induct . <f>g . Df . (£ + 1) : 00, : D . <f>a

Dem.
\-

. #120-121 .31-:. ^eN.Cinduct .
<f>£

. D
f

. $ (f +„1) O :

£ e N„C induct . <£f . D| . (f + 1), e N„C induct . (£+o 1) (1)
h. #120-12. D h :^0,.D.0,eN,C induct. ^0, (2)

h.(l).(2). Dh:.Hp.D:
£ e N,Cinduct . 0£ . Df . (f + 1), e N.Cinduct . (£+ 1) : 0, e N„C induct . 00, :

#120-11 f^,C induct .»f
01

D : a e N,C induct . 0a :. D h . Prop

The above proposition is often convenient for inductive proofs.

#120-14. h . NC induct C NC
Dem.

h . #110-42 . Simp . D h : a e NC . D . a + 1 e NC (1)

h . (1) . #101-11 . #120-11^^ . D h . Prop

This proposition does not show that every inductive cardinal is an existent

cardinal; to obtain this, we require the axiom of infinity.

#120-15. h : a eNC induct . g ! a . D . sm"a e NC induct

I.e. a cardinal which is not null and is inductive in any one type is also

inductive in any other type.

Bern.

h . *101'15 . #120-12 . D b . sm^'Of e N„C induct (1)

h. #110-4. Dh.a = Af .D.(a+c l)j = A f (2)

r- . #118-201 . D h : a ! (a +„ l)e . D . sm,"(a + l)f = (a +c 1),

[#118-241.*ll0-4] = (sm„"a

+

1), (3)

h. #120-121. Dh:a!(a+ l)f.sm,"afN,Cin(luct.D.(sm,"a+ l),eN,C induct.

[(3)] D>sm,"(a+ l)*eN,C induct (4)

h . (4) . #2-2 . Dh:.sm,"«e N„C induct . D :

(a + c l)i = Af . v . sm,"(« +c l)f e N,C ipduct (5)

r- . (2) . (5) . #3-48 . D h :. a = A| . v . sm,"a e N,C induct : D :

(a+ l)f = A f .v.sm,"(a+c l)
f
eN„C induct (6)

h . (1) . (6) . #120-11 . #4-6 . D h . Prop

#120-151. h : a eNC induct . g ! a . I) . a + 1 e NC induct

Dem.
\-

. #120-15 .Dhae N|C induct . g ! a . D . sm,"a e N„C induct

.

[#120121] D . (sm,"« + 1), e N„C induct

.

[*1 1 8-241 .#1 20-1 4] D . (« + 1 )„ 6 N,C induct : D h . Prop

#120-152. h : a e NC . sm"a € NC induct -I'A.D.aeNC induct - i
l&

Dem.
V . #100-521 . D h : Hp . D . sm"sm"a = a

.

[#12015] D. a eNC induct (1)

h . #37-29 . , D h : Hp . D . g ! a (2)

h.(l).(2). Dh.Prop
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The following propositions, giving alternative forms for the definition of

inductive classes, are inserted in order to show that the theory of inductive

classes might be treated in a less arithmetical manner than we have adopted.

*1202. b : p e Cls induct . = . (get) . a eNC induct .pea [(#120-02)]

#120201. h :. p sm er . D : N c'p e NC induct . = . N c'o- e NC induct

Bern.

b . #100-35 . #103-13 . #100-511 . D

b : Hp . D . N cV = sm"N c'o- . N cV = sm"N c'p :

[#120-152.*103*13] D h . Prop

#120*21. h : p e Cls induct . == . N c'p e NC induct

Dem.

b . *12014'2 . D b : p e Cls induct . = . (got) . a e NC induct . a e NC . p e a .

[#103-27] = . (ga) . a e NC induct . N c^ = a

.

[#13-195] = . Noc'p e NC induct : D h . Prop

Note that " p e Cls induct . = . Nc'p e NC induct" is not proved above.

The proof encounters the difficulty that we may have Nc'p = A; in order to

establish our proposition in this case, we have to show that if A e NC induct,

then every class is an inductive class. We can however prove the following

implication.

#120-211. I" : Nc'p e NC induct - l'k . D . p e Cls induct

Dem.
r- . #100-511 . D b : Hp . D . sm"Nc'p = N c'p .

[#1 20-15] D . N c<p e NC induct

.

[#120-21] D . p e Cls induct : D h . Prop

#120-212. h. A <? Cls induct [#120-211-12]

#120-213. b.i'xe Cls induct [#120-211-122]

#120-214. h :. p sm a . D : p e Cls induct . = . a e Cls induct [#120-201-21]

The following propositions are lemmas for #120-24.

#120*22. b t: r) e p . "S^y . 7) v L'y € fi : A e p : Op . p e ft i. 3 . p e Cls induct

Dem.

b. #1 20-21 2. Db. A e Cls induct (1)

K#51-2. ^bi.yerj.D-.rjyJt'y^r):

[#13-12] D : v e Cls induct . D . tj u t'y e Cls induct (2)

h . #110-63 . Db:.y~ e7]m 3: Nc'(t? u I'y) = Nc't? + 1

[(#110-03)] =N c^+c l:

[#120-121] D : N c<77 e NC induct . D . N c'(v v t'y) e NC induct

:

[*120-21-211] ' D : v e Cls induct. D.rjut'ye Cls induct (3)

h . (2) . (3) . D b : v e Cls induct .D .tjv t'y eCls induct (4)

h.*101.(l).(4).Dh.Prop
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#120 221. I- :. v e fi . OntV . n yji<y eft: Nc'p C ft : D . Nc'p +0 1 C ft

Bern.

h.*l 1063. #100*31.3

l-:^NcV+ l.= .(a77,^).7?e NcV.2/~e7? .^= 7
?
wt^ (1)

I- . #22*1 . D h :. Hp . D : v e Nc'p . D . v e ft

.

[#10'1] D . rj u i
f
y e ft

:

[*3'41] D:7)el8c ip.y~€T]. D .77 w l'y e ft

:

[#1312] D: v e Nc'p . y~ € v • K= V u fy 3 £e ft (2)

h . (1) . (2) . D h :. Hp . D : £ e Nc'p + 1 . D . £e /* :. D \-
. Prop

#120222. bz.tiefi.Dw.viui'yeftiZelSC.ZCfiiD.g+tlCft

Dem.
h . *100'4 .Dh:Hp.a!|.D. (g«) . £ = Nc(£)<a . Nc(£)'aC ^

.

[#120-221] D.(aa).^=Nc(^a.Ncfa+ lC/*.

[#118-01] Z>.£+„1C> (1)

h.*110-4.Dh:~a!f.D.f+c lC/i (2)

h.(l).(2).Dh.Prop

The proof of this proposition might also proceed by the use of uniform

formal numbers, employing #118*241.

#12023. h :. t] e ft . D
ni y . tj v l'y e ft : A e ft : D . Cls induct C ft

Dem.

h . #51-2 . #541 . Dh:Hp.D.0C^ (1)

h.*l 20-22214. Dh:.Hp.D:feNCinduct.£CAi.Df .f+ lC/i, (2)

I- . (1) . (2) . #120*13 . D I- :. Hp . D : £ eNCinduct . D . £C^

:

[#40-151.(#12002)] D : Cls induct C ^ :. D h . Prop

#120'24. h :: p e Cls induct . = :.r]e ft. DViy . r] v t'y e ft : A € ft : 3^ . p e ft

Dem.

b . #120*23 . D h :: p e Cls induct . D :.??e^. D„
t y

. t] w i*y e ft: Ae ftzD.peft (1)

h . (1) . #120-22 . D h . Prop

This proposition might be used to define inductive classes. It gives a

form of mathematical induction applicable to classes instead of to numbers.

Virtually it states that an inductive class is one which can be formed by

adding members one at a time, starting from A. This is made more explicit

in #120-25. Instead of ?? e ft . DVtV . t? w t'y eft, in the above propositions, as

well as in those that follow, we may plainly substitute

7)€ft.y^e7] . O^y.rjui'yeft.

#120-25. h :M= *)? {(ay) . f= v w t'y} - 3 - Cls induct = if^'A

[#120-24. #90*131]

#120-251. h : 7} e Cls induct . D . t? u i
l
y e Cls induct [#90172 . #120*25]

#120-26. h : . p e Cls induct : (prj . D,
f
„ . <p (t? u l'#) :<pA:D.<pp

[#120*25. #90*11 2]
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#120-261. h :. p e Cls induct : 77 e Cls induct . <£?? . D,,^ . (?; u t'x) : $A : D . 4>p

[*120-26*251-212]

#120-27. r- : p e Cls induct . D . Nc'/> n i<7 e NC induct

Dem.

h . #120-12 . D \- . Nc'A n «<7 e NC induct (1)

h . #13-12 . D h : Nc'17 n «'7 e NC induct . ^ e 7? . D .

Nc'(ij w t'y) n ««7 e NC induct (2)

h. #110-63. #120-1 21. D

h : Nc'?? n t'y e NC induct . y~ e ?? . D . Nc*(ij « i*2/) ri £<7 e NC induct (3)

h . (1) . (2) . (3) . #120-26 . D h . Prop

This proposition also follows immediately from #120'2ri5.

#120-3. h :.Infinax. = :aeNC induct. Da .g! a [(#12003)]

#120-301. h : . Infin ax (a?) . = : a e NC induct . X . g ! a (x) [(#1 20-04)]

#120-31. h : a ! Nc'a +c 1 . Nc'a +c 1 = Nc'/S +c 1 . D . Nc'a = Nc</3 . a sm £

h . #110-63 . D I- :. Nc'a +c 1 = Nc</3 + 1 . = :

(g7,y) . 7 sma . y~e 7 . £ = 7 u tS/ =$ • (3^) Ssm /3 . £~ eS.^Sut'?:
[#10'1] D : 7 sm«.2/~e 7 . D . (g8, 5) . Ssm/3 . £~eS. 7 w 1'?/ = S v i

lz

.

[#73-72-3] D.(gS).Ssm/3. 7 smS.

[#73-32] D. 7 sm/3.

[#73-32] D.asm^ (1)

h. #110-63 . D h : Hp . D (g7 , y) . 7 sm a . y~e 7 (2)

I- . (1) . (2) . #100-321 . D h . Prop

#120-311. h : g ! a+c 1 . a +c 1 =/3 +c 1 . D .a=sm"/3 . g ! a

[#120-31 . #110-4 . *103-16-4-2]

#120'32. h : a eNC induct .g!a.D.a=t=«+c l

Dem.

h . #101-22 . #110-641 . D h . f 4= f + 1 (1)

I- . #120-311 . #110-44 . D h : a eNC . g ! a + c 1 . a + c 1 = a +c l + 1 . D . a=a+ 1

:

[Transp] Dh:aeNC.g!a+
c l.a + a+ c l.:>.a+c 14a+ l+c l:

[*H8-2-26]Dh:«NC(|).a !(«+ol)f.a+(a+ o l^.D.(a+o l)*+{(a+ l)
f+o l}t(2)

H.(2).Dh:.«eNG(f).a+(«+
a
l)f .D:C«+ l)f=A.v.(a+ol)#+{(a+.l^+

fl
l}#(3)

I- . #110-4 . Transp . D h : . a~eNC (£) . v . a = A
f

: D . (a + c l)f
= Af (4)

h.(3).(4).Dh:.« = A f .v.a + (a+ l)
f :D:

(«+ol)*-Af .v.(«+ l)*+Ka+.l)«+.l}« (5)

l-.(l).(5).*120-ll.Dh:.aeN
fCinduct.D:o«Ae.v.a+(a+o l) f :.Dh. Prop



SECTION C] INDUCTIVE CARDINALS 209

#120 321. h:« + «+ l.D.a!«

Dem.
h . #110-4 . Transp . D h : a = A . . a +c 1 = A (l)

r- . (1) . Transp . D h . Prop

*120'322. h :. a e NC induct .D:a!«. = .a + a+c l [*12032-321]

#12033. h :. Infinax. = :aeNC induct. Da .a + o+a I [#120-3-322]

#12041. h :. v e NC induct .^l a+ v .3 :a+ v = /3

+

v .3 .a = sm"£

Dem.

h . #110-4 . Transp . #118-25 . 3 b : (a + v)s= A . 1 . {a + (v + l)t } ( = A (1)

h.*H8-25.Dh:: a !{a + (v + c l)f } f
.D:. a i{(«+c^+c l}r..

[*120311.#110'4.#118-201]

=>:-{(«+c^+c l}f=K^+c^+clk-^-(«+c^ = (/8+c^"
[Syll.*118-25] D :. (a + *> = (/3 + c v)

s
. D . a = sm"/3 : D :

[a + (* +c lfcfc = {£ +c (i; +c l)f} f . D . a = sm<?/3 (2)

h . (2) . Coram . D h :: (a +c p)t= (/3 +c v)f . D . a = sm"£ : D :.

{«+ (i/+.l)f}*-A:v:{«+ (v + l^-i/8+ (i;+ l)^.D.o = Bm"^ (3)

h.(l).(3).Dh::(a+cV> = A:v:(a+c^ = (/8+c ^.D.« = sm'^:.D:.

{a+e(»'+cl)f}f = A:v:{a+ (v+c l)f] f ={/3+o (i;+o l)f } f
.D.a = sm"^ (4)

h . #110-4 . #118-21 . D I- :. a ! (y3 + c 0)^ . D : yS e NC . g ! smf
"^ :

[#102-87.#100-51] 3 : sm{"a = smf"0 . D . a = sm"/3 (5)

r- . #1 10-6-4
. D h : g ! (a +c 0)f . (a +c 0)f = (£ + 0)* . D . smf"a = sm*"£

.

[(5)] D.a = sm"/3 (6)

h.(«).Exp.*4-6.DI-:.(«+c 0)|=A:v:(a+o O)f
= (^+c 0)|.D.«=sm" /

8 (7)

h. (4). (7). #120-11. D

h :: v e N^C induct . D :. (a + 1>)$ = A : v : (a + i/)
f = (£ + 1>)* . 3 . a = sm"£ (8)

h. #110-4. Dh:v = A,.D.(a+ i/)
f
= A (9)

h . #120-15 . D h :: v e N,C induct - i'A . D :. smf
"y = N«C induct :.

[(8)] D :. (a +c smf"^ = A : v : (« + sm*"*^ = (£ +c smf'H . D . a = sm«/3 :.

[#118-24]D:.(a+ ^=A:v:(a+c^ =
( /
8 + v)* . D . a = sm"/3 (10)

h . (9) . (10) . D h . Prop

The above proposition establishes (with the natural limitations) the

uniqueness (within each type) of subtraction (conceived as in #120'412) when

the subtrahend is an inductive cardinal (When the subtrahend is a non-

inductive cardinal, subtraction ceases to give a unique result.) Hence we

are led to the following extensions of #118 for the case of inductive cardinals:

r&wu 14
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#120-411. h :. v e NC induct . D :

^\y- V.D.ry-Q V€N C : 7^ f. = . (7- y)n ^7« N„C
Dem.

h .#1191 . D I- :. i/eNC induct . D :

£ 17 e 7-c v . D . Nc'f + y = 7 . Nc'17 + *> = 7 . g ! Nc'(? +c i- .

[#20'22] D . Nc<£ +„ v= Nc'^ + *> . g ! Nc'£ + »

.

[*120-41.*100'511.(*11003)] D.Nc'^NcS? (1)

h.(l). #11914. Dh:.Hp.D:a!7- ^.D.7- yeN C (2)

h . #119-27 . (2) . D I- :. Hp . D : 7> j- . D . (7 - v) n t 'y eN C (3)

h . #103-22 . #119-27 . D h :. Hp . D : (7
- v) a C7«

N

C . D . 7> *> (4)

h.(2).(3).(4).Dh.Prop

#120-4111. h : . v e NC induct . g ! sm^'7 . D : 7> * . = . (7 - v\ eN C

Dem.
h . #119-64 . D h : . Hp . D : 7> * . D . g ! (7 - v)

t .

[#120-411] D,(7-o i/)
4
eN O (1)

h . (1) . #119-26 . #103-13 . D h . Prop

#120-412, I- : 1/ e NC induct . 7> y . g ! snif"7 . D . (7
- v)$ = {(?a) (a + v = y)}i

Z)em.

h . #120-4111 . D I- :. Hp . D . (7

-

c *)* eN C .

[#119*34] D -(7-0^+0^ = 7 (1)

h . #120-41 . #103-43 .#37-29. D h :.Hp . D : a+ *-=7-£+ i- * 7 3*,* «=£ (2)

h.(l).(2).DKProp

#120-413. h : fi e N C . D . ft
- = sm"/i

h . #119-1 . D h :. Hp . D : £ e ft
~

a . == . N c<£ + = ft . g ! ^

.

[#110-61 .#10313] = . Nc<£= ft

.

[#103-44-4] = . N c'£= sm"/*

.

[#103-26] = . f e sm"ft : . D I- . Prop

#120-414. I- : ft e N C - t'O . g I smf
•> . D . (ft

-
c l)f e N C

[#120-4111. #117-53]

#120-415. h : /* eN C - fc'O - t'l . g ! smf
*> . D . (jt -c 2)f eN C

[#120-4111. #117-551]

#120-416. Y-.ve NC induct . g ! 7 - c v . D . (7 -„ v) +a v = sm"7
[#120-411. #119-34]

#120-417. l-:
/
ti eN C-t'0.g!sm<"7-^-a+o7 = (a+ol)+o(7-ol)^

[#120-414. #119-35]

#120*418. I- : v eNC induct . g I sm£
"7 . 7> v . D . a +c 7= (a +c v) + (7

-
p)j

[#120-41 11. #119-35]
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#120-42. h : v

€

NC induct ,q\v . a 4= .D .v^a+a v

Bern.

h . #110-61 . #12014 . D h : v 6 NC induct . D . *•= + *> (1)

b . #120-41 . D h : v e NC induct . g ! +c v . +c v = a +c v . D . = a (2)

I- . (1) . (2) . D h : v eNC induct .g!*>.i> = a+c i>.D.a-0:DI-. Prop

*120'422. I- : a +c 1 e NC induct - t'A . D . a e NC induct - fc'A

h . *120M24 . #91-542 . D h : a +c 1 e NC induct . D . (a + 1) (+ 1)^ .

[*91-52] D.(a/3).(a+c l)(+o l)/3.,3(+c l)*0.

[#120-1} D. (g/3). a

+

c l = /3+ l.#eNC induct (1)

h. #120*311. Dh:.Hp.D:a+c l =
/
8+c l.D.a = sm"^. a !a. (2)

h . (1) . (2) . #120-15 . D h : Hp . D . a e NC induct (3)

h. (3). #110-4.DK Prop

#120-423. h : a e N„C induct - 1<0 . = . (g/3) . /3 e N„C induct . a = (/3 + 1),

Bern.

h . #120-121-124 .Dh:/3e N„C induct . « = (/3+c l)„ . D . a eN„C induct-i'O (1)

h . #120-102 . #91-542 . D I- : a e N„C induct - 1<0 . D . a (+ 1)^ 0,

.

[#91-52] D.(^).a(+o l)^.^(+o l)*0,.

[#120-102] D . (g/3) . /3 e N„C induct . a - (/3 +c 1)„ (2>

h.(l).(2).DI-.Prop

#120-4231. h : aeN„C induct. D. (g/3). j3 6 N„C induct -t-A. (a+c l)„=(/3+ l),

jDem.

h . #10-24 . #101-12 . #120-12 . D
h . (g£) . /3 € N„C induct - t'A . (0 +c 1), = (fi +c 1), (1)

h.*120121.DI-:.g!£.D:

y
SeN,Cinduct-^A.^=(^+c l),.D.^eN,Cinduct-^A.(^+ l)

)?
= (^+ol),:

[*10-23-24] D : (g/3) . £ e N,C induct - t'A , f = (# + 1), . D

.

(g7) . 7 e N„C induct - t'A . (£ +. 1), = (7 +0 1), (2)

h. #110-4 . #13-17. D
h :.~g! £ .D : /3 eN„Cinduct- t'A. £= (/3 +C 1),-D • (£+„ !), = (£ +.1),:

[#10-28] D : (g/3) . /3 e N,C induct - t<A . £ = (£ + 1), . D .

(3)8) . /3 € N„C induct - t'A . (£ + 1), = (/S + 1), (3)

I- . (2) . (3).D h : (g/3) . /3eN„C induct - t'A . £-(/8 +c 1), . D

.

(g/9) . e N„C induct - t'A . (£+ 1), = (/3 + 1), (4)

I- . (1) . (4) ^*|ii . #120-1 1 . D

h ; a e N,C induct . D . (a/3) . /3 e N„C induct - t'A . (a + 1), - (£ + 1)„ :

D h . Prop

#120-4232. h : a e N„C induct-t<0 . = . (a#) . ySeN^C induct~i'A . o = (/9+ l),

[#120-423-4231]

14—2
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1

#120424. h:/H0-3H«+c/3>-3-(«+c/3)f-cl=«+c(/3-c l)*

Dem.

h . #110-42-62 . D h : Hp . D . (a +e @)s
e NC - fc'A - t'O .

[*120-414.*103-13] D . g ! («

+

c /3)f
- 1 (1)

h . #110-4 . #118-21 . #120-414 . *103'13 . D h : Hp. D . g ! (/3~cl> (2)

h.(l>. (2). #120-416. D
h:Hp. 3.{(«+./9)«- l}+o l = «+./3.O- l)f +a l s=/8. (3)

[*1 10-56] D . {(a + 0)f
-

c 1} +a 1 « {a +c (0
-

1)*} +c 1 (4)

h.(3).Dh:Hp.D. a ![{(a+a^- l}+
fl
l]* (5)

h . (4) . (5) . #120-311 . #110-44 . D
b:Hp.D.(a+ c /3>-c l = «+ (/3-c l)f :DKProp

#120-425. h :. (a +c /3)f e N C ~ t'O . D :

(«+c^-cl = a+ (^-cl)f-v-(a+c ^)l-cl = (a-c l)f+c /8

Dem.

h . #110-62 . #103-22 . D I- :. Hp . D : a + . v . /S + : a ! («+c/S)f (1)

h.(l).*l 20-424. DK Prop

#120-426. h : p e Cls induct . p C er . g ! <r - p . D . ^>(p sm o-) . Nc'p < NcV
Dem.

h . #110-32 . D h : Hp . D . Nc'tr = Nc'p +c Nc'(<r - p) (1)

K #101-14. D h :Hp.D.NC(a-p) + (2)

h . (1) . (2) . #120-42 . #117-222-26 . D h . Prop

#120-427. h : R € 1 -* 1 . d<R C T)'R . g ! V'R - (TE . D . D'i2~e Cls induct

[#120-426 . Transp]

The above proposition shows that no reflexive class is inductive.

*120 428. h : v e NG induct . g ! a +c i> . a 4= .D .a+e v> v

Dem.

h . #117-511 . #110-4 . D h : Hp . D . a > . v e N C .

[*117-561.*110-6] D.a+ vp>v (1)

h. #120-42. #110-4. Dh:Hp.D.a+ ^i> (2)

h.(l). (2). #117-26. DKProp
#120'429. bi.ve NC induct .3 : p>v . = . p,p>v+ l

Dem.

h. #120*428. Dh:.Hp.D:/tt€N C./* = i/+o l.D. /t*>i/: (1)

[#117-47-12] D:n>v+C 1.0.p.>v (2)

h. #117-31. Dr-:^>i/.D.(aOT).OTeN C./i = v+ o
«3- (3)

K #117-2612. Dh:^>y..D.^4=i/+o (4)

h . (3) . (4) . D h : yu. > v . D . (gor) . w e N C - t'O . /* = v + c er

.

[#117-531] D. (go-), nr^ 1 . n — v+c'ot .

[#117-31] D.(ga7,p).peN C.or=p+c l ./*=i/+ ar.

[#13-195] D . (gp) . p 6 N C . p, = * +c p +c 1

.

[#117-31] D.^>y+ 1 (5)

h.(l).(2).(5).Dh.Prop
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The following definition, in which "spec" stands for "species," defines

the " species " of a cardinal $ as all cardinals which are less than, equal to,

or greater than j8. We cannot prove, unless by assuming the multiplicative

axiom, that all cardinals belong to the species of {$, except in the case where

$ is an inductive cardinal. In all other cases there may, so far as is known
at present, be other cardinals which are neither greater nor less than j3.

#12043. spec'/3 = £{a</3.v.a>,3} Df

*120431. I- :. a e speC/3 . = :«</3.v.a>/3 [(#120-43)]

#120 432. I- :. a e spec</3 , = :a</3.v.a>/3 [#117-281 . #120-431]

#120 433. I- :. Nc'p e spec'Nc'o- . h : g ! Cl'p f\ Nc'<r . v . 3 ! Cl'<r o Nc'p

[#117-22. #120432]

#120-434. h . spec</3 C N C [#117105-10412 . #120-432]

#120-435. r : /3 e N C . = . # e spec</3 . = . a ! spec<# [#117-104 . #120*434]

#120-436. I- :. a e spec'£ . = : a,£ e N C : (37) : a +c 7 = /3 . v . /3 +c 7= a

[#120-432 . #117-31]

#120-437. I- : £ eN C . 3 . e spec'jS [#117-5 . #120-432]

#120-438. h : « e spec'0 .g!«+c l.D.«+c le spec'jS

F . #120-436 . #110-4 . D h :. Hp . = : a, £ € N C . g[ ! a + c 1

:

(a7):76N C:a+c 7 = j8.v.
/
S+c 7 = a (1)

1-. #110-61. Dr:«,/3eN C.a+ = /3.D.a = #.

[#13-1215] D.«+c l = /3+c l.

[#120-436] D . «

+

1 e spec'0 (2)

r. #120-417. Dhitt^^eNoC^ + O. a

+

o7 =^O.a+c H-c (7-c
l) = ^.

[#120436] D . «

+

c 1 e spec'/3 (3)

K*13-12-15.Dl-:«, /
8,76N C.j8+ 7 = a.a!«+ 1.3.i8+c 7+c 1 =s a+cl-

[#120-436] D . a + 1 e spec'£ (4)

K(l).(2).(3).(4).DKProp

#120-44. r : /3 e N C . D . NC induct - t<A C spec</3

I- . #120-437 . D I- : Hp . D . « spec'/? (1)

1- . #120-438 . #110-4 . D I- :: Hp . D :. « =A . v . a e spec</3 : D :

a+c l=A.v.«+c le spec'£ (2)

I- . (1) . (2) . #12011 . D 1- :: Hp . D :. a e NC induct . D :

a = A.v.ae spec'/3 :: D h . Prop

#120-441. h:.a€NCinduct-t'A.i8eNO-t rA.D:a</3.v.a=sm"
/
8.y.a>

i
S

[#120-44 . #10334]
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#120442. h :. a e NC induct - t'A . /3 e NC - t'A . D :

a</3. = .~(a>/3):a>/3. = .~(a</3)
Dem.

h.#ll7-104.#120-441.Dh:.Hp.D:a</3.v.a^/3 (1)

h.*H7-291

.

Dl-:«<j8.D.~(a>y8) (2)

h.(l).(2).#5-17.Dh:.Hp.D:a</3.5E.~(a>/3) (3)

Similarly I- :. Hp . D : a > . = .~(a<j8) (4)

h . (3) . (4) . D h . Prop

#120 45. h : a, /3 e N*C induct . D . (a +c 0); eNfC induct

Dem.
I- . #110-6 . D h : a e N*C induct . D . (a +c f)f eN

fC induct (1)

I- . #120-121 . #118-25 . D
I- : (a +c £)* e N

fC induct . D . {a + (/3 + l)*} f eNfC induct (2)

1- . (1) . (2) . *120-11 . D h . Prop

#120-4501. I- : a, /3 eNC induct - t'A . D . a + /3 eNC induct

Dem.
h . #120-15 . D h : Hp . D . sm^tt, sm{"j8 e NfC induct

.

[*120'45] D . (smf"« + smf"/3)f
e N*C induct

.

[*1 18-23] 3 • (a +o j8)f e N*C induct Oh. Prop

The following proposition is a lemma in the proof of #120452.

#120-451. h :. 7 = (a +o £)* :)., „ «, £ eNC induct - t'A :

3 ! (7 +c 1)* . (7 + l)f = (a' + &)i : D . a'3
£' e NC induct - t'A

Dem.

h.#120-414-124.#110-42.Dh:g[!(7+o l)f .D.{(7+o l)f
-

o l} £ eN C.
[*H9-32] D.7={(7 -hc l)*-c l}* (1)

h.(l).*120-124.DH:.Hp.D: 7 = {(e(' + /8
/

)«-o l)t.(a
/ + j8

/

)e + 0.a!(«' + /9')»:

[#120-425]D:7={a'+„(^-c l)f)f.v.7={(«'-cl)f+c^)f:

[Hp] D : a, (j8'- 1)* eNC induct- i'A.v. (a

-

e l)f,j8'eNC induct -t'A:

[#119-11] D : a', £' e NC induct - t'A :. D h . Prop

This proposition could be extended to greater generality as regards types

;

but its sole use is as a lemma.

*120452. h : a + £ e NC induct - 1'A . D . a, /3 e NC induot - t'A

Dem.

h . #110-4 . Transp . D h : 7 = A . D . (y + 1), = A (1)

h . #120-451 . D h :: y = (a +c £)„ . Da^ . a, j3 e NC induct - t'AO :.

(7+ol), = A:v:(7 +c l)J)
= (a'+ ^),.Da^.. a', /3'eNC induct- t'A (2)

h.(l).(2). Dh::7 = A:v:7 = («+o/S),.DttiP .a,j8 6NCinduct-t'A:.D:.
(y +e 1)„ = A : v : (7 +c 1), = (a' +c ff\ . Da

'

>/r . a', £' 6 NC induct - t'A (3)

h. #110-62. #120-12. Dh:0«(a+oJS),0«
i

,.a,£eNC induct- t'A (4)
h . (3) . (4) . #120-11 . D h : : 7 e N,C inductO :

.

7 = A: v:7 = (a+cJ8)n . X,? a, £ e NC induct- t'A ::

[#13-15] Dh:.(a+ojS),€ N,C inductO :

(a +0 #X = A v a*& eNC induct - t'A :O h . Prop
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In the last line but one of the above proof, we substitute for the $£ of

#12011 the function

f-A:v:f=(a+
fl

j8),.3.,p.a,j8eNC induct- t'A.

The following propositions are chiefly required as leading to *120'4621

•462247, which are useful in proving propositions concerning all inductive

cardinals other than zero.

*12046. h : a e NC
.
7 e N,C induct . D . (a + 7), (+d 1)# sm,"a

Dem.

V . #110-6 . #118-241 . D I- : a e NC . D . (a +c 0), (+ 1)# sm,"a (1)

h . #90172 . #118-25 . D I- : (a + 7), (+ 1)* sm/'a . D .

{a+«(7+ol>.U(+dl)*sm,"a (2)

K(l). (2). #120-11.31-. Prop

#120-461. h : a e NC . (+c 1)# sm„"a . D . (37) . 7 e N„C induct . = (a + 7),

Dem.

t-. #110-6. #118-23. DhaeNC.j8 = sm,"a.D.j8 = (a+c 0), (1)

h . #120-121 . #118-25 . D h : /S = (a + 7), . 7 e N,C induct . D .

(0 + 1), = {« +0 (7 +0 1),}, (7 +0 1), « N,C induct (2)

I- . (1) . (2) . #90112 . D 1- . Prop

#120-462. l-:.«eNC.3:(a7).7eNJ)Cinduct./3=(a+ 7)v = .j8(+ l)*sm^«

[#120-46-461]

#120-4621. I- :. a e NC . a ! . 3 : (+ 1)# sm,"« . D . sm*"£ (+ 1)# smf"a

Dem.

K #120461. Dhi.Hp.D:

£ (+c 1)# sm,"a . D . (37) . 7 e N„C induct . £ = (a +c 7),

.

[#110-4] D . (a7) . 7 e N,C induct - t'A . = (a + y\ .

[*120-15.*1 18-201] D . (g7) . sm f
"
7 e N{C induct . sinf

"# = (a + 7>

.

[*118-24.#120-14] D . (37') . 7' e

N

fC induct . smf"/3 = (a + 7')*

•

[#120-462] D . smt"0 (+ 1)* sm/'a :. D I- . Prop

#120-4622. I- :. aeNC . eNC (17)
.
3 ! smf

"0 . D:

£ (+ 1)* sm/'fl . = . sm t
"£ (+« 1)# smf

ffa

Dew.

I- . #110-4 . #37-29 . #120-461 . D
I- :. Hp . D : &mt"0 (+c 1)* smf"a . D . 3 ! sny'a . 3 ! a

.

(1)

[#100-52] D.snV'aeNC (2)

I- . #120-4621 . (2) . D I- :. Hp . D :

amt"0 (+ 1)# smj"a . D . sm/'sm^"0 (+ 1)* sm/ fsni{"o

.

[#102-87.Hp.(l)] D-sm/^+.l^sm/'a.
[#103-34] 3.^(+ l)*sm,"a (3)
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I- . #37-29 . #1 20*4621 . D

r :. Hp . D : £ (+c
1)* sm/f« .D . sm/^ (+c 1)* sm^a (4)

r . (3) . (4) . D r . Prop

It is on this proposition that the irrelevance of types in the consideration

of inductive cardinals depends.

#120463. h::.aeNC.D:: (37)- 7eN„C induct ./3 = (a+c7)„ . == :.

£ e fi . D
?

. (£ +c l)
n e //. : sm/fa e /* : D^ . /3 e ft,

[#120-462. #9011]

#12047. I- :: /3 e N,C induct - t'O . = :. %e ft . Df . (f +c 1), 6 /* : 1, €/* : DM . fSe/n

[*1 20-423-463]

Thus mathematical induction starting from 1 will apply to all inductive

cardinals except 0. Similar propositions can be similarly proved for 2, 3, —
*120'471. h : (3a) . a e NC induct - t'O ./«. = . (a/3) & « NC induct ./(/3 + 1)

Dem.

h . #120-423 . D

I- : (g;a) . a e NC induct - i^O ./«. = . (a/8) . /3 f NC induct . a = y3

+

c 1 ./«

.

[#13-195] = . (3/3). £ 6NC induct. /(/3+ l): D r .Prop

#120-472. r : (ga) . a e NC induct - t'O - t'l . /a . s .

(3/3) . jS e NC induct - t'O ./(/3 +fl
1) . s . (37) . 7 e NC induct ./(y +c 2)

Dem.

I- . #120-471 . D

I- : (ga) . a e NC induct - t'O - t'l ./«. = .

(a/9) . /3 € NC induct . +g 1 * 1 ./(/S + 1) •

[#120-42.#110"641] = . (a/3) . £ e NC induct - t'O .f(/3 + 1)

.

(1)

[#120-471] = . (g7) . y e NC induct . /(y +e 1 +c 1) .

[#110-643] = .(ay).yeNCinduct./(y+c 2) (2)

r.(l).(2).DKProp

#120473. h :. 01 : f e N„C induct - t'O . 0£ . ^ . (£ +c 1) : D :

I e N„C induct - t'O . D . 0£
Dem.

h . #120122 . #101-22 . D I- : 01 . D . 1 e N,C induct - t'O . 01 (1)

I- . #120-121-124 . D 1- : £ e N^C induct - t'O . D . £ +c 1 e N.C induct - t'O (2)

h.(l).(2).D

I- :. Hp . D : 1 e N„C induct - i'O . 01 : £ e N,C induct - t'O . 0£ . D|

.

£ + leN,C induct -i'O.0(£+o l) (3)

h . (3) . #120-47
!(^N,0 induct -i'0-jg^ ^ ,_

^
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#120 48. I- : jS e NC induct . /3> a . D . a e NC induct - t'A

[#120-452. #117-31]

Thus every cardinal which is not greater than every inductive cardinal is

an inductive cardinal.

#120-481. h : y e Cls induct . £ C <q . D . £ e Cls induct [#117-222 . #120-21-48]

Thus if any inductive class can be found which contains a given class, the

given class is also inductive.

*120'49. I- : a e NC - NC induct -I'A.^eNC induct - i'A . D . a >
Dem.

h . #120-48 . Transp . D r : Hp . D . ~(/3> a) (1)

K #120*441. Dh:.Hp.D:«>/3.v.j8>a (2)

t- . (1) . (2) . D I- . Prop

Thus every non-inductive cardinal (except A) is greater than every

inductive cardinal (except A).

#120-491. h :. £~e Cls induct . = : /3 e NC induct . }„ . a ! n Cl'£

Dew.

I- . #1 20-49 . D r- : f~e Cls induct . j3 e NC induct - i'A . D . N c'£ > £ .

[#120429.#117*12] D . N c'f^ /3 +e 1 . g ! £ n Cl<£ (1)

r . (1) . #11710412 . #103-13 . D

h : £~e Cls induct . /3 « NC induct - i'A . D . £ +c 1 + A (2)

h. (2). #101*12. #12013.3

r :. £~ € Cls induct . 3 : /3 e NC induct . D . £ 4= A (3)

h . (1) . (3). D h : f~e Cls induct . ,8 eNC induct . D . g; ! £ n Cl'£ (4)

h . #120121 . D

r :. £ eNC induct. ^ . g ! /3 n Cl<£O : £ eNC induct . 3„ . g ! (/8+ l)nCl'|.

[#H7-242.#120-429] Dp . Nc<£ > /3

.

[#117-42,(#ll7-03)] ^ . N c'£H=£ *

[#13196] D : N c'£~eNC induct

:

[#120*21] D:£~e Cls induct (5)

I- , (4) . (5) . D h . Prop

#120-492. I- : a e NC - NC induct . /3^ a . D . £ e NC - NC induct

[#120-48 . Transp]

In virtue of #120*491, a class £ which is not inductive contains sub-

classes having 0, 1, 2, 3, ... terras. If we take the successive classes of sub-

classes

OnCl'fc InCl'f, 2nCl'£ ...,

these are mutually exclusive, and all exist provided A is not an inductive
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cardinal, i.e. provided the axiom of infinity holds. Thus if the axiom of

infinity holds, we get tf classes of sub-classes contained in any non-inductive

class. It follows, as we shall see later, that if £ is a non-inductive class,

C1'C1'£ is a reflexive class. This seems to be the nearest approach possible

to identifying the two definitions of finite and infinite when the multiplicative

axiom is not assumed. When the multiplicative axiom is assumed as well as

the axiom of infinity, we pick out one class from 1 n Cl'f, one from 2 r\ Cl'£

and so on ; then, forming the logical sum of all these classes, we get N„ terms

which are members of £. Hence it follows that f is a reflexive class ; for, as

we shall see later, a reflexive class is one which contains sub-classes of K terms.

Thus with the help of the multiplicative axiom, the two definitions of finite

and infinite can be identified.

*120 493. I- :. <r e Cls induct . D :

Nc'£< Nc'o- . = . (ap) ./>smf.pC<r.3!<7-/3. = .a! Nc
f
£ r\ C\'a - i'<r

Bern.

h . *117-26'221 . D 1- :. Nc'f < Nc'o- . D :~(£sm <r) : (ftp) . p sm f . p C <r :

[*7 3-3-37] D : (ap) . p sm f . p C a- . p + <r (1)

K #120-481 .3 h :.Hp.D :pC<r.g !<r — p.D .p eCls induct ,p Co-. 3! a— p.

[*120-426] D . Nc'p < Nc'o-

:

[#100-321] D:
/
osm£.pC<r.a!<r-p.:D.Nc<£<Nc<<r (2)

h.(l).(2).*24-6.Dt-.Prop

#120'5. h : a, ft e NC induct . g ! a x e ft . D . a x c ft e NC induct

Dem.

1- . #113-203 . D 1- : a e NC induct . 3 ! a x c . D . a e NC - t'A .

[*113-601] D.ax o
= 0.

[#120-12] D. a x c 0eNC induct (1)

l-.*113-67l. Dt-.ax c ( /
S+ c l) = («x o/3)+ a.

[*120-4501.*113-203] D h : a e NC induct . a x /3 e NC induct - t'A . D .

a x c (£+e l)eNC induct (2)
K (1). (2). #120-13. DK Prop

The restriction involved in g[ ! a x a ft in the hypothesis of the above pro-

position is not necessary if we assume that the axiom of infinity must fail in

any one type if it fails in any other, i.e.

Ant'ae NC induct . D . A c\ t'ft e NC induct,

where a and ft are any two objects of any two types. To prove this proposition

would require assumptions, as to the interrelation of various types, which have

not been made in our previous proofs.
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*12051. I- :a,/3,yeNCinduct.a=j=0.a!axo /8.ax c /3 = axo 7. 3./3 = sm"7
This proposition establishes the uniqueness of division among inductive

cardinals.

Bern.

t- . *120-44-436 . 3 t- :. Hp . 3 : (aS) : ft
= 7 +c 8 . v . 7= ft +c 8 (1)

h . #113-43 . 3 h : Hp . ft = 7 + 8 . 3 . a x 7= (a x e 7) +c (a xc 8) .

[*120-42.Transp] 3 . a x c 8 = .

[#113-602] 3.S = 0.

[#110-6] D.^ = sm"7 (2)

Similarly H:Hp.7 = /3+ S.3.7 = sm"/3

.

[*100-53.#1 13-203] 3.£ = sm"7 (3)

K(l).(2).(3).3l-.Prop

If ft, 7 in the above are typically ambiguous symbols, such as

0, 1, 2, ... Nc'p, Nc'<r, ...,

we have ft = y, for in this case, ft = sm"/3 . 7 = sm^y. Also if /3 and 7 are

of the same type, we have ft = 7, in virtue of #10343. Hence " ft=y" may,

with truth, be substituted for "
ft
= sm^y" in the above proposition, since the

result is true whenever significant. But in this form the proposition gives

less information, since it tells us nothing as to what happens when ft and 7
are not of the same type.

#120-511. I- : a, ft e NC induct .o + 0.a!a.ax c/8 = a.D.j8 = l

Bem.
\- . #113-621 . 3 h : Hp . 3 . a x Q ft

= a x 1 (1)

h . (1) . #120-51 . #101-28 . 3 h . Prop

#120-512. h : a x ft e NC induct - 1<0 - i'A . 3 . a, ft e NC induct - t'O - t'A

Dem.
h . *113-602-203 . 3 1- : Hp . 3 . a, ft e NC - t'O - t'A (1)

1- . (1) . #117-62 . 3 h : Hp . 3 . a x c /3 >a . a x /3 >/3

.

[#120-48] 3 . a, ft e NC induct (2)

K(l).(2).3h.Prop

#120-513. \- : a e NC induct - i<0 - t'A . a x /3 = a . 3 . /2 = 1 [*120-511'512]

This proposition does not hold when a is a non-inductive cardinal.

#120-52. h : a, ft e NC induct . g ! a? . 3 . a? e NC induct

Dew.

I- . #116-203-301 . 3 h : a e NC induct . 3 ! a . 3 . a = 1

.

[#120-122] 3. a°eNC induct (1)

h . #116-321-52 . D H : g ! a^d . 3 . ae+ i = a8 x a

.

[#120-5] 3 I- : a e NC induct . a? e NC induct . g ! a?-*-.
1

. 3 .

a^1 eNC induct (2)

h . #116-52 . #113-204 . 3 I- : a? = A . 3 . a^^1 = A (3)

h . (1) . (2) . (3) . #120-11 . 3 h . Prop
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*120'53. I- : a, ft, 7 e NC induct . a 4= . a + 1 . 3 ! a3 .tf = av . D . /3 = sm"7

h. #116-203. Dl-zglaP.D.g!^ (1)

I- . #120-44-436

.

Dh:.Hp.D:(38):^ = 7 + 8.v. 7 =^+c S (2)

1- . #118-01 . #1 1652 . Dt-:;8 = 7+ S.a! /
3.D.^ = «r Xo

«fi:

[*13-171.#118-01.(1)] D I- : a? = «? . £ = 7 +e S . a ! «e . D . ar = «r x
c
«s

(3)

I- . #120-52 .#116-35 .(1).D 1- :Hp./3= 7+ 8 . D . a? eNC induct-t'A-t'0.3 !£.

[(3).*120-513] D . a6 = 1

.

[#117-592] D.S = 0.

[#110-6] D./3 = sm"7 (4)

Similarly H : Hp . 7 = /3-|-c <$.D.7 = sm"/3 .

[#100-53.(1)] D . £ = sm"7 (5)

h.(2).(4).(5).DI-.Prop

If a, ft, 7 are typically ambiguous symbols, we have ft = 7 in the conclusion

of the above proposition, instead of ft = sm'^. Also if /3 and 7 are of the same

type, ft = 7 ; thus $ = 7 whenever "
ft = 7 " is significant.

#120-54. H : £peCls induct .al^.pCfr.gScr-p.D. (Nc'p)N^ <(Nc'«r)No'*

For the proof, which is here given shortly, compare #117'58.

Bern.

h . #35-432-82 . *80'15 : #11612 . D 1-
: Hp . D . (p f £V£C(<r | |)a'£.

I- . #120-52 . #116-15-251 . #120-2 . D 1- : Hp . D . (p | £Vf e Cls induct (2)

h . (1) . (2) . #120-426 . D t- : Hp . D . Nc'(p | fVf < Nc'(<r | £)4<|OK Prop

#120-541. h : a, /3 eNC induct -t fA.a4=0./S<7.D.;8a <7a [*120"54-493]

#120-542. h : a, 7 e NC induct -i'A.a + 0./9>7.:>.£«>7« [#120-541]

#120-55. I- : a,# 7 e NC induct . a 4= . 3 ! ft* . £
a = 7

a
. D . /3 = sm"7

Dem.
\- . #120-54.1-542 . D I- : Hp . D .~(£ < 7) ,~(/3 > 7)

.

[#120-441] D . ft = sm"7 : D 1- . Prop

#120-56. ha>2.(t^NC induct - i'A . D . /3 e NC induct

Dem.
I- . #117-581 . D h : Hp . D . efi > 2* .

[#117*661] D.a^>/8 (1)

r-.(l). #120-48.31-. Prop

#120-561. h : /3> 1 . a" e NC induct - t
(A . D . a eNC induct

Dem.
h . #117-591 . #116-321 . D I- : Hp . D . a*^ a (1)

I- . (1) . #120-48 . D 1- . Prop
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#120 57. I- : ft, e NC induct - i<A . D . Nc'D (v< /*) = /a +c 1

Here " /x +c
1 " is necessarily in a higher type than " /x," because it applies

to a class of which fi is a member.

Dem.

h. #117-511. Dr-.Nc'P(i/<0) el (1)

(-.#110-4. Dh: /i = A.D. /i + l = A (2)

h. #1 20-429-442. D

r- : /a e NC induct . a ! /a +c 1 . D . i> (i>< fi) = £ < a* +o *)

[#117-104105] D.$(i/</*+a l) = S(i/<Ai)ui'G[t+d l) (3)

I- . #120-428 . D h :Hp(3).D.
/
Lt+c

l~ey(v</A) (4)

h. (3). (4). #110-631. D

h:Hp(3).Nc^(y< At) = At +c l.D.Nc^(v< Ai +c l) = ^+ c 2 (5)

r- . (2) . (5) . D h :. /x e NC induct : /* = A . v . Nc'P (y< /t) = p + 1 : D :

/
A+ l = A.v.Nc'i)(i/</A+d l)« f

i+ 2 (6)
h.(l).(6).*120-13.Dl-.Prop

*120-6. h : (37) • 7 > a 7 C t'y 3 . a ! (a + 1) e\ t'y

Dem.

r-.*1171.D

r- :. Hp . D : (a7,p><r) . N c'/> = a . N c'<7 = 7 .g! Nc'pnCl'o-.^a! Nc'o-nOl'/o:

[#100-l]D:(a7, /3j (r
)
^).N c'

/
3 = a . N c'<r = 7. £smp . £C<r. f =f= <r :

[#24-6] D : (g[7, p, <r, f, #) . N c^ = a . N c'<r = 7.£smp.iz:ea- — f:

[#1 10-631] D : (g& ^.^ui^ea+Jrt^i.DF. Prop

#120-61. h : 3 ! N C * t
3'x - NC induct . D . Infm ax (as)

Dem.

V . #120-49 . D t- :. 7 e N C n t»'a? - NC induct . D :

a e NC induct .g[!«.Da .7>a.7C P'x

.

[#120-6] Da .;jia+C ln$*'a? (1)

K (1). #101-12. #120-13. D

I- :. 7 e N C - NC induct . D : a e NC induct .Da .j!a(«):.Dh. Prop

#120-611. I- : £ e Cls induct . £ C d'P . D . 3 ! P4 '/3

Dem.

h . #80-26 . D H . a ! Pa'A .

[Simp] Dh:ACa<P.D.a;!P4<A (1)

t- . #80-94 . D 1- : a ! P4'/3 . zed'P . D . a * JV(<8 u t'z)

:

[Syll] Dr-:./8Ca'P.D.a!PA'iffO:)3Ca'P.* €a'P.3.a!P4'(^u4'*):

[*51238] D!j9wt'*Ca'P.D.a!PA'(^wt^) (2)

h.(l). (2). #120-26.3 1- .Prop
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*120'62. I- : k € Cls induct . A~ e k . D . g ! eA
{K

Dem.

K*83-9. Dh.g!e4'A (1)

h . *83'904 . D h : g ! e^tc . a ! a . 3 . 3 ! €*<(k u t'a)

:

[Syll] Dh:. A~ev.D.g[!eA'/c:D: A~e*.g;!a. D . g; I eA '(* wt'a):

[#24'54] D:A~ e(tfut fa).D.g!e4'(>ut<a) (2)

I- . (1) . (2) . #120-26 .31-. Prop

The above proposition may also be deduced from #120 -

611, by #62-231.

#12063. h . Cls induct - e'A C Cls8 mult [#120-62 . *88'2]

In virtue of this proposition the multiplicative axiom is not required in

dealing with a finite number of factors, even when some or all of the factors

are themselves infinite.

*12064. I- : Infin ax . v . Mult ax

Dem.

r . #120-61 . Transp . D h :. ~Infin ax . 3 : N C C NC induct

:

[#12021] 3 : (k) . k e Cls induct

:

[*120-62] D:(*):A~e*.:D.3!e4 'A::

[#88-37] 3 : Mult ax :. 3 h . Prop

Thus of our two arithmetical axioms, the multiplicative axiom and the

axiom of infinity, at least one must be true.

*1207. h:aeClsinduct.aC/3.a + £.3.Nc'a<Nc'/3 [#120'426 . #24"6]

#12071. V :p,<T€ Cls induct . = . p u er e Cls induct . = . p + a e Cls induct

Dem.

h . #120-481 . 3 I- : p u a e Cls induct . 3 . p, <r e Cls induct (1)

I- . #120 -481 . 3 h : p, a e Cls induct . 3 . p, a- — p e Cls induct

.

[#12021] 3 . Noc'p,N c<(<r - P ) 6 NC induct

.

[#120-45] 3 . N c'p +c N c'(<r - p) e NC induct

.

[#110-32] 3 . Ncfy u<r)«NC induct

.

[#120-211] D.pu a- e Cls induct (2)

K(l).(2). 3 h : p, <r e Cls induct . = . p u <r e Cls induct (3)

t- . #11012 . #120-214 . 3 I- : p, a- e Cls induct . s

.

|(An <r)"t"p, (A ft p) 4 "t"<r 6 Cls induct

.

[(3).(*11001)3 = . p + a

e

Cls induct (4)

h.(3).(4).Dl-.Prop

The above proposition is frequently used.
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#120*72. h : p,<7€ Cls induct .3 . p x a-e Cls induct

Dem.
I- . #120-21 . 3 h : Hp . 3 . N c'p, N c'<7 e NC induct

.

[*120-5] 3 . Nc'(p x a) e NC induct

.

[#120-211] 3 . p x a- e Cls induct : 3 I- . Prop

#120721. 1- :. a ! p . a ! a . 3 : p, a- e Cls induct . = . p x <y e Cls induct

I-. #120-512. #113107. 3
I- :. Hp . 3 : p x a e Cls induct . 3 . Nc'p, No'o- eNC induct

.

[#120-211] 3 . p, a e Cls induct (1)

I- . (1) . #12072 . 3 h . Prop

#12073. I- : p, o- e Cls induct . 3. (pexpo-)e Cls induct [#12052. #116*251]

#120*731. I- :.a!p.g;! o- . p^e 1.3 :p, a- e Cls induct . = .(p expose Cls induct

[#120-56*561*73]

#120-74. I- : p e Cls induct . = . Cl'p e Cls induct

Bern.

h . #116-72 . #120*21 . 3 h : Cl'p e Cls induct . s . 2Nc'" « t'Cl'p e NC induct

.

[#120-123*52*56.*116*72.(*116*04)] s . N c'p e NC induct

.

[#120*21] = . p e Cls induct : 3 I- . Prop

#120"741. h : s'/e e Cls induct . 3 . re e Cls induct . tc C Cls induct

Bern.

h . #120*74 . 3 h : Hp . 3 . CIV* e Cls induct

.

[#60-57.*120-481] 3 . * e Cls induct (1)

I- . #4013 . #120-481 . 3 I- :. Hp . 3 : p e * . 3 . p e Cls induct (2)

l-.(l).(2).3h.Prop

#120-75. t- : s'te e Cls induct . = . k e Cls induct . * C Cls induct

Dem.

h . #22-58 . 3 h : a ! * - Cls induct . 3 . g ! (k u I'a) - Cls induct (1)

h . #120*71 . #53-15 . 3 h : s'k e Cls induct . a e Cls induct . 3

.

s'(/e u i
f
a) e Cls induct

:

[#5-6] 3 h :.s**e Cls induct . D :

o~e Cls induct . v . s\k u i'cl) e Cls induct

:

[#5116] 3 : g ! (* u t'a) - Cls induct . v . s\k -j fa) e Cls induct (2)

1- . (1) . (2) . 3 h :. g ! te — Cls induct . v . s'k e Cls induct : 3 :

3 ! (* u t'a) — Cls induct .v.s'(«ut'o)e Cls induct (3)

h . #40*21 . #120*212 . 3 h . s'A e Cls induct (4)

h . (3) . (4) . #120*26 . 3 h :. * e Cls induct . 3 :

3 ! * — Cls induct .v.s'/ce Cls induct :.

[#5*6] 3 h : * e Cls induct . * C Cls induct . 3 . s'k e Cls induct (5)

h. (5). #120-741. 3 h. Prop
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#120'76. H : k e Cls induct . k C Cls induct . 3 . €±'/e e Cls induct

Dern.

h . #512 .Dh :. a e /e. D : k = k\j i'a:

[#13-12] 3 : eA'« e Cls induct. 3. eA '(* ut'a) £ Cls induct (1)

h . #8341 . #114-301 . 3 h : a~e k . 3 . eA
f
(fc u t

la) sm e*'rc x a (2)

h . (2) . *120-214 . 3 h :. a~e k . 3 :

eA
f
(« u t

fo) € Cls induct . = . e^/c x a e Cls induct (3)

h. (3). #120-72. 3h:.a~e*.3:
ei'«, o e Cls induct . 3 . eA

f
(« u t'o) e Cls induct (4)

h.(l).(4). 3h: eA'«, a e Cls induct .O.e/{KUt'o) e Cls induct (5)

I- . (5) . #51-2 . Syll . 3 I- :. te C Cls induct . 3 . eA '*r e Cls induct : 3 :

/tut'aC Cls induct . 3 . £*'(*: <-• t'a) e Cls induct (6)

h . #8315 . #120213 . 3 h . eA'A e Cls induct

.

[Simp] 3 I- : A C Cls induct . 3 . e*'A e Cls induct (7)

h . (6) . (7) . #120-26 . 3 h :. tc e Cls induct . 3 :

ac C Cls induct . 3 . e^ic e Cls induct :. 3 h . Prop

The following propositions are concerned in establishing the converse of

#1 20*76 subject to a suitable hypothesis. The final outcome is given in

#120-77.

#120-761. V : a ! es'te . 6a'k e Cls induct . 3 . tc C Cls induct

Dern.

h . *83'41 . *114301 . 3 h :. a e k . 3 : eA'* sm a x eA'(« - fc'a) : (1)

[#120-214] 3 : e^'/c e Cls induct . = . a x eA'(* - t'a) e Cls induct (2)

h.(l). #113114. DI-:a!ed'*.oe*.3.g[!a.a!eA'(*-t'o) (3)

h . (2) . (3) . #120-721 . 3 h : . a ! e^tc . a e * . 3 :

€^k e Cls induct . 3 . a e Cls induct (4)

h . (4) . Coram .31-. Prop

#120-762. h : * e Cls induct . A^e/c.^a* 1 ™- 3.{KR,S)'R,S€€A<tc.RnS~A

Dem.

b. *5V2. Dh : R,See*'tc.RnS= A. aetc.D.R,Se€*<(tcyji ta).RnS = A (1)

h. #83-5. #55-201.3

h : R, S e 6\'k .Rr\S=A.x,yed.x^y. a~ e k . 3 .

iJcia;^, a, 5ci^4,oe e.i'(*: u t'a) . (-Rv a I a) f\ (S v y I a) = A (2)

h.(l).(2).#52-41.3h: JR,See^. JKA,Sf = A.a4=A.a-el.3.
(aP,Q).P,Qeed'(*w<a).PnQ = A (3)

h . *51\L6 . 3 h :. a = A . v . ae 1
: 3 : A e (k u t'a)

. v . a ! 1 * (* w t'«) (4)

h . #22-58 .Dh:.A€«.v.a!ln/t:3:Ae(KU t'a) . v . a ! 1 n (* u t'a) (5)

H.(3).(4).(5).Dh:.Ae*.v.a!lA*.v.(ai2,S).i2
>
Se€4'*.i2Aflf=A:3:

A e(*r u t'o) .v. a ! 1 n (* u t<«) . v . (gi2, S) . iJ, #e eA'(* u t'a).^ AS=A (6)
f- . #83-15 . 3 h

. (giJ, S).n,Se eA'A .R*S=A (7)

h. (6). (7). #120-26. 3 h. Prop
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120 764. h : tc e Cls induct .Aoo 6Ar .~g!(ln*r).D. Nc'eA '«:> Nc'*

[120-762. 117-681]

120765. h : tc e Cls induct . A~e k ,~g ! (1 o *) . k C X . g ! e/X . D .

Nc'e4
f\^ Nc'k [120-762 . 117-684]

120 766. I- : X~e Cls induct . A~e X .~g ! (1 a X) . g ! e4'X . 3 .

Nc'e4'X~eNC induct
Bern.

V . 120491 . D h :. Hp . D : v e NC induct . D .

(g«) .itC\. Nc'/e = v . Aooe /c .<-°g ! (1 r» /e) .

[120-765] D.Nc'^'X^y:
[120121] D : v e NC induct . D . Nc'eA'X^ p +c 1

.

[120-429] D . Nc'ei'X > v :

['117-42] D : No'eA-^e NC induct :. D h . Prop

120767. h : €a'X e Cls induct . A~eX.~g! (1 n X) . 3! <*'X . D.Xe Cls induct

[120-766 . Transp]

12077. I- :. A~e«.~a ! (1 n k) . 3 ! eA'« . 3 :

e*'ac e Cls induct . = . k e Cls induct . k C Cls induct

[120-76-761-767]

15



*121. INTERVALS

Summary of *1 21.

The present number is concerned with the class of terms between x and y

with respect to some relation P, i.e. those terms which lie on a road from x

to y on which any two consecutive terms have the relation P. Such a road

may be called a P-road, and if zPw
y
the step from z to w may be called a

P-step. In order that a P-road from x to y should exist, it is necessary and

sufficient that we should have xP^y. When this condition is fulfilled, there

will in general be many P-roads from x to y. But if P e Cls —> 1 . <^> (yPvoy),

or if P e 1 --> Cls .~ (xPvox), then at most one road leads from x to y. This

follows from the propositions of #96. In virtue of those propositions, if

P e Cls —> 1 . ~ (yP^y) . xP^y, P is 1 —> 1 throughout the road from x to y,

and this road forms an open series. The two other possibilities with a

Cls —* 1 are (assuming xP^y)

(1) xPvox,

WyP^y.-ixP^x).

In the first case, there is a cyclic road from x to x, and there are two

roads from x to y, one consisting of that part of the cycle which is required

to reach y, the other consisting of this part together with the whole cycle

required to travel from y back to y. Thus the class of terms which can be

reached in some journey from x to y is the whole class of descendants of x,

i.e. the class R^x, which is the cycle composing the road from x to x.

In the second case, the descendants of x form a Q, and y is in the

circular part of the Q. Here, as before, there are two roads from x to y, of

which the first stops as soon as it reaches y, while the second proceeds to

travel round the circle until it comes to y again. Thus here again, all the

descendants of x lie on some road between x and y.

The interval between x and y is defined as the class of terms lying on

some road from x to y. There will be four kinds of interval, according as we
do or do not include the end-points as such. We denote the kind including

both end -points by
P(flJMy),

that excluding both by
P{x-y),

and the other two respectively by

P{x~-ty), P{x\~y).

The definitions are

%<x*P*<y, P^'x^'y, %<x n%<y, %<x nP^'y.
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If P is either one-many or many-one, it will be one-one throughout the

interval P (x m y), except at most at one exceptional point, namely the

junction of the tail and circle of the Q. If xP^x or <^(^PPQy), the interval

between x and y cannot be Q-shaped, but must be either open or cyclic ; in

either case, P is 1 —* 1 throughout P (x m y), with no exceptions ; for if

PeCls —*1, P is 1—>1 throughout the interval because the interval is

contained in P%'x, and if P e 1 —> Cls, because the interval is contained in
—

>

P*y. Thus throughout this number we shall constantly have the hypothesis

Pe(Cls—»1)«j(1~»C1s); if PeCls—>1, the interval is to be supposed traversed

from x to y, while if P e 1 —> Cls, it is to be supposed traversed from y to x.

In either case the interval between x and y must be an inductive class.

This is proved in #121-47. If, however, P is serial (cf. #204), and thus

neither many-one nor one-many, the interval between x and y is the stretch

of the series between x and y, with or without end-points according to the

definition chosen, and need not be an inductive class.

If the interval between x and y (both included) has v + 1 members, we

say that xPvy. Thus if there is only one road from x to y, " xPvy
" means

that it requires v steps to get from x to y. Assuming PeCls—>1, if we also

have Ppo G J (i.e. if none of the families of P are cyclic), then if xPvy and

yPz
}
we shall have xPv+ol z. On this basis an inductive theory of P„ is built

up, and it is shown that the class of such relations as P„ for different

inductive values of v is the same as Potid'P, the class of powers of P in-

cluding / 1* O'P (#121-5). The dednition of P„ is

P„ = &# {N c'P (x n y) = v + 1 j Df.

The whole class of such relations as P„ for different inductive values of v

is called finid'P, i.e. we put

finid'P = R {(a*) . v e NC induct - i<A . R = Pv) Df.

If B'P exists, and if Pe Cls ~* 1, then the descendants of B'P, so long as

we do not reach a term y for which yPp^y, may be unambiguously described

as the 2nd, 3rd, . . . i/th, . . . terms of the posterity of B'P, B'P itself being

the 1st term. The correlation thus effected with the inductive cardinals is

the logical essence of the process of counting ; the last cardinal used in the

correlation is the cardinal number of terms counted. We will call these terms

1P , 2P , ... vp, ,.., denning vp as follows:

vp^P^i'B'P Df.

This notation does not conflict with v( as defined in *65'01. There %

must be a class if v is a cardinal, here v must be a cardinal and P a relation.

Hence whenever vP exists, the number of terms from the beginning to

vP (both included) is v. This is the fact upon which counting relies. If P is

a many-one and P^ is contained in diversity, and v is any inductive cardinal

15—2
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other than 0, then vP exists when and only when P^'B'P has at least v

members; i.e. roughly speaking, vP exists whenever it could possibly be

expected to exist. In this case the whole posterity of B'P is contained in the

series 1P , 2P , ... vP , ... (#121-62). If the posterity is an inductive class, this

series stops ; if not, it forms a progression (cf. #122).

The propositions of the present number are very useful, not only in this

section, but in the ordinal theory of finite and infinite and in parts of the

book subsequent to that theory.

After some propositions which merely repeat definitions and give im-

mediate consequences, we proceed (#121-3 ff.) to the theory of P„. We have

#121302. h : Pp0 G J . D . P = / [ C'P

#121305. hiPpoG/.D.PjGP

#121-31. h:Pe(l-*Cls)u(Cls->l).PP0 G/.3.P1
= P

When P is a transitive serial relation, we shall have Pi = P—

P

2
.

#121-321. I- : i> > . D . P„ G Ppo

#121 333. I- : P e Cls -* 1 . Pp0 G J . D . P„+cl = P\PV

#121-35"351-352. I- : P e ( 1 -> Cls) u (Cls -> 1) . Pp0 G J . ^ v e NC induct . Z> .

p ! P _ P I P _ p

A similar result holds for (PK)„, which = PM x c „ in. the same circumstances.

We next proceed to the proof that an interval (under a similar hypothesis)

is always an inductive class. This occupies #121-4—-47, being summed up in

the proposition

#121-47. V-.He (Cls -> 1) w (1 -* Cls) . D . R (xm z) e Cls induct

This is an important proposition. It leads to

#121-481. I- :. R € Cls -> 1 . 3 : Nc'R (»hj,)< Nc'iS (i m z) . = .

i2 {% l-H y) C i£ (cc l-H z)

with a similar proposition if R e 1 —*• Cls.

The next set of propositions (#121'5— -

52) is concerned with finid'P.

Assuming P e (Cls ->1) u (1 ~> Cls) . Ppo G J", we prove that finid'P = Potid'P

and finid'P-t'P CPot'P (#121 -5); that if P is not null, finid'P-t'P = Pot'P

(#121-501); that s'finid<P = P#(*121-52) and s'(rmid'P-fc'P )=Ppo (*121 502);

and that P^ = P2 .PS = P3
. etc. (#121-51).

Our next set of propositions is concerned with vP (#121'6—-638). We have

#121-601. r : E ! B'P . D . B'P = 1P .~ [(B'P) P^ (B'P)}

#121-602. h : El B'P . P e 1 -» 1 . D . P'B'P = 2P

#121-634. h :. P e Cls -* 1 . Ppo GJ . v e NC induct - t'O . D :

Vp eD'P. = .E!(»/+ l)p
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Finally we have three propositions (#121-7—'72) on R%x, of which the

mo3t useful is

*121 7. b:Rel~>l . aBR.aR*x. D . R*% = R (am x) . R^'x

e

Cls induct

#121

#121

#121

#121

*121

#121

#121

*121

#121

*121

*121

#121

*121

#121

#121

#121

#121

#121

#121

*121

#121

#121

#121

#121

#121

Dem.

01. P{^-y) = Pr
ixnPJy Df

Oil. P(#-it/) = Ppo'^P*<2/ Df

012. P (xi-^-P^n^'y Df

013. P(#My) = P^n^<y Df

02. P, = ^{N c'P(arny) = i;+o l} Df

03. finid'P = R {(&,) . v e NC induct - i«A . # = P„} Df

031. fin'P = R ((gi/) . v eNC induct - t'A - i<0 . R = P„} Df

04. yp = P„_
c/5 fP Df

1. l-SieP^-yJ.s.aP^.^poji [(#121-01)]

101. \-:zeP(x-iy). = .xPvoz.zP%y

102. h:^eP(a?i-2/). = .a7P*2.2p po?/

103. I- : z e P (xm y) . = . a?P#^ . sP^y

11. h : xPvy . = . N c'P (a? My) = y + 1 [(#121-02)]

12. h : R € finid'P . = . (gp) . v e NC induct -i'A.R = Pv [(#121-03)]

121. h : E e fin^P. -. (g*>).*eNC induct -fc'A -t'O.i^P,, [(#121031)]

13. I- :f(vP) . = ./(P„_el'5'P) [(#121-04)]

131. I-: El Pv-ol'B
tP.D.vp = Pv-a

tBtP [#12113 .#14"28]

14. b.P(x-y) = P (y - x) [#1211 . #9153]

141. V.P{x-iy) = P{yv-x)

142. \-.P(x*-y) = P(y-tx)

143. h.P(»Hy) = P(yH«)

2. r-:r>,(a?Ppo^).3.a;^ e P(ar-y) [*121'1]

201. V:~(yPvoy).D.y~eP{x-y)

202. h:Pp0 G/.:>.#,y~eP(#-y) [*121'2'201]

21. h : a?Ppoy . = . y eP(x-iy) . = . 3 ! P(x~iy)

V . #90-12 . #91-54 . D h : #Ppoy . = . xP^ . yP*y .

[#121-101] = .yeP(x-ty) (1)

I- . *12M01 . D h : a ! P (#-iy) . = . aP*,
|
P#y

.

[#91-574]

.

= . xPvoy (2)

h . (1) . (2) . D I- . Prop
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#121*22. h : xPv0y . == . a? e P {cc\-y) . = . g ! P {cc\-y)

#121-23. V : xP^y .= .x,yeP (a-i-ny) . = . g ! P («Hy)

#121 231. h : a? e C'P . = . x e P (wt-isc) . = . g ! P (x\-ix) [#121*23 . #9012]

#121*24. h : xPvoy . 3 . P (eny) = P{x-y)v l'y

Dern.

I-. #91-54. #121 -101. 3
h :. z e P(x-iy) . = : xPvoz : zPwy .v.z = y.ye C'P :

[#13-193.*91-504] = : xP^z . zPvoy . v . xPvoy .z = y (1)

h . (1) . #4*73 . 3 I- :: Hp . 3 :. z eP {x-iy) . = : xPvoz.zPvoy.v,z=y:: 3k Prop

#121-241. h : xP^y . 3 . P (ffi-y) = P{x-y)v i
lx

#121*242. h : #P#y . 3 . P{x\~*y) = P (a*-iy) ui'a;=P (a? i_y) w t'y

= P{x — y)yj t'x w t'y

#121-25. KPpo (a*-3/) = P(a*-y) [#91*601 .#121*1]

*121251. r . Ppo (<c-iy) = P (<c-ny)

#121-252. !- . Ppo(a;i-y) = P (ari-y)

#121-253. h.Ppo (a?wy) = P(ari-iy)

#121254. h.P„ = (Ppo)„ [#121-253-11]

#121'254 is frequently used in the theory of series.

#121-26. t-.P„ = (P)„

Bern.

h . #121*11143 . 3 h : xPvy . = . N c'P (arwy) = v + 1

.

[*9Q*132.*121*11] =.x{P) vy : 3 1- . Prop

#121*27. I- : #P„y . 3 . v, v + 1 e NC - t'A

h .#121*11 . #103-12 . 3 I- : Hp . 3 ,P(x^y)ev+B l (1)

k(l).*110*4*42.3l-.Prop

#121*271. I- : ~(v, i; + 1 e NC - t'A) . 3 . Pv = A [#121*27 . Transp]

#121-272. h:g!P, .3.y>0.y+o l>0.v+c l^l

h . #117*5 . #121*27 . 3 1- : Hp . 3 . v^ . (1)

[*117-561.*110-641] 3 . v +c 1 ^ 1

.

(2)

[#117*511*531] 3.i>+o l>0 (3)

l-.(l).(2).(3).3r.Prop

#121*273. h:*j!P„+cl .3.,+o l>0
Bern.

h . #121*27 . #110-4 . 3 I- : Hp . 3 . v e NC - 1<A .

[#117*6] 3.j-+ 1^1.
[#117*511*531] 3.v+ol>0:3l-. prop
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*1213. b.P GI\-C<P

Bern.

h . *12M1 . 3 h : xP y .= .P {x^y) e 1 .

[*121-23] D.xP%y.x = y.

[*90-l 2] 3 . x (I [ C'P) y : 3 h . Prop

*121 301. h : ~(xPvox) . 3 : xP„y . = .xeC'P .x = y

Bern.

h.*91-542 56. Db; xP^z .zP^c.x^z .D .xP^x (1)

h . (1) . Transp .31-:. Hp . 3 : xP%z . zP%x .DXiZ .x= zi

[*121231] D:xeC'P.D.P(x^x) = i'x:

[*1312.*52-22] 3 : xe C'P .x=y . 3 .P(x^y)el .

[*12111] D.xP y (2)

h.(2).*121*3.3h.Prop

*121-302. h-.P^d J. D.P,=rI[C{P [*121-301]

*121-303. h : Nc'P (x^y) > 1 . 3 . aP^y

Dem.

h . *12123 . *52-22 . *117"42 . 3 h :. Hp . 3 : x eP{x^y) . P (x^y)^i'% :

[#51*4.Transp] 3 : (g^) .^^^.^eP (;ri—i^)

:

[*12ri03.*91-542] 3 : (a*) . #Ppo* . 2P*y :

[*91-o74] D:r»Ppo3/:.Dh.Prop

*121'304. I- :. Ppo G /. 3 : xP
xy . = . P(^i-iy) = ^u^.ii;^

Bern.

h . *121-30311 . 3 h : Hp . xP,y . 3 . xP^y .

[Hp] D.x^y (1)

h . (1) . *54-53101 . *121-23'11 . 3 h . Prop

*121'305. hiPpoGJ.D.P^P
Bern.

h . *121-303 . 3 h : Hp . xPxy . 3 . xPvoy

.

[*9152] 3 . (a*) . #Ps . *P#y (1)

h.*121-304.*91-542. 3

h :. Hp . xP1 y . 3 : xPpoz . zP*y .D.z^y:

[*91'502] 3 : xPz . zP*y .D.z^y (2)

h.(l).(2).3h.Prop

*121'306. I- : P e 1 ~» Cls . ^(xP^x) .xPy.D.P (x^y) = i<xvi'y.x$y

Bern.

h . *91*542 . 3 h : xP#z . zP#y .z^x.z^y. xPy . 3 : xPpoz . zP^y . xPy :

[*34\L] D-.xP^.zP^Px:
[#92\L1] D-.Pel-^Gls.D.xP^.zP^x:

[*91-574] 3 : P e 1 ~» Cls . 3 . xP^x (1)
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I- . (1) . Transp . 3 h :: Hp . 3 :. xP*z . zP#y . Dz : z = x . v . z = y (2)

h.*121'23. D\-:Kp.D.x,yeP(x\^y) (3)

h. #91-502. 3r-:Hp.3.<c*y (4)

h . (2) . (3) . (4) . #121103 . 3 h . Prop

#121 307. I- : P e Cls- 1 .~ (#Pp<#) .xPy.D.P (oc^y) = i'xyj i'y .x*y

[*1 21 -306-1 43]

#121 308. h : Pe(l -* Cls) o (Cls ~> 1) . Pp0 G J. 3. PGP
l

[#121 306307 11. *54-101]

#121-31. I- : P e (1 -* Cls) u (Cls -* 1) . P^ G «/ . 3 . P, =P [*121-305308]

#121-32. h.P,GPf
Dew.

I- . *12M1 . *120-421 . *101'14 . Transp .31-: xPvy . 3 . g ! P (a?i-iy)

.

[#121-23] 3 . #P^ : 3 h . Prop

If v is not a cardinal, or if v +c 1 = A, P„ = A.

*121321. h:«,>0.D.P„GPpo

Dem.

h . #120-428 . #121-11 . 3 h : Hp . xPvy . 3 . Nc'P(ari-iy) > 1

.

[#ll7-55.#52-181.#121-23] 3 . faz) .zeP (x*-ty) .z^x.

[#121-103.#91-542] 3 . (ftz) . xPvoz . zR*y

.

[*91-574] 3 . xPvoy : 3 h . Prop

#121-322. h.C'P.CC'P [#121-32. #90-14]

*121 323. I- : v > . 3 . D'P„ C D'P . a*Pv C d'P [#121-321 . #91504]

#121 324. h . D'P„+cl C D'P . a'P„+ol C d'P

Dent.

h . #121-273-323 . 3 I- : a ! P„+ol . 3 . D'P,+ol C D'P . a<Py+cl C d'P (1)

h. (1). #33-241. 3 h. Prop

#121-325. h : a ! PM n P„ . 3 . /a= *

Dew.

h . #121-11 . 3 h : Hp . 3 . a ! (/a + 1) n (i; + 1) a *oV -

[#100-42.*110-4] 3 . g ! (^ + 1) a^ . (^ + 1) n Up = v + 1

.

[#120-311] 3 . /* = v : 3 h . Prop

#121-326. h.fin'PCnnid<P.finid'P-t'P Cnn'P [#12112121]

#121-327. h : a ! P . 3 . fin'P = finid'P - i'P

Dem.

h . #121-325 . Transp . #121-121 . 3 I- :. Hp . 3 : R e fin'P . 3 . R
=f=
P (1)

K(l). #121-326.3 1-. Prop

#121'33'331 are lemmas for #121-332, which is a very useful proposition.
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#12133. h :. P el->Cls .D : z e P(x -y) . = . z <? P (x-iP'y):

zeP (xt-y) . = .zeP (xh-iP'y)

Dem.
h.»71-7.Dh:.Hp.D:*P*(P'y).s.*P# |Py.

[*91-52] =.zP
VoV (1)

V . (1) . #121 1101102103 . D f- Prop

From the above proposition it follows that

P e 1 -> Cls . y <? G'P . D . P (« - y) = P (x-iP'y) . P (<ci-#) =P (x^-\P (
y).

This does not follow unless y e (FP, because

P(j»-y) = P(a;-4P'y).D.E!P'y,

whereas z€P(x — y).=z .zeP(x-\P'y)

will always be true if y~ e (FP, and therefore (when P e 1 —> Cls) if ~E

!

P(
y.

#121 331. r : . P e 1 -> Cls . Pp0 <• / . D : #P„ (P'y) . = . #P„+cl y

I- . #121-324 . #7116 . D r :. Hp . D : xPv+al y.Z.ElP'y (1

)

h. #121-33. Dh:Hp.E!P'y.D.P(a!i-,y) = P(a;MP'y) (2)

h.*121-242-32.(2). D r : Hp(2) .xP#y. D . P {x^y) = P {x^P f
y) sj i<y (3)

h. *91'52. Dh:Hp.D.~(yP^|Py).
[#71-7] D.~\yP*(P<y)}.

[#121-103] D .~ [y e P {xt-nP'y)} (4)

r . (3) . (4) . *110'63 . D h : Hp (3) . D . Nc'P (wy) = Nc'P (*hP^) +c 1 (5)

r.(l). (5). #12111-32. D

r : Hp . aP„+cl 2, . D . (* + 1) +a 1 = Nc'P («m P'y) + 1

.

[*120'311.*121-27] D . v +c 1 = Nc'P (an P'y) .

[#121-11] 0.xPv {P
l

y) (6)

h . (5) .#14-21 . *121-ll-32 . D r:Hp.^P„(P fy).D . Nc'P(#h-u/) = (i> + 1)+ 1

[#121-11] 3.tfPn-0l y (7)

r- . (6) . (7) . D b . Prop

#121332. r:Pel->Cls.PP0 CJ
r

.D.P1,+cl = P l,iP [#121331]

#121-333. r:P e Cls->l.Ppo GJ.D.P,+ol = P|P„

#121-34. h : P e 1 -> Cls . Pw Q J . v eNC induct . D . P„ e 1 -> Cls

Dem.
r. #121-3. DKP el->Cls (1)

h . #121-332 . D h :. Hp . D : P„ e 1 -> Cls . D . P„+cl € 1- Cls (2)

h.(l).(2).#12011.Dh.Prop

#121-341. h : Pe Cls-> 1 . P^ C J", v e NC induct . D . P„ eCls-> 1

#121-342. V : P e 1 -> 1 . Pp0 G J . * e NC induct . D . P„ e 1 -> 1 [#121-34341]
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*121'35. h : P e 1 -> Cls . Pp0 G /. ^, * e NC induct . D . P„
|
P„ = P^,

Dew.

h . *50"62 . #121-302-322 . D h : Hp . . P„
j
P = P^, (1)

h . #121-332 . D f- :. Hp . D : /*, y c NC induct . P^
|
P„ = P^„ . D •

P/i
[
Pv+cl = Pfa+af |

P
[#121-332] =^+.h..i ( 2 )

h . (1) . (2) . #120-13 . 3 h . Prop

#121-351. h : P e Cls -> 1 . Ppo G / . p, i> e NC induct . D . PM |
P„ = Pw

#121-352. h:Pe(l->Cls)w(Cls-»l).Ppo GJ"./*,veNCinduct.D.

P^
|
P„ = P„

|

P„ [*121-35'351 . #110-51]

#121-36. h : P e (1 - Cls) u (Cls -> 1) . Pp0 G / . p, v e NC induct - l'O . D .

Dem.
h . #121-321 . D h : Hp . D . P^ G Ppo .

[#91-59-601] D.(PF)P0 G/. (1)

[*121-31-34-341] D . (P^ = P„ (2)

h.*121-332-333-352.(l).D

hi.Hp.D^P^^P^IP,:
[#34-27] D : (P^- P, XoP . D . (P(t )H, 1

= P, X . F j

P*

[#121-35-351] -iW-w
[#113-671] =i\ix.(H-.« (3)

h . (2) . (3) . #120-47 . D h . Prop

#121-361. h : P e (1 -> Cls) u (Cls- 1) . Ppo G / . p, v e NC induct -i'Q.D.

(P„), = (P,V [#121-36. #113-27]

#121-37. t--:PeCls->l.yeP(«M^).D.P(aJM«) = P(a;My)uP(yM«)

Dew.

h . #121-103 . D h : Hp . D . <rP„# . yP*s (1)

f-.(l). #121103.3

f- :. Hp .0 :weP (xt-^z) . = . xP%w . wP%z . xP%y . yP%z (2)

I- . #96-302 . D V : : Hp . D : . xP%w . xP%y . D : wP*y . v . yP*w (3)

V . (2) . (3) . #4-73 . D
h :: Hp .0 :.weP (#h-i2) . = : xP%w . wP%z . xP%y . yP%z . wP%y . v .

xP%w . wP%z . xP*y . yP%z . yP*w (4)

f- . #90-17 . #4-73 . D h : w/P^ . yP^ . = . wP^ . wP%y . yP^ :

yP*w . wP^f . = . yP*z . wP*z . yP%w (5)

V . (4) . (5) . D h :: Hp . D :. w e P (xt-\z) . s : #P#«; . i»P^y . yP%z . wP%y . v .

xP*w . wP*z . xP*y . ^P^w :

[#90-1 7.#4-7 3] = : xP%w . wP%y . yP%z . v . xP%y . yP*w wP%z

:

[(1).#4'73] = : xP%w . wP%y . v . yP%w . wP%z :

[#121-103] =:weP {x^y) w P (yn*) :: D h . Prop
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#121-371. \-
: P e (Cls -» 1) u (1 _» Cls) . y e P {x^z) . 3 .

P (jbms) = P (<cHy) w P (yM*) = P (x\-y) u P (yw*)
= P(a;hH2/) \jP(y~~\z) [Proof as in #121'37]

#121-372. r- : P e (Cls -» 1) u (1 -» Cls) . y e P (x-\z) . D .

P (a-H#) = P (x-iy) u P (y-ts) = P {x-*y) w P (^2)
#121-373. h : P e (Cls -» 1) w (1 -» Cls) . y e P (a?i-s) . D .

P (asi— «r) = P (#l-y) u P (yi-*) = P («Hjf) v P (yi-s)

#121-374. h:Pe(Cls->l)u(l->Cls).yeP(^-^).D.
P (x- z) = P (x-*y)\> P {y - z) = P {x-y)» P {y\-z)

= P (x-{y) yj P {y\- z)

The proofs of these propositions are analogous to the proof of #121 -

37.

#121-38. V\ReC\&-+l.xRvox.?.R{x>-\x) = R*<x [#97*5]

#121-381. r- : R e 1- Cls . #i2p0# . D . i2 (aw) = £*<# [#97-501]

#121-382. r- : £ e Cls -> 1 . o:i2po# . xRvoy . D .

i? (<cm<c) = i2 (any) = i2#'<c = i2 (yny) [#97'5 . *91*56]

#121-383. h : R e 1 -> Cls . xRpox . yRvox . D .

R(xi-\x)= R(yi-\x) = R%x = R(y\-\y)

#121-384. h : R

e

(Cls -> 1) u (1- Cls) . aU^a .yeR (aH «) . D .

i2 (a;Mfl!) = £ (any) = R (yHa) == i2 (yMy) [#121-382-383]

#121-39. h :. R e Cls- 1 . D : i? (*Hy) C i2 (an*) . v . 22 (xt-\z) C R (aHy)

Bern.

h. #96-302. Dh:.Hp.xR%y.xRxz.D:yR%z.v.zR%y (1)

h. #121-37. 5h:Hp.xR%y.yR%z.D.R(x*-<y)CR(xi-iz) (2)

h. #121-37. DhiHp.aji^.^y.D.iZ^M^CiJ^ny) (3)

h . (1) . (2) . (3) . D h :. Hp . tfiZ^y . #i2^ . D :

i2(#My)Ci2(a;M2). v. i2(a:w2)Ci2(a;i-iy) (4)

h . #121-23 . D h : ~(#£#y) . D . i2 (any) = A .

[#24-12] D.U(a;My)Ci2(a>M*) (5)

I- .(5)— - D h :~(xR%z) . D . i2(#w*)C R(xv-*y) (6)

r- . (4) . (5) . (6) . D h . Prop

The following series of propositions are concerned with proving #121 *47, i.e.

R e (Cls -> 1) u (1 _> Cls) . D . i2 (flju^r) e Cls induct.

The proof for i2el->Cls follows from that for i2eCls->l by #121-143.

Confining ourselves, therefore, to i2eCls—* 1, we proceed as follows.

We prove first that, starting from z and going backwards, each new step

adds only one term (which may not be distinct from all its predecessors) ; i.e.

we have
.RcCls-* 1 .xRy.yR^z. D . R{xt-*z)*=i'x \j R{y\-\z).
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From this it follows by induction that if R(zh-iz) is an inductive class, so is

R{xh-\z). Thus we only have to prove that R(z\~\z) is an inductive class.

Here we must distinguish two cases, according as <^(zRvoz) or zRpoz. In the

former case, we have

3 ! R iz\-Kz) . D . R (zt-\z) = t'«,

whence R{z>-kz) is an inductive class, and therefore so is R(xt-\z).

But in the latter case, when 2RP0z, the matter is more difficult. In this

case, z is a member of a cycle, the cycle being R{zv-kz). We have to prove

that this cycle must be an inductive class. Given xR%z, x will be a member

of this cycle if xRpox, and may be at the end of the tail of a Q, if ^(xR^x).

(Of. #96.)

By #96*453, we know that R is 1 —> 1 when confined to R {zt~-\z). Hence

in R(zy-*z), z has a unique predecessor, say a. Assume a^z. We then

imagine a barrier placed between a and z, i.e. we construct a relation 8 which

is to hold between any two consecutive members of R(zt-\z) except a and z.

Putting a = R (zt-\z) — I'a, we have 8 = a \ R. Then the relation $ generates

an open series consisting of all the terms of R(zh-\z); i.e. we have

~ (aSpoa) . 8(z\-\a) = R(z*-\z).

Hence, by our previous case, since S{zt-\a) is an inductive class, so is R (zt-\z).

If a = z, then by #96 ,33 the cycle reduces to the single term z, and there-

fore R(zt-iz) is still an inductive class.

Hence R{z\-*z), and therefore R{xt-\z), is always an inductive class when
R eCls—» 1, which was to be proved.

*1214. V : R e Cls -+ 1 . xRy . yR%z . D . R (xh*z) =i lxuR (yms)

Bern.

V . *90-311 . D h :: Hp . D :. xR^w . = :x==w.v.xR\ R*w

:

[#7l-701.Hp] = : x = w . v . yR%w (1)

V . *90172 .^h:.Hp.D:a; = w .D. wR%z (2)

I- . (1) . (2) . D h :: Hp . D :. xR%w . wR%z . = : x = w . v . yR%w . wR%z (3)

r . (3) . *121-103 . D I- . Prop
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*121 -41. h : R e Cls -> 1 . R (zm z) e Cls induct . D . # (a?w *) e Cls induct

Z)ew.

h . #121-4 . #120-2.51 . #90-172 . D h :. Hp . D :

yi2^ . .R (yH») e Cls induct . #.% . D • a-Rg* * -B (a?*-^) e Cls induct (1)

K(l). #90-112^. Dh:Hp.«^2.D.i2(A'M^) e Cls induct (2)

h . #121-23 . #120-212 . D h :^i^) . D . R (xv-+z) e Cls induct (3)

h . (2) . (3) Oh. Prop

In virtue of this proposition, we have only to prove R{zt-*z)e Cls induct.

This is obvious when ^(zR^z), for then either R{z\-\z) = i'z or R (z*-\z) = A.

But when zRwz, it is more difficult.

#121-42. h : i2 e Cls -» 1 .~(^p0^) .3-R («h«) e Cls induct

Dem.

h . #121-303 . Transp . #120441 . D h : Hp . D . Nc'i2 (wz)< 1

.

[#120-48] D . Nc'E (z^z) eNC induct

.

[#120-211] D. #(si-i 2) e Cls induct (1)

I-. (1). #121-41. Dh. Prop

#121-43. 1- : R e Cls - 1 . stf^O . E ! i'(iJ<* n £*<*)

2)em.

h. #91-52. D h : HpO . (a<x) . si2*a . aik (1)

h . #96-453O h : HpO . (R#'z) 1 i2 e 1 -> 1

.

[#71-122] D.a(*fl#a.aik)elui'A (2)

h . (1) . (2) O h : HpO .a(zR%a . aRz) e 1

.

[#52-15] D . E ! \\R lz n i2#'«) : D h . Prop

#121-431. h : £ e Cls -> 1 . sB^s . a =\f{R'z n i2*'*r) . a = i2#<* - t'a-.

£= «1i2.D.~(aSpoa)
Dew.

h . #35-61 O h : HpO . a~e D'S

.

[#91-504] D.a^eD'Spo-

[#3314] D . ~(a-»poa) Or-. Prop

#121-432. h : Hp #121431 O . S (wo) e Cls induct

Dem.

h. #71-261. Dh-.HpO. Se Cls -* 1 (1)

h
. (1) . #121-431-42 Oh. Prop
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*121433. h : Hp #121-431 . z 4= a . D . 8(z^a) = R^z = R (z^z)

Dem.

h.*96"ll. D\-:.H.p.D:zS%w.D.zR%w (1)

h . #51-3 . #91-504 . D h :. Hp . D : z e a . zeD'R :

[#35-61] D-.zeD'S:

[*9012] D :^V (2 )

h .(1).#90'16 . D h :: Hp. D :.zS%w .wRy . D:weav i
la.wRy\

[#351] 3 : wSy . v . w = a^ w.%

:

[Hp.#7ll71] 0:w8y.v.y = z:

[#90'16-17.(2)] OizS^y (3)

h . (2) . (3) . #90-112 . D h :. Hp . D : zR*w . D . zS%w : (4)

[Hp] D : zS*a (5)

h. #71-171. Dh:Hp.a%.D.y = ^ (6)

h . #91-542-504 . #3561 . D h :. Hp . D : wS%a . w =)= a . wity . D . wSpoa . wSy

.

[#92-111] 3.3$*a (7)

h.(5).(6).(7). Dh:.Hp.D:w^a.^%.D.^a (8)

h . (5) . (8) . #90-112 . D h :. Hp . D : zR*y . D . yS#a (9)

h.(4).(9). Ohi.Bp.O-.zR^y.O.zS^y.yS^a (10)

K(l)|.(10). Ohz.H^.DzzS^y.yS^a.-.zR^y:

[#121-103] D : 8 (wo) = 1^'s

[#121-38] = 1* (ZH2) :. D h . Prop

#121-434. h : Hp *121431 . z = a . D . I**'* = 12 (21-12) = i's

h . #32-18 . D h : Hp . D . zRz

.

[#96-33] D.E^ = i^. (1)

[#121-38] O.R(z>-\z) = i'z (2)

h . (1) . (2) . D h . Prop

#121-44. h : R e Cls- 1 . *12po2 . D . 12 («h«) e Cls induct

h. #121-43-432 433.3

h : Hp . * 4=T'(«^ r. S*'*r) . D . £ (2m z) e Cls induct (1

)

h. #121-434. #120-213. D

h : Hp . z=i\R lz n 12**2) . D . R {z^z) e Cls induct (2)

h.(l).(2).Dh.Prop

#121-441. h : R e Cls- 1 .2^ . D . 12 («h«) e Cls induct [#121-44-41]

#121-45. h : 12 e Cls -+1 .3 . R(xt-\z) e Cls induct [*121'42-441]

#121-46. h : 12 1- 1 -* Cls. D. 12 (#w0)e Cls induct [#121-45143]

#121-47. h : 12 e (Cls -> l)u(l_> Cls). D. R (aw) £ Cls induct [*121-45-46j
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*12148. r:.i2eCls-»l.D:

Nc'i? (#My) < Nc'iZ (an*) . = . g ! R (x*-\z) - R (any)
i)em.

h . *12139 . D h :. Hp . D : g ! R {x^-kz) - R (any) , = ,

R (#My) C R («H2) . i2 (#My) 4= P («h^) .

[*120-7.*121-45] D.Nc'i2(«My)<Nc'i2 (a;M«) (1)

h . *H7-222-29 . 3 h : Nc'P (any) < Nc'iZ (*hz) . D .

~{R(xt-\z)CR(xt-iy)}

.

[#24-55] D . a ! P (an*) - P (any) (2)

r.(l).(2).Dh.Prop

#121 481. h :. P e Cls -> 1 . D : Nc'P (any) < Nc'P («h«) . = .

P (a;My) C P («hz)

V . #121-45 . #120-441 . D

h :. Hp . D : Nc'P (asMy) < Nc'P («h^) . = .~ {Nc'P (x*-\z) < Nc'P («Hy)] .

[#121-48] = .~g!P(#My)-P(#Mz).
[*24'55] = . R («My) C R (w«) :. D h . Prop

The above proposition is used in the proof of #122*35, which is an im-

portant proposition in the theory of progressions.

The following propositions are concerned with the identification of such

relations as P„ with powers of P in the sense of #91.

#121-5. r- : P e (Cls _» 1) u (1 -» Cls) . Ppo G J . .

finid'P = Potid'P . fin'P = Pot'P
Dem.

r . *121-302-31 . D h : Hp . D . P = I\-'C'P - Pi = P (1)

h . (1) . *121'332'333'352 . D h :. Hp . v e NC induct . D : P„+cl = P„
|
P : (2)

[#91341] D : PP e Potid'P . D .

P

v+cl e Potid'P:Pv e Pot'P. D .P„+ol e Pot'P (3)

K (1) . #91-35 . D h : Hp . D . P e Potid'P . P, e Pot'P (4)

r . (3) . (4) . #120-1347 . D \- :. Hp . D : v e NC induct . D . P, e Potid'P

:

v e NC induct - t'O . D . P„ e Pot'P :

[#121-12-121] D : finid'P C Potid'P . fin'P C Pot'P (5)

r . (2) . #121-121 . D r :. Hp . D : * e NC induct . D . P„
J

Pe fin'P :

[#121-12] DzQe finid'P . D . Q j
P e fin'P :

[(1).*91-17-171] D : Potid'P C finid'P . Pot'P C fin'P (6)

r.(5).(6).DKProp

#121-501. VzPe (Cls -> 1) w (i -» Cls) . Ppo C J . a ! P . D

.

Pot'P = finid'P - i'P = fin'P

Dem.

h . #121-302 . D h : Hp . D . a ! P (1)

h . (1) . *121 :5-327 . D f- . Prop
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t

#121 502. r : P e (Cls- 1) u (1 -> Cls) . Ppo G / . D .

s'(finid'P - i'P ) = Pp0
= s'fin'P

Dem.

h.*91-504.*33-24.*121-5.Dl-:P = A.D.^(fiaid tP-t fP )=A = Ppo (1)

I- . (1) . #121*501-5 . D i- Prop

#121-51. r :Pe(Cls^l)u(l-+ Cls). PP0 GJ-.D.P2
= P2.P3

= P3
. etc.

Dew.
K*12131. Dh:Hp. D.P,= P (1)

h . #121-332-333 . D h : Hp. D . P2
= P,

j

P,

[(1)] =P2
(2)

h . *121-332'333352 . D r : Hp . D . P3 = P2 1
Pj

[(1).(2)] = P3
(3)

h . (2) . (3) . etc. . D h . Prop

*121'52. h:Pe(Cls^l)u(l^Cls).Pp0 G/.D.s<finid<P = P*
[#121-5 . #91-55]

We shall at a later stage (#301) give a general definition of P". When

this definition has been introduced, we shall be able to prove, with the

hypothesis of #121-51,

v eNC induct. D.PV = P".

The definition of P" is postponed on account of various complications which

render a general definition of P" difficult. The chief difficulty arises when

g!Pr>7. Thus suppose we have yPy\ we shall also have yP*y, yPs
y, etc.

Hence if we have xPy, we have

. v e NC induct - l'O . D„ . xPv
y.

Again, suppose this case excluded, but suppose

(Qfiy y) . fi e NC induct .yeP (#m,z) . yP*y.

Then we shall have

v e NC induct - l'O - t
cA . D . yP* x

*
v
y.

Thus the general definition of P" has to be complicated, except when P^ G J.

The following propositions are concerned with the series of relations P„
and the series of terms vp. The relation Pv holds between two terms (roughly

speaking) when it requires v steps to get from the first to the second ; the

term vP is the vth term starting from B'P, which, when it exists, is 1P . In

order that vp should exist, it is necessary that B tP should exist, and that

there should be just one term x in the field of P such that the interval from
B'P to x (both included) consists of v terms. When this is the case for all

inductive cardinals from 1 to v, we can say that P generates a series starting

from JS'P and having at least v terms, each correlated with one of the cardinals

in the interval from 1 to v, both included ; i.e. the series has a yu.th term,

whenever 1 ^ fi^ v. If this holds for all inductive values of v, the family of
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B'P is a progression*. (It will be observed that all such terms as vP belong

to the family of B'P
t
which need not form the whole field of P.)

#1216. r :. v 4 . D .f(vP) . = m f[i'§ {Nc'P (B'P^y) = *}]

Dem.

h . #12111 . #120-414-416 . D h :. Hp . D :

/[><£ {Nc'P (U'PHy) = v}] . ee ./ [7<0 {(B'P) Pv^y}] .

[*12M3] = ./(vP) Or. Prop

#121-601. f- : E ! B'P . D . B'P = 1P .~ {(fi'P) Ppo (P'P)}

Bern.

h . #91-504 . #931 . D r .~{(5<P)Pp0 (P'P)}

.

(1)

[#121-301] D r :. E I B'P . D : (£'P) P ^ .=y .B'P = y:

[#31-17] D:B'P = P 'B'P:

[#121-13] D:£'P=lp (2)

r.(l).(2)OKProp

#121-602. r : E ! B'P . Pe 1- 1 . D . P'B'P = 2P

Bern.

h . #121-306-601 . D r : Hp . D . P(B'P^P'B'P)e2 (1)

h . #121-23-601 . D r :: Hp . D :. (B'PyP^y.^ . #'P, y eP(B'P^y).B'P^yi.

[*5k53.*l21'W3]D :.P(B'Pt-\y)e2.D:P(B'P^y)= l'B'P»i'y.(B'P)Ppoy;

[#92-111] D:(P'B'P)P%y.P(B'P^y)= t'B'Pvi'y:

[#121-103-601] D

:

P'B'P e t'B'P u 1'y . P'B'P 4= fl'P

:

[#51-232] D:y = P'B'P (2)

r.(l). (2). #121-6 Oh. Prop

#121-61. r : P e 1 -> Cls . Pp0 G / . a; € s'gen'P . D .

(aa>
v) • aBP • v €NC induct . aPvx

Dem.

h. #93-36. D I- :. Pe 1^ Cls. #es'gen^PO.(aa).a.BP.aP#a; (1)

r . #121-52 . D h :. P e 1 - Cls . P^ C /. D : aP^ . = . a (s'finid'P) x (2)

r . (1) . (2) O r : HpO . (3a) . aBP . a (s'finid'P) a

.

[#12112] D . (ga, v) . a5P . 1/ e NC induct . aP„#OK Prop

#121-62. h : P e Cls -> 1 . Pp0 G J". (P'P) P^c . D

.

(gv) . v e NC induct — i'O . x = vP
Dem.

h . #121-52 . D 1- : Hp . D . (5'P)(^finid'P)«

.

[#121-12] D.(a»).veNC induct. (B'P)Pvx (1)

* Cf. *122, below.

R&W II 16
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T

h . *121'341 . D f- : Hp . v e NC induct . D . Pv e Cls- 1 (2)

h . (1) . (2) . D h : Hp . D . (gi/) . *> eNCinduct ,x = Pv'B'P .

[#12113] D . (gy) .veNC induct . a; = (v +e 1)P .

[#120471] D . (g^) . i* e NO induct - t'O . x = /ap : D f- . Prop

#121-63. f- : E ! vP . D . N c'P (B'P^vP) = v

Bern.

\- . #12113131 . D h : Hp . D . (B'P) P„_cl Vp .

[#12111] D . N c'P (5'PhVp) = !/:Dh. Prop

#121631. h :. P e Cls -» 1 . jPpo G J - v eNC induct - t'O . D :

N c'P (B'P^y) = v.= .y = vP . = . (B'P) P„_c i,y

Dem.
h. #120-414-416. #12111. D

h :. Hp . D : N c'P (^'Ph^) = v . = . (B'P) Pv_aly . (1)

[#121-341] = . y = PV^'B'P .

[#12113] =-y = vP (2)

h . (1) . (2) . D h . Prop

#121-632-633 are required for proving #121-634.

#121-632. h:PeC\s^>l.PW) <lJ.veT$Cmduct-i'Q.y= Vp.yPz.D.z= (v+ l)p

Dem.
h . #121-13 . D h : Hp . D . (B'P) P„-cly . yPz

.

[#121-333-352] D . (B'P) Pv z

.

[#121-631] D.^ = (i/+c l)P :Dh.Prop

#121-633. h : P £ Cls- 1 . Pp0 G J. v eNC induct - t'O . yP e B'P . D .

E!(v+ c 1)p .(i;+c 1)p =PV
[#121-632]

#121-634. h:.PeCls->l.Ppo G/.ir eNCinduct-*'O.D:i/peD'P. = .E!(p+e l)p

[*121-633-631333-352]

#121*635. h:PeCls->l .PpoG J.E! vp.D.yeNCinduct-i'O

Dem.
h . #121-63-45 . D h : Hp . D . v e NC induct (1)

K #12113. DhsEli/p.D.a!?,^,,).

[#121-272] D.( I
/-

C 1)+C 1>0.
[#120-416] D . v > (2)

r . (1) . (2) . D f- . Prop

#121-636. h : P eCls-> 1 . Ppo G «/". E ! yP .~E ! (v+e 1)P . D .

^5fP = P (£'Ph Pp) . NoC'P^'P = v

Bern.

H . #121-635 . D 1- : Hp . D . v e NC induct - t'O

.

(1)

[*121-634.Hp] D.vP~eD'P (2)
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H . (1) . *121-63 . D h :: Hp . D :. a ! ?(5'Phi/p) :.

[*121-23] D:.(B'P)P*vP :.

[*96302.*91542j D :. (B'P) P*z.1: zP*vP . v . vPP^z (3)

V . (2) . (3) . *9l-504 . D h :. Hp . D : (B'P) P*z . D . zP*vP :

[*47 1] D : (5'P) P*s . = . (B'P) P*z . zP*Vp :

[121-103] D:P^P = P(^Ph^): (4)

[*12163] D:N„c^'5'P= v (5)

h.(4).(5).Dh.Prop

*121637. h : E ! i/P . D . *P € C'P

Dem.

h . *12113 . *14-28 . D h : E ! Vp . = . vP = Pv.cl'B'P .

[*121-322] . vP e C'P : D h . Prop

*121<638. h :. E ! (v + 1)P . D : (B'P) Pvx. = .x = (v+e 1)P : (v + 1) -„ 1 « v

Dem.

h . *12M3 .Dh:E!(,+ l)P .= .E! P il/+al).ol'B'P . (1)

[*121 -272] D . (v + 1) - 1 > .

[*14-21] D.E!<>+ 1)- 1.

[*1422.(*120411)] D.(i/+e l)-e l = i/ (2)

h . (2) . D h :. Hp. D : (B'P)Pvx. = . (B'PJP iv+el)_elx.

[(l).*30-4] = .x = P (v+ol).el'B'P.

[*12113] = .x = (v+ l)P (3)

h . (3) . (2) . D h . Prop

*121-64. hiPeCls^l.PpoG/.veNCinduct-t'O.Nc'P^'P^j/.D.Eli/p

Dem.

h . *121-636 . D h :. Hp . E ! vP . D :~E ! (v +c 1)P . D . N^'P^'P = v (1)

h . *120'428 . D h : v e NC induct .a!v+ l.D.j;+ l>v.
[*117'281] D.~(v>r+e

l) (2)

h.*117-15. Dh~g!i;+ l.D.^>^+
fl
l) (3)

h . (2) . (3) . D h : v e NC induct . D . ~(v> i> + 1) (4 )

h.(l).(4). Dh:.Hp.E!vP .D:

-E!(i;+ l)p.D.-(Nc tP^ JB'P> v +<>
l):

[Transp] D : Nc'JV^B'P^v+c l .0 .El(v+a l)P (5)

h . (5) . Syll . *1 1 7-6 . D h : . Hp : Nc'P*'£'P> v . D . E ! vP : D :

Nc'P*'£<P> v +c 1 3 E ! (v + 1)P (6)

h . *14-21 . *121-601 . D h : Nc'P^'P> 1 . 3 . E ! 1P (7)

h.(6).(7).*120-473.D

r- :. Hp . D : Nc'P*'5<P> v . D . E ! vP :. D I- . Prop

16—2
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#121-641. f- :. P € Cls -» 1 . Ppo G J. v eNC induct - i'O . D :

Nc'P^'P^i/.s.E!^
[*1 21-64-63-32]

*121-65. h:P e Cls-»l.Ppo CJ.^4=O.E!(^+ i;)p.D. /ipP,(^+c i;)p

Bern.

h . *121-631-635'64 . *120452 . D

b : Hp . D . (£<P)P^cl/ip . (5<P)P^
c ,_€l (^ + v)P .

[*121-351 .#120-424] D . (5'P)P^ol /.P . (B'P) (P„_cI |
P„) (^ + v)P .

[*121341.*72-591] D . vPPv (ft + i/)P : D h . Prop

#121-66. h : P e Cls- 1 . Ppo G / . Nc'P (£'Pw#) > v . D . a e Q.
lPv

Bern.

V . *121'45 . #12048 . D h : Hp . D . v eNC induct

.

[#120*429] D . Nc'P (B'P^x)> i; + 1

.

[#117-31] D . (a/i) . Nc'P (B'P^x) = v +, 1 + A* •

[#121-11] D.^M^Ph.,^.
[*121-351-352] D . (a/*) . (B'P) (PM |

Pv)#

.

[#34-36] 3.x e CL'PVOK Prop

The following proposition is used in #122-38'381.

—

>

->
*121'7. h : it! e 1 —> 1 . ai?.R . ai2^c . D . -ft^'a? = i2 (an-i#) . -?£#'# e Cls induct

Bern.

h . *96-25 . D h :. Hp . D : yR^pc . D . aR*y

:

[*4-7l] D : yRtfc . = . a!2*y . yR^c :

[#121-103] D : R^x = R («Hic) (1)

h.(l). #121-45. Dh. Prop

<-»

#121 '71. h:.Pel-»l:#e s'gen'R . v . (gy) . y e R^x . yRwy : D .

Bern.

R%x e Cls induct

h . #121-7 . #9336 . D h : Re 1 -> 1 . aes'gen'iJ . D . R^'xeCte induct (1)

h . #97-55-111 Oh:.i2el-»l: (ay) . y e^<# . yi^y : D :

y e R^x . Dy . yRwy : x e R^x :

[*10'26] D : xRwx :

[#121-381] D : I^(# = R{x^x) :

[#121-45] D:P*'#e Cls induct (2)

h.(l).(2)OKProp
y { v

#12172. h : i2 e 1-*1 .R%'x~€ Cls induct . D . g>epiatt:Pot tR .^ £ R*'x<ZJ

[#121-71 . Transp . #93-271 . #120-212 . #5024]



*122. PROGRESSIONS

Summary o/#122.

By a "progression" we mean a series which is like the series of the inductive

cardinals in order of magnitude (assuming that all inductive cardinals exist),

i.e. a series whose terms can be called

1«> 2^, 3^, ... vR , ...

,

where every term of the series is correlated with some inductive cardinal, and

every inductive cardinal is correlated with some term of the series. Such

series belong to the relation-number (cf. #152 and #263) which Cantor calls o>.

Their generating relation may be taken to be the transitive relation of earlier

and later, or the one-one relation of immediate predecessor to immediate

successor. We shall reserve the notation to for the transitive generating

relations of progressions ; for the present, we are concerned with the one-one

relations which generate progressions. The class of these relations we shall

call "Prog."

It is not convenient to define a progression as a series which is ordinally

similar to that of the inductive cardinals, both because this definition only

applies if we assume the axiom of infinity, and because we have in any case

to show that (assuming the axiom of infinity) the series of inductive cardinals

has certain properties, which can be used to afford a direct definition of pro-

gressions. The existence of progressions, however, is only obtainable by means

of the axiom of infinity, and is then most easily obtained from the fact that

the inductive cardinals form a progression. We shall not consider the existence-

theorem until the next number (#123).

From this number onwards convention Infin T of the]Prefatory Statement

is used when relevant.

The characteristics of the generating relation R of a progression, which

we employ in the definition, are the following:

(1) R is a one-one relation;

(2) there is a first term, i.e. E ! B'R;

(3) the whole field is contained in the posterity of the first term, i.e.

G'R = R^'B'R. (If this failed, C'R would consist of two or more distinct

families, of which, since we have E ! B'R, all but one would have to be cyclic

families or infinite families with neither beginning nor end.)

(4) every term of the field has a successor, i.e. the series is endless.

This is secured by d'R CD'iJ, or (what is equivalent) C'R^WR.
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These four properties suffice to define the one-one generating relations of

progressions. It will be observed that (2), (3) and (4) are all secured by

This secures ElB'R, by *14*21; it secures Q.'RCT><R, by #37-25 and

#90163; hence, by *33'181, WR^C'R, and therefore

C'R^R^B'R.

Hence our definition of progressions is

Prog = (1 -» 1 ) n R (T>'R = R*'B'R) Df.

Instead of stating in the definition that R is to be a one-one relation, it

is sufficient to put R e Cls —» 1 . Rvo G /, which, with D (
.R = R%B lR, implies

R e 1 -* 1, and may be substituted for R e 1 —> 1 without altering the force of

the definition (#122-17).

In the present number we shall prove, among other propositions, that

every existent class contained in a progression has a first term (#122 23), i.e.

that progressions are well-ordered series; that in a progression R^dJ
(#122*16), which makes the propositions of #121 available; that if v is any

inductive cardinal other than 0, vR exists (#122'33), ie. the series has a vth.

term; that any class contained in D'R and having a last term is an inductive

class (#122'43), and that any class contained in D'B and not having a last

term is itself the domain of a progression (#122"45), so that every class con-

tained in D'R is either inductive or the domain of a progression (#12246);

that if P is a many-one, and x a member of its domain, and if the descendants

of x have no last term and are none of them descendants of themselves, then

P arranges these descendants in a progression (#122"51); and that the same

holds if P is a one-one and <^(xPx) (#122'52); and that if Pel -* 1 and cc

belongs to one of the generations of P, but not to one of the generations of P,

then P arranges the whole family of x in a progression (#122*54).

The following general observations on the families of one-one relations

may serve to elucidate the bearing of the propositions of this section.

Given any relation P, we call P^x, i.e. P%x u P%x, the family of x. If

P is a one-one, this family may be of four different kinds. (1) It may be a

closed series, like the angles of a polygon. This occurs if xPpo x. In this case

the family forms an inductive class. (2) It may be an open series with a

beginning and an end; this occurs if

^(xP^x) . E ! minp'P^tf* . E ! maxp'P^'a;.

In this case also the family forms an inductive class. (3) It may be an
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open series with a beginning and no end, or an end and no beginning. This

occurs if

^(xP^x) . E ! minp'P^ .~E ! ma,xp'P#'x,

or if ^(xP^x) .^E ! minp'Pfc'a; . E ! maxp'P^'#.

In this case, the series is of the type w or Cnv"eo, and is non-inductive and

reflexive. (4) The series may be open and have neither beginning nor end.

This occurs if

^(fcP^x)

.

~E ! m.mp'P%% .~E ! maxp'P^'x.

In this case we get a series whose relation-number is the sum (in the sense

of #180) of Cnv"&) and w, which again is non-inductive and reflexive. In all

four cases, if y and z be any two members of the family of x
}
the interval

between y ana z is an inductive class.

-* ->
If * is a member of B lP, or if the family of * contains a member of B'P,

cases (1) and (4) are excluded, since the series has a beginning. In this case

the number of predecessors of any term is an inductive number. It will be

observed that every family is either wholly contained in s'gen'P or wholly

contained in jp'G"Pot'P; families of kinds (2) and (3) (excluding, in (2),

those which have an end but no beginning) are contained in s'gen'P, while

families of kinds (1) and (4), and those of (2) which have an end but no

beginning, are contained in p'(I"Pot'P; families containing a member of

B'P are contained in s'gen'P, while all others are contained in p'CL"Pot'P.

Thus a one-one relation in general gives rise to a number of wholly

disconnected series, some closed, others open and with or without a beginning

or an end. The condition that all the series should be open is P^ C J".

The case of a Q-shaped family, considered in *96, cannot arise when

Pel —>1, for in a Q-shaped family the term at the junction of the tail and

the circle has two predecessors, one in the tail and one in the circle, so that

the relation in question is not 1 —> 1. It follows that, when Pe 1 —> 1, if a is

a family containing a member of B'P, a*] Ppo G J (cf. *96*23).

When B'P exists, there is only one family which has a beginning. In

this case, ignoring the other families (if any), we call the members of the

family of B'P respectively 1P , 2p, 3p If the family has v members,

where v is an inductive cardinal, its last member will be vP . If on the other

hand the number of members of the family is not an inductive cardinal, it

must be N ; in this case, the family forms a progression, whose members are

lp, 2p, 3p, ..., vp> ...,' where vp always exists when v is an inductive cardinal.

In addition to the propositions already mentioned, the following are

important

:
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*122'21. h :. R e Prog . x, y e C'R . D : xRpoy . v . x = y . v . yRvox

(Cf. note to *122-21, below.)

*12234. hz.Re Prog . D : v eNC induct - t'O . = . E ! vR

*122341. h : R e Prog . D . D'E = x {(gv) . v eNC induct - 1<0 . a: = I/*}

In virtue of these two propositions, the terms of a progression are

1jj> 2jj, 3^, ... vj{, ...,

where every inductive cardinal occurs. This is the same fact as is usually

assumed when the terms are represented as

•"l> *^2> •%&> ••• •£>>> ••'•

*122-35. h : E e Prog .veNC induct - t'O . D . 5'#„ = i2 (1* 1-1
yit) . B'RV e i>

*122'36. h : g ! Prog n t
n'x . D . Infin ax (x)

*12237. h : R e Prog . D . D'R~e 01s induct . NpC'D'i^e NO induct

*122*38. \--.Re Prog . D . R%'x

e

Cls induct

I.e. the number of terms up to any given point of a progression is inductive.

*122-01. ¥rog = (l->l)nR(D'R = R*'B'R) Df

*1221. h:Rel?TOg. = .Rel->l.J)'R=*R*'B'R [(*12201)]

*12211. h:.Re~PTog. = *.Rel-+l.ElB'R:xeT>'R.=x .xeR%'B'R

Devi,

h.*1221.*14-205.D

h :: Re Prog . = :. Re 1 -* 1 : (3a) . a = £'£ . D'R=*R*'a :.

[*20-43] = :. Re 1 -» 1 :. (go) : a = 5'.ft : nD'ii . =« . xeR^'a :.

[*14\L5] s :. R e 1 -* 1 :. (3a) : a = B'R : <e e D'.ft .=x .xe R^'B'R :.

[*14-204] = :.Rel->l.KlB'R:xeT>'R.=x .xe*Rz.'B'R::3\-.?Top

Observe that, by the conventions as to descriptive symbols, J)'R = R%'B'R

involves the existence of B'R, whereas x e D'R .=
x .xe R^'B'R does not,
4-

since, if B'R does not exist, we have (x).x~eR%,'B'R, and therefore

(x) . x^eD'R will satisfy the equivalence, i.e. A will satisfy the equivalence

although it has no first term. This is the reason why El B'R appears

explicitly in #122-11, though it was only implicit in #1221.

*12212. h :: R e Prog . = :. Re 1 -+ 1 . E ! B'R i.xelYR . =x :

B'R e a . R"a C a . X • x e « [*12211 . *9(H]
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#12214. h : R € Prog . D .^'B'R = Q.'R

Dem.

h . #1221 . *37-25 . D h : HpO . d'R = R"*R* lB<R

[*91-52] =%,o'B<R : D h . Prop

#122141. h: R e Prog . D . d'R C D'R . Cf
i2 = D'R

Dem.

h . #1221 . *37'25 . D h : Hp . D . d'R = R"R* iB iR .

[#90163] 0.a'Rc1il*'B fR.

[#1221.#3318 J] D . d'R C V'R.C'R=D<R Oh. Prop

#122142. h : £e Prog. PePot'tf. D.T>'P = D'R [#122141 . #9214]

#122143. h :22c Prog. PePot'iZO.d'PCD'P [#122142141 . #91-271]

*12215. h : R e ProgO . £ = (R*'B'R) 1 R = R \ (R^B'R) = R f (£#££)
Dem.

h . #1221 . #35*63O h : HpO . P = {RtfB'R) 1 R

[*96-2] =R[(Rvo<B<R)

[*9621] = P p (R^B'R) Oh. Prop

*122151. h : R e Prog . D . R* = (R^B'R) 1 R* = R* [ (R^'B'R)

[*35'63'66 . #9014 . #122-141*1 ]

#122152. h:R € ProgO . Ppo = (R*'B'R) 1 Ppo
- R^

f

(P^'P)
= Rpo t(R*'B<R)

[#35-63-66 . #91-504 . #121114]

#12216. hiPeProgO.P^G/ [#9623 . #122-152]

This proposition enables us to apply to progressions all the propositions

of #121 in which we have as hypothesis

PeCls-»l.Ppo GJ, or R e 1 -» Cls . R^ G J.

#12217. h : R e Prog . = . R e Cls -* 1 . Ppo G J . D'R = S"^5'i2

Z)em.

h. #35-63. Dh:D'P =P^^O.P= (P*'P'P)1P
C1 )

h . #96453 . D h : PeCls-*l . (R^BtR) J\RV0
CLJ. D . (P*'P<P)1 P e 1 -» 1 (2)

h
. (1) . (2) . #1221 Oh: D'P= P*'P'P . R e Cls->1 .PpoGJ . D . 22 e Prog (3)

h . (3) . #122-1-16 Oh. Prop
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To illustrate this proposition, consider its application to the inductive

cardinals arranged in order of magnitude; i.e. take as a value of R the relation

p,v(fie NC induct . v => fi + 1).

We then have R e Cls -* 1 . = B (R\ also

NC induct = D'R = R^'B'R.

We have also

so that i2f(-i'A)€l-*Cls.

Again
fiR^v . = . (gw) . vt eNC induct — t

(
. v = p + to-,

whence f^Rpov 3 • A* • ^ /"•41 v
>

i.e. (-t'A)1i2p0 G/.

But we do not get B e 1 —> Cls or i£po C J" unless we have

A^eNC induct,

which is the axiom of infinity. If this condition fails, we reach at last an

inductive cardinal which = A, and we have

A = A+.l,

so that A has two immediate predecessors, namely itself and the last existent

cardinal. The posterity of 0, in this case, is a Q in which the circle has

narrowed to a single term, namely A.

Thus we need the axiom of infinity in order to prove

$v(fi€NC induct . v = jm + 1) e Prog.

*122'2. hi.ReProg.x^eC'R.^-.xR^y.v.yR^x [*96"302 . *1 22T141]

*122-21. h :. R e Prog . x, y e QlR . D : xRvoy . v . x = y . v . yRpox

[*96-303.*122ri41]

This proposition, together with *122 -16 and #91/56, shows that if R e Prog,

.Rpo has the three properties by which transitive serial relations are defined

(cf. #204), namely it is (1) transitive, (2) contained in diversity, (3) connected,

i.e. such that it relates any two distinct members of its field. We shall at a

later stage define the ordinal number w as the class of such relations as i2po>

where R e Prog.

*122'22. h : R eProg . a C D'R .x} yea- Rw"a .D.x = y

Dem.
V . #122-21 . 3 h :. Hp . D : xRvoy . v . x = y . v . yR^x (1)

1-
. #37105 . D r- : # e a . xRpoy .3. ye R^'a :

[Transp] D h : x e a . yr^eMj^'ct . D .^(pcR^y) (2)

r . (2)

.

D r : Hp . D .^{xR^y) .^(yR^x) (3)

h , (1) . (3) . D h . Prop
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*122-23. h : R e Prog . a C D'R . 3 ! a . 3 .

<*/

E ! min (R^'a . a - Rvo"a = t'min (R^'a
Dem.

h.*9652. Dh:HpO. 3 !mm(PP0)<a (1)

h . *93-lll . *12222 . D h :. Hp . D : «, y emin (i2p0)'a . D^ . x = y (2)

h . (1) . (2) . *32'4 . *93-lll . D h . Prop

This proposition shows that every existent class contained in a progression

has a first term, i.e. that a progression is a well-ordered series (c£ #250).

*122'231. r : R e Prog . a C iipo"a . 3 . a = A
Dem.

K *91-504 . D h : Hp . D . a C d'-R (1)

h.*93ll. Dr:Hp.D.~E!minCRpo)'a (2)

h . (1) . (2) . *122-23-141 . Transp . D h . Prop

*122-24. h : R e Prog . P e Pot'i2 . D . D'P = P*"~B'P = s'gen'P

h . *1221 . *92\L02 .Dr:Hp.D.Pel-*l.

[*93"42] D .jp'CF'Pot'P = P'y(T<Pot'P .

[*91581] 3 . p'd"Pot'P c i?po>'a"Pot<p .

[*122231] D.p'<I"Pot'P = A (1)

h . (1) . *93'37-36 . D h : Hp . D . <7'P = P*"£'P = s'gen<P (2)

h . (2) . *122143 , D h . Prop

—> .

Except when P = R, B'P will not reduce to a single term. In fact, if

P = R„, B lP=R (ljji—i v^), i.e. 5'P consists of the first v terms ofthe progression,

*12225. hzRe Prog . P e Pot'i? . a; e D<E . D .

(P#'*)1P6Prog.** JB'{(P»'*)1^
Dem.

h . *122*1 . *92102 . D h : Hp . D . (P#'x) 1 P e 1 -» 1 (1)

h . *122143 . D h : Hp . D . iy# C D'P

.

[*35-62] ^ . D<((jy*)1 P }
=P* * <2>

h . *37-4 . *91-52 . D h . (T{(5y#) 1 P} = Ppo
(« (3)

K*l 22-16. *91'6. Dh:Hp.D.#~eP
p> (4)

h.*91-542. Dh:ye^'tf.y + <B.D.yePpo '<c (5)

h.(2).(3).(4).(5).Dh:HP .D. a; = JB'{(P^)lP} (6)

h . (1) . (2) . (6) . *96'131 . 3 h . Prop
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The above proposition shows that what we may call an "arithmetical

progression" in a progression is a progression, i.e. if, starting from any term

of a progression, we take every other term, or every third term, or every j/th

term, we still have a progression.

#12226. h : R e Prog . a C fi^'a 3 ! a • D D 'E = Bp°"a

Dem.

h.*221. Dhz.K-p.D-.B'Rea.D.B'ReR^'a (1)

h . #91*542 . #12211 . D h :. Hp . B'R~e a . D : y ea n D'R . Dy . (B'R) Rvoy :

[*91-504;*:37'15] ^iyea^y .{B
iR)RVQy:

[*10-55.Hp] 3 : to) • y € a . (B'R) Rvoy :

[*3M] l:B*ReRvo«a (2)

r . (1) . (2) . D h : Hp . D . B'R € i^'a (3)

I- . #92-111 . D h :. Hp . D : x e R^'a . coRy .D.ye R*"a

.

[#91-545] D.yeavR
V0"a.

[Hp] O.yeR^'a (4)

h . (3) . (4) . #90-112 . D h :. Hp . D : (B'R)R*y . D .yeR^'a (5)

h . (5) . #122-1 . D h . Prop

The above proposition shows that if an existent class contained in a

progression has no maximum, then any assigned member of the progression

is succeeded by members of the class.

The following proposition states that if a has members belonging to a

progression, and there are members of the progression which do not precede

any member of a, then there is in the progression a last member of a.

#122-27, h : R e Prog . 3 ! T>'R - ftp0"a . g ! a n V'R . D .

E ! max (R^'a . g ! a n B'R - R^'a
Dem.

h. #122-26. Transp. #37-265. D h : Hp. D . 3 ! an C'R-R^'a (1)

h. #122-21. Dh:Hp.«,yeanOi2-i2po"a.D.a? = y(2)

h . (1) . (2) . #93-115 . #122-141 .Dr. Prop

#122-28. h : Re Prog . a C R^z-ft I a. D . E ! max(12po)'a,a!anD'i2-i2po"o

Dem..

r . #9013 . #122141 . D h : Hp . D . a C D<# (1)

h . #90*14 . #122141 . D I- : Hp . D . e D'iZ

.

[#71-161.#122-16] D.^~£V f«-

[#122-1] D. a !D'£ -£„<,"« (2)

h. (1). (2). #122-27. 3 h. Prop
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*1223. I- : R e Prog . D . D'R = £ {(gi») .veNC induct . (£<£) i2„a>}

[*121"52.*122-1-16]

*12231. r- : R e Prog . v e NC induct - t'O . D . d<Rv=§ {Nc'R (B'Rt-ty)> „}

Dem.

V . *120'429 . D r- :. Hp . D : Nc'R(B'R^y)> p . = . Nc fiJ(5'i2My» v +0 1

.

[*117'31] s.(a^)./*eNC.Nc'J2(5'i2My)-^+- p+- l.

i/+ l,/*+
e »'+o leN,O-

[*121-45.*120-452.*110-4] = . (g^) . ^ e NC induct

.

'Sc'R(B'Rt-iy) = ft+it
v+

1l
l.

ti+t v+,le'N(tC.

[*121-ll-35.*110-43.*100-3] = . (a/*) . ft e NC induct . (B'R) R„ \
Rvy .

[#34'1] = . (a/A, x).fie NC induct . (B'R) R^x . xRvy .

[#122-3] = . (gar) . x e D'R , asfi,y

.

[*121-323] = . (ga?) . atf2„y

.

[#33-131] = . y e a fRv :. D h . Prop

#12232. \-:Re Prog . i> e NC induct - t'O . D .

~B'RV = D'R n £ {~Nc'R (B'Ri-ix)< v\

Dem.

\- . #122142 . #121-501 . D h : Hp . D . D'RV = D'# (1)

F. #12231. #120-442. D h : Hp. D . -<I'RV = £ {Nc'R(B'Rh-ix)^ v] (2)

h.(l).(2).*93-101.Dh.Prop

#122-33. h : R e Prog . v e NC induct - t'O . D . E ! ^
Dem.

K #121-601. #12211. DI-rHp.D.Ell* (1)

h . #121-634-637 . #122-141 . D h :. Hp . D : E ! ^ . D . E ! (v + 1)^ (2)

h . (1) . (2) . #120-473 .31-. Prop

#122-34. \-:.R € Prog . D : v e NC induct - t'O . = . E ! vR [*122-33.*121 635]

#122-341. h : R e Prog . D . D'£ = $ {(gi/) .veNC induct - t'O . a? = **}

Dem.
b . #122-3-34 . #121-638 . D

r- : Hp . D . D'E = & {fav) . v eNC induct . a? = (v +c 1)*}

[#120-471] = & |(g[v) . v e NC induct -t'0.«=^]:DK Prop

In virtue of #122'34 -341, all the terms of a progression occur in the series

ljj, 2B , ... vRt ..., and every inductive cardinal except is used in forming

this series.
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#122 35. r : R

e

Prog . v eNC induct - t'O . D . .B'.R„ **R(lR t-ivR). B'RV e v

Dem.

h . *121G3 . *12233 . D h : Hp . D . Nc'E (B'R m i^) = p . (1)

[#122-32] ^ 5*i2, ~ D'E n & {Nc'iZ (5'i2 m a?)^ Nc'E (5'i2m vr))

[#121-481] = D'E n £ {# (B'i2m <b) C R (B'Rm Vjj)}

[*1221.*12M03] = ^ {(£'£) £*# : yR*x\ Dy . yR*vR)

[#9017-13.*10-1] = x {(B'R) R*x . xR*vR}

[#121-103] =R(B'R^vB) (2)

[#121-601.*122-11] =R(lR t-ivjt) (3)

h . (1) . (2) . (3) . D h . Prop

#122-36. H : a ! Prog n t
u(x . D . Infin ax (x)

Dem.

h. #122-35. D \-:ReYmgr\tn'x.veT$C induct - t'O . D . g ! v(#) (1)

h . (1) . #10112 .Dh:.jRe Prog n t
lltx . D : i> e NO induct . D, . g ! v (a?) :

[#120'301] D : Infin ax (x) : . D h . Prop

#122-37. h:5e Prog . D . D'.R~e Cls induct . N c'D'i2~ € NC induct

Dem.

h . #12235 . D h :. E e Prog . D : z> eNC induct . D„ . g ! C1'D'.R n (z> +c 1)

.

[#117-22-107] 0„ . N c'D'E> i> +c 1

.

[#120-429] 1 V . N c'D'.K > v .

[#117-42] Z>„.N CD'E=^:
[#13-196] D:N c fD^~ e NC induct (1)

h . (1) . #12021 . D h . Prop

#122-38. h : R e Prog . D . £*'# e Cls induct [*121'7 . #90'13 . #120'212]

#122*381. \-:Re Prog . v e NC induct - t'O . D . .ft*' 1'* = # (I-r^Vr) ##'"* e v

[#121-7 . #122-35]

The following series of propositions are concerned in proving that any

class contained in a progression is inductive if it has a last term, and is a

progression if it has no last term. In the latter case, it is supposed arranged

in the same order as it had in the original progression. A certain complication

is necessary in order to define its one-one generating relation. If R is the

generating relation of the original progression, we proceed first to R^, then

*° R^ot a> where a is thaclass in question; this gives us a transitive generating

relation for a. Calling this relation P, we then proceed to P -^ P2
, i.e. the

relation of consecutive members of the series generated by P. This relation

turns out to be one-one, and to arrange o in a progression ; hence our proposition

is proved. The reason for the necessity of this detour is that consecutive

members of a may not be consecutive members of the original progression.
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#122 41. h : R e Prog . o C V'R .y € a~ R^'a .D.aQR (B'Bt-iy)

Bern.

V . #37-1 . *10ol . D h :. Hp . D : z e a . 3Z .^{yR^z) .

[#122-21] ?z-zR*y (1)

h. #122-1. Dh:.Hp.D:^eo.Da.(5'i2)i2#* (2)

h. (1). (2). #121103. 3 h. Prop

#122-42. h : J2 e Prog . a C # (#'£ ^y).yea.D.y = m&xR'a
Bern.

h . #121103 . D h :. Hp . D : * e a . D« . *i2*y

.

[*91-574.#122-16] D* .^(yR^z)

:

[#37-1 .#10-51] D:y~e.Rpo"a: (1)

[#96-303] Z> : 2 e a - #p0
"« -^z-z = y (2)

h . (1) . (2) . #93-115 .31-. Prop

#122-43. h:Ee Prog . a C V'R . g ! a - i^'a . 3 . a <* Cls induct

[#122-41 . #121-45 . #120-481]

Thus every class which is contained in a progression and has a last term

is inductive. We have next to prove

R eProg . a C V'R . ft ! a .~a ! a- #po"a • 3 ae D"Prog.

This is effected in the following propositions.

#12244. b-.Re Prog . a C Rvo"a . a ! a .P = Ep0 £ a . Q = P-

P

2
. D .

Qel-^l.QGJ^
iVote. The hypothesis here exceeds what is necessary for the conclusion,

but is the hypothesis required for #122 45, for which the present and the

following propositions are lemmas.

Bern.

r . #23*43 . #35442 . Z> h : Hp . 3 . Q G

#

p0 (1)

h . #36-13 . D h :. Hp . D : x,y,z e a . xR^y . yR^z . D . xP*z :

[Transp] 3 : x, y, z e a . xR^y .~(xP2z) . D . ^(yR^z) :

[#36-13] 3 : xPy .~(xP*z) . 3 .~(yR^z) :

[#3-47] D : a% ®QZ • 3 • ~(y^po*) • ~(zRv<>y)
•

[#122-21.(1)] =>.y = s (2)

Similarly h :. Hp . D : d;^ . yQ^ . D i x = y (3)

h . (1) . (2) . (3) . D V . Prop

#122*441. h : Hp #12244 . D . V'Q = a

Bern.

h . #37-41 . 3 h : Hp . D . B'Q C a (1)

h . #37-1 . Dh:.Hp.D:a?ea.D. (33/) -yea. #^2/

.

[#3613] D.glP'a.

[#122-23.*93-ll] D . a ! P^ - JV'P'a

.

[#35-442] D . a ! P'#- P"P'fl?

.

[*37 311.*32-31-35] l.ftlQ'x (2)

h. (1). (2). #33-4. 3 h. Prop
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#122442. h : Hp #122-44 .D.P = QV0

In proving P G Qpo below, we assume xPz and consider the maximum of

—

»

<—

^po<2 n Q#'^ which is shown to exist and be Q'z, whence xQpo z.

Dem.

(-. #2343. DHHp.D. £GP (1)

h. #91-56. Z>h:.Hp.D:P2 GP:
[(I)] D:SGP.:>.£|<2GP (2)

h . (1) . (2) . #91-171 . #41-151 . D h : Hp . 3 . Q^ G P (3)

I- . #3613 . #1211 . D H. Hp . D : xP*z . = .x,z ea.ftlan R(x- z):

[Transp.Fact] D :xQz . = .x,zea.xRpoz.ariR(x--z)=A (4)

V . #122-441 . D h :. Hp . xPz . 3 : x e (R^'z n £*<#) :

[#122-27] D : a !

E

p0'*

^

-R
v0
"(R

V0
'z r^'x)

:^_

[#37-461] D : (ay) . y e Rv0
'z *%'v .

S"

po'y * Rpo'z n%*x = A :

[#90-151] D : (ay) . y eiy* * Q#'a? . .ftpo'y n J2p0
'* « £*'y = A :

[(4)] D : (ay) :y eSpo<* nV*'#:
4— —* 4— —>

~(aw) . w « Rwf
y n R^'z . a n jK^'y n jS^'w = A :

[*22-43.*91-56] D : (ay) : y e R^'z nQ*'x :

~(3w) .wean .R^/y n Rp0'z . a n Ep0'y n Ep0^ ni^'w = A:

[#37-461] D : (3y) . ye^ n &'*

~ 3 ! a n Ppo 'y n £p0
<^ - i2P0"(a n .Rp0'y n Epo^) :

[*122-28.Transp] D : (ay) . y e £po
<* ^V*'*' . a n Rpo'y n> R^'z = A :

[(4)] D:(ay).yeQ^.y^:
[#91-52] 3 : xQvo z (5)

h . (3) . (5) . D h . Prop

#122-443. h : Hp *122'44 . D . min (Rvo)'a = B'Q . d'Q = an Rp0«a
Dem.

h . #91-504 . #122442 . D h : Hp . D . d'Q = d'P

[#37-41] =anVa (1)

K (1) . #122441

.

D h : Hp . D . i?Q = a - £po"ct (2)

h . (1) . (2) . #122-23 . D h . Prop

#122-444. h : Hp#122'44 . D . D'Q=^'£'Q
Dem.

h . #122-443 . #14-21 . D h . Hp . D . E ! B'Q .

[#9013] D.V#'£'QCC'Q.

[#122-441 -443] D . Q*'#'Q C a (1)

h . #122-443 . #96303 . D
h : Hp . x

e

a . x + £'# . 3 . (.B'Q) i£po# . B'Q, xea.
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[Hp] D.(B'Q)Px.

[#122-442] D.(B'Q)Q^x (2)

h. (2). #91-54. 3 h: Hy.xea.1.(B'Q)Q#x (3)

K(l).(3). 3r:Hp.D.<?*'*<G = a

[#122441]
,

=D^:Dh.Prop

#122 45. h i^eProg.oC^'a.g! a. P = i2po ^ a. Q=P-P2 .D.

Q e Prog . D'Q = a [*1 22-44-444-441]

This proposition shows that every series extracted from a progression and
having no last term is a progression.

*12246. h : R e Prog . a C D'R . D . a e Cls induct u D"Prog

[#122-43-45 . #120-212]

This proposition shows that any number less than the number of terms

in a progression is inductive. This result will be developed in the next

number (#123).

*122'47. h :. R e Prog . o C D'R . D : a e Cls induct - t'A . = . g ! a - R»Q"a

Dem.

h.*122-45.Dl-:Hp.3!a.~g!a-iV'et.D.aeD"Prog.

[#122-37] D.o~e Cls induct (1)

h . (1) . #122-43 . D h . Prop

#122-48. b:Re Prog . a C D'R . a e Cls induct . 3 . D'R - a~e Cls induct

Dem.

r . #120-71 . D h : a C D'R . a, D'R - a e Cls induct . D . D'R e Cls induct

:

[Transp] D h : a C D'E . a e Cls induct . D'.R~e Cls induct . 3 .

D'i2-a~e Cls induct (1)

h . (1) . #122-37 . D h . Prop

*122'49. b:Re Prog . a C D'R . a e Cls induct . D . D'R - a e D'Trog

[#122-46*48]

The following propositions are concerned with circumstances under which

the posterity or the family of a term forms a progression.

#122-51. r : Pe Cls -> 1 . IP'x = A . x eD'P . P*<#CD'P . Z> . (P*'x) 1 Pe Prog

Here IP'x has the meaning defined in #96.

Dem.

h . #71-261 . #96-13 . D h : Hp . Q = (P#fx) 1 P . 3 .

QeCls^l.Qpo=(P^)1Ppo . (1)

[#96-104] D.QpoG^ (2)

B& W II 17
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t

h. #3561. #374. Dh:Hp(l)O.D'Q = P*'0.a'Q = P''P*'0 (3)

[*91'52] =-£%'#

[(1)] «|[po'*

[(2).*91 '542] = 0%'x - t'x (4)

K(l).(3).(4). lb :H?(l) .D .J)'Q =*Q*'x .a<Q=*Qx<x - i'w

.

[*93101] D. JB'Q=i'fl?.D'Q=V*'« ( 5 )

h.(l).(2).(5)0
^_

[#122-17] D.Qe Prog Oh. Prop

The following proposition (#122-52) is used in #123-191, *2614 and

*264-22.

*122'52. h : Pe 1 -> 1 . x e D (P .^(xP^x) . P*'# C D'P . D . (P*'#) 1 P e Prog

Dew.
h.*96-4920h:HpO./p^ = A (1)

h.(l). #12251 Oh. Prop

The remaining propositions (#122-53'54"55) are not used in the sequel.

#122-53. h : P e 1 - 1 . x e s'gen'P . P*'x C D'P . D . (P*'x) 1 P e Prog

h . *97-21 O h : HpO . (ay) . yBP.%£=%£ .

[*96-23.*93-l] 3 . (ay) . y e D'P . P#'x = P%'y . IP'y = A .

[*9717.*91-504.Hp] D . (ay) . y e D'P . P*'? C D'P . /P'y = A ,%'a=%<y .

[#122-51] D . (P**0) 1 P e Prog Oh. Prop

#122-54. h : P e 1 -» 1 . or e s'gen'P - s'gen'P . D . (P#'«) 1 P e Prog

Bern.

h . #93-27-272O h : HpO . e s'gen'P nyd"Pot'P

.

[#93-381] D. 6 s'gen'P. P*'#C D'P (1),

h . (1) . #122-53 Oh. Prop

#122-55. h:.Pel->10:#e s'gen'P- s'gen'P . = . (P*'#) 1 P e Prog

h. #35-61. Dh:Q = (?*'*) 1PO.D'Q=?*'0n D'P (1)

h . #37 4 . D h :. Q = (P*'a?) 1 PO : d'Q = P'^'0

:

[*97l7.#92111.#91-54-52] D : Q e 1 - 1 O . d'Q - P*'# n (J'P (2)
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h.(l).(2).Dh:.Hp.Hp(l).3: a !^.3.a!^-a'P.
[*97-17.*91-504] D-gl^s-CTP.
[*93-38-27] D . co e s'gen'P (3)

h . (1) . (2) . D h :. Hp (3) . 3 : D'Q= C'Q . D . P*'tfn D'P = P*<# .

[*22-621] D.P^CD'P.
[*97-13] D.P^CD'P.
[*93-381-275] D.x~e s'gen'P (4)

J- . (3) . (4) . *12211-14l-54 . D h . Prop

17—2



*123. N

Summary q/"#123.

In this number we are concerned with the arithmetical properties of N0j

the smallest of Cantor's transfinite cardinals. Cantor defines K as the

cardinal number of any class which can be put into one-one relation with

the inductive cardinals. This definition assumes that v^v+ l, when v is

an inductive cardinal; in other words, it assumes the axiom of infinity; for

without this, the inductive cardinals would form a finite series, with a last

term, namely A. For this reason among others, we do not make similarity

with the inductive cardinals our definition. We define N as the class of

those classes which can be arranged in progressions, i.e. as D"Prog. We then

have to prove that }>? so defined is a cardinal, and that if it is not null, it is

the number of the inductive numbers.

For convenience we put for the moment N for the relation of /* to /j. + 1

when fi is an inductive cardinal. We then easily prove

*123-21-23. \-.NeC\s->l. D'N = NC induct . B'N= . iV#'0 =NC induct

The only thing further required to prove N e Prog is N e 1 —> Cls, i.e.

fi,ve NC induct . fi +c 1 = v + 1 . D . fx = v.

By #120-311, this holds if g ! fi +c 1, which holds if Infin ax holds. Hence

#12325 26. r : Infin ax (x) . D . N^ V'x e Prog . NC induct r\ t
ux e N

whence, by #12236,

#12327. r- : a ! K (x) . 3 . NC induct n t*'x e N

Again it is obvious from #122 ,34'341 that if R is a progression, D'R can

always be put into a 1 —» 1 relation to the inductive cardinals (#123*3) since

D'lt consists of the terms 1M , 2R , ...vR , ..., and all the inductive cardinals are

used in putting T>'R into this form. Hence

#123-31. t- : a e K . D . a sm NC induct

whence also

#123-311. r:a,£eK .D.asm£

It remains to prove that any class similar to the inductive cardinals is an
X

;
this can only be proved by assuming the axiom of infinity. We prove
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first (#12332) that if R is a progression, and S is a one-one whose converse

domain is D'R, tlien S
j
R

j
S is a progression whose domain is D'S. Hence

*123'321. r- : o € N • a sm jS . D . /S e N

From this and a, /S e N . D . a sm /S, we obtain

*123322. r : a e N . 3 . N = Nc'a

Hence by our previous results

*12334. h : Infin ax (a?) . D . N = Nc'(NC induct n p'a?)

Also we have, by #123'322 above,

3 !K .:D.KoeNC,

whence, since A e NC, we obtain at last

*12336. r.N eNC
As to the existence of N in various types, if Infin ax (a?) holds, i.e. if, given

any inductive cardinal v, there are classes having v terms and composed of

terms of the same type as x
y
then NO induct (t'x) e N (t

2t
x). Thus

*123-37. h : Infin ax (x) . D . g ! N (t
2tx) . N {t*oc) eN C

The arithmetical properties of N in regard to addition, multiplication and

exponentiation by an inductive cardinal are easily proved. We have

*12341. h : v e NO induct . D . N = N + v

*123421. h . N - N + N = 2 x N„

*123422. h : v eNC induct - t'O . 3 . v x N = N

*12352. h . N = N x N = N S

*12353. h : y e NC induct - t'O . D . N " = N

All these propositions are well known.

The early propositions of the present number are for the most part

immediate consequences of propositions proved in #122.

#123-01. N = D"Prog Df

*123'02. If =p [fi e NC induct . v = (/* + 1) n $,'/*} Dft [*123—4]

#1231. h : a e No • = . (rR) . # e Prog . a = D<£ [#371 . (#123*01)]

#123101. hzEeProg.D.D'EeNo [#1231]

#12311. \-:Rel-*l.V tR = Rx'B tR.D.I) iReti
<i

[#123101 .#1221];

#123 12. h : a e No • D . (3K) . D'i2 = a . -B € 1 -> 1 . WR C D'E . B'R e 1

[#1231. #12214111]
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#123 13. h : a e N . D . Nc'a = Nc'a + 1

Dem.

h.*l 23-12. #1 10-32. D

h : a e N . 3 . (g£) . D'R = a.Rel-*l. Nc'D'i2 = Nc'(T#+ c 1 .

[#100-321] D . (s-R) - D«i2 = a . Nc'D'iZ *= Nc'D'jtf + 1

.

[*35-94.*13l95] D . Nc'a = Nc'a + 1 : 3 h . Prop

#12314. I- : a e N . v <* NC induct . D . 3 ! v n Cl'a [#1 22"35]

#123-15. H : o e N . D . a~e Cls induct [#122-37]

#12316. H : a e K . D . Cl'a C Cls induct u K [*122'46]

#123-17. H : a e N . £ e Cls induct . D . a - /3 e N

Dem.
H . #120-481 . D h : Hp . D . a n £ e Cls induct

.

[#122-49] D.a-(aft£)eN :DI-.Prop

#123-18. H : a ! N (x) . D . Infin ax (cs) [*122'36]

#123-19. \-;Re Prog . a ! a . a C Rp0"a . Z> . a e N [#122-45]

#123191. H : £ e 1 -» 1 . x e T>'R . ~(#.Kpo a?) .£*'# C D'E . D . £*'a e N

[#122-52]

#123192. H : R e 1 -> 1 . d'.R C D'E . Z> .£*"£'.?£ C N

Dem.

h. #93-101. Ib'.xeB'R.D.xeD'R (1)

h. #91 -504. #93101. 1\- :xe B'R.3 .~(xRwx) (2)

h. #9013. 3 h:<3'.RCD'.K. !}.£*'# CD'iZ (3)

H
. (1) . (2) . (3) . #123-191 . 3 h : Hp . xeB'R . 3 . S^'ae K OH. Prop

#123-2. r :^.s./tcNC induct, v -(/*+, 1) n Vp [(#123-02)]

#123-21. h . JVeCls->l . D'JV = NC induct . <PJV = NC induct -t'O . B'N = Q

Dem,

h. #123-2. #13-172 . D h : fiNv . jui^w . D . j/ = CT :

[#71-171] Dh.tfeCls->l (1)

H. #123*2. DH.D'JV = NC induct (2)

H . #123-2 . D h- . d'if= £ ((ap) . ^ e NC induct .*/ = ,* + 1}

[*1 20-423] - NC induct - 1'0 (3)

H . (2) . (3) . #93-101 Oh. B'N = (4)

H . (1) . (2) . (3) . (4) O h . Prop

#123-22. h.iV'=(+ l)rNC induct [#123-2]
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#12323. I- . 5^*0 = NC induct = V'N

Dem.

V . #1 23*22 . D h .*N%<0 - £|> {(+<, 1) T NC induct}* 0]

[*120-1.*96-21131] = £[> {NC induct 1 (+ 1)*} 0]

[#120-1] = NC induct (1)

I- . (1) . *12321 . D 1- . Prop

*12324. I" : Infin ax (x) . D . N l&'x e 1 -* 1

Dem.

h . #1 20-301-121 . 3 I- :: Hp . 3 :. ft e NC induct . D : a ! (/a +c 1) a «"a:

:

[#120311] D:(/i+ l)n^ = y+ l.D.^ = 1;:

[*123-2.*71"17] D:iVr^^el-*Cls (1)

h. (1).*1 23-21. 3 h. Prop

#123 25. I- : Infin ax (x) . 3 . N £ tf'x e Prog [*123-2123-24 . #1221]

*123'26. r- : Infin ax (as) . D . NC induct n P'a? e N [#123-25-21101]

*123'27. I- : a ! N (as) . D . NC induct n i
31^ e K [*123-26'18]

*1233. \-:Re Prog . S = xv {v e NC induct . x = (v + 1)*} . D .

£e 1 -*1 . DSS = D'.ft . CT<S = NC induct

Dem.

I- .#120-423 . 3 r- : Hp . D . D<£ = £ [(<gfi) . p e NC induct - t'O . # = ,**}

[#122-341] = D'K (1)

1- . #14-204 . #122-34 . D 1- : Hp . Z> . d'S = $ [E ! (v + 1)B}

[#122-34] = v {v + leNC induct -1*0} (2)

1- . #12236 . #120-3 . D r- :. Hp . D : v + 1 e NCinduct . D . g ! v + 1

.

[#120-422]
,

3 . v e NC induct (3)

I- . (3) . *120-421-121 . D I- :. Hp . Z> : v +c 1 e NC induct - fc'O . = .

v e NC induct (4)

I- . (2) . (4)

.

D 1- : Hp . Z> . d'S = NC induct (5)

h. #13-172. #71-17.' 3l-:Hp.D.5fel-*Cls (6)

I-. #121-631. 3h:.Kip.3ix8fA,.xSv.'}.

Nc-72 (B'R m x) = fx + 1 . Nc<R (B'R w x) = v + 1

.

[#13171] 0.fi+ l = v+ l (7)

I- . (5) . #122-36 . #1203 . 3 1- :. Hp . 3 : aaS/* . 3 . a ! fi + 1 :

[#120-41] D:iC/S/i.^+c l = v+ 1.3.
i
it = i':

[(7)] "2:xS/ji,.xSv .3 . fi = vi

[#71-171] 3:»SfeCls-*l (8)

K(l).(5).(6).(8).DKProp
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#123*31. h : aeN„. D. a smNC induct [#123-3]

#123-311. I- : a, /3

e

tt . D . a sm [*12331 . #7331 -32]

It is not assumed here that a and /3 are of the same type.

*123312. I- : R e Prog . S e 1 -* 1 . d'S = V'R . I> .

S\

R

|

Se 1 -* 1 . V'S = D'(S \R\S). S'B'R = B'(S\R \ S)
Bern.

r- . #71-252 . #122-1 . D I- : Hp . D . S
\
R

\
8 e 1 -* 1 (1)

I- . #122141 . #37321 . 3 1- : Hp . 3 . J)'{R
|
S) = V'R = d'S . (2)

[#37-323] 3.D<(S\R\S) = -D'S (3)

1- . (2) . #37-32 . D I- : Hp . 3 . d'(S \R\8)=> S"(I'R (4)

1- . (3) . (4)

.

3 I- : Hp . D . !?<(£
|
R \ 8) = T>'S-S"d'R

[*37-25.Hp] = S"J)'R - S"<1<R

[#71'381] = £"!?#

[#12211.*53-31] =t'S'B'R (5)

I- . (1) . (3) . (5) . D I- . Prop

#123-313. I- : ReVrog . Se 1 -*1 . (TS = V'R . P=S\R\S. D . D'P=%'B'P
Dem.

\- . #34 36 . #123312 . D h : Hp . 3 . d'P C D'P . E

!

B'P .

[*9013] Z> -*P^B (P C D'P (1)

I- . #123-312 . 3 1- : Hp . 3 . S'B'R e*P*'B'P (2)

I- . #3314 . 3 h : Hp . S'x e*P%'B'P . xRy . 3 . y e d'R .

[#122141 .Hp] D. ye d'S.

[#71-16] D.Elfif'y.

[#30-32.#34-l] D . flf'a? (flf
j
R

\
S) S'y .

[Hp] 0. S'xP S'y.

[#90-163] 3 . S'y €*P%'B'P (3)

I- . (2) . (3) . #90112 . D f- :. Hp . 3 : (B'R) R%x .3. S'x eP^'B'P :

[#37-63] 3 : S''R*'B'R C P*'5'^ :

[#1221] 3 : £"D'.ft C %'B'P :

[#37-25.Hp] D : D'S C%'B'P :

[#123-312] D:D'?CP^B'P (4)

K(l).(4).DKProp

#123-32. \-:R € ?rog.S€l-*l.d'S = D'R.'}.

5

1

R
| S e Prog . D'S =* D'(S \R\S). S'B'R - 5<(S

J
£

| £) [#123-312-313]
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#123321. l-:aeN .asm£.D./3eN„ [*123'32]

#123322. I- : a e N . 3 . N = Nc<a

Bern.
\-

. *123'311-321 . D I- :. a e N . I> : P e N . = . £ sm a (1)

h.(l).*1001. Dh.Prop

#123 323. I- : # e Prog . 3 . N = Nc'D'fl [*123'322]

#12333. I- :. Infin ax (as) . D:«eN . = .asm (NC inductn t
3'x) [#123-26'321-31]

#123 34. I- : Infin ax (x) . D . N„ = Nc'(NC induct n ^a) [#12333]

#123 35. I- : a ! K (a;) . D . N
ft
(a>) = Nc'(NC induct n P'a?) [*1233418]

#12336. I- . N e NC [#123*35 . #102-74]

#123 361. h:a!N„.3.N ~eNCinduct [#12315-322 .#120-211]

#123-37. I- : Infin ax (x) . D . a ! N (t*'x) . N (F'a:) e N C

I- . #1 20-301 . D 1- :. Hp . I) : v e NC induct . Dr . g ! v (a?)

:

[#65-13] D : v e NC induct . D, . a ! v . v = v (as) :

[(#65-02)] D : v e NC induct . D, . a ! i> : NC induct C t
3'x :

[#123-34] D : NC induct e N . NC induct C $*x :

[(#65-02)] D : NC induct e N„ (P'x) (1)

h . (1) . #103-34 . #123-36 . D I- . Prop

#123-39. I-. («.), = (K.+.1),

Bern.

h . #118-12 . #117-6 . #123-322 .31-: (N ), = A . D . (N + 1), = A (1)

1-
.
#123-13-322

.

3 I"
: H ! (**•)• D <*•>• = (**° +o 1), (2)

K(l).(2).Dh.Prop

#123-4. I-.N = N + 1 [#123-39]

#123401. h:a!«o.3-«o = «o-c l

Bern.
\-

. #120-124 . #123-36-4 . D \-
: a ! K . 3 . N e NC - i'0 .

[#120-414-416] D . (N - 1) +c 1 = N
[#123'4] = N +O l.

[#120-311] Z>.N - 1 = N (1)

1- . #119-11 .31-: (N ), = A . D . (N ), = (No - 1), (2)

I- . (1) . (2) . 3 1- . Prop

#123*41. h : veNC induct. D. N = No

+

8 i> [#123-4 . #12011]

#123-411. I- : v e NC induct . D . N = N„ - v [#123-401 . #120'11]
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#123 42. hPe Prog . Q = P* . 3 . V*'lp> Q*'2p eK . ^/1P n qI'2p = A

Note that Q%1P is the odd terms and Q%2p the even terms of D'P.

Dem.

I- . *91-6 . D V :. Hp . D : Q#'1P C P*'1 P . Q*'2P C P*'2P :

[*1221] D : £*'lp C D 'p :

[•33-13] D : y e #"*'lp . D . (a*) . yPz .

[#122141] D . (ga, w) . yPz . zPw .

[Hp.#90-l63.*91-503] D . (gw) . yQw . *w e Q#'1P . yP^w :

[#37-1] D:^lP CPpo"V*
flp:

[*123"19] D:*Q*'leeK (1)

Similarly I- : Hp . D . Q*%> e N (2)

I- . #121-601-602 . D I- : Hp . D . 1 P P 2P .

[*122*16.*91-52-6] D.~(2P ^lp) (3>

I- . *1 21-602 . #53-31 . *93'1 . 3 I- :. Hp . D : Q'2P = P'1P = A

:

[#13-14] D:yQs.D.s*2P :

[#91-542] 1\1pQ*z.yQz.'}. 2PQpo z . yQz .

[#9211] 3-2pQ*y:
[Transp] D :~(2P^y) . yQ* . D .~(2P Q*z) (4)

I- . (3) . (4) . #90-112 . 3 I- :. Hp . D : lpQ*s . 3 .~(2P Q*s) (5>

h . (1) . (2) . (5) . 3 1- . Prop

#123-421. I- . N = N +c N = 2 x N
Dem.

V . #123-42 . Dh:aeK„.D. (3)8,7) ./3,YeK ./3n7 = A.£w 7 Ca.
[#1 10-32.#1 17 22] 3 . Nc<a> N + K (1

)

h.(l).#117-6-23.Dh: a !^ .3.X = K + X (2)

I-
. (2). #118-12 . #117-6 . D I- . K = K + N (3)

I-. (3). #1 13-66. DI-. Prop

#123-422. I- : v e NC induct -i t0.D.yx K =K
Z)em.

K #113-671. D I- :vx
o K„ = K .D.(v+o l)x o N„ = N»+o K„

[#123*421] =N (1>

l-.(l).#l 20-47. Dh. Prop

#123-43. h :. a ! tf . 3 : „ e NC induct . Z>„ . N > v

Dem.

V . *12318-36-361 . D 1- : Hp . D . K e NC - NC induct - i<A .

NC induct C-fA (1)
I- . (1) . #120-49 . D K Prop



section cj tf 267

#123 44. h.g!K .D:^NC induct u i'X, . = .K>v
Bern.

l-.*123-322.DI-:.aeKo.3:N
ft
>i/.D.Nc'a>w.

[*117-22-104-12] D. a !vnCl'o.veN
ftC.

[#12316] D.g!m (Cls induct u K ) . v e N„C .

[#103-26] D . (g/3) . *=N c</3 . /3 e Clsinduct w K .

[*120-21.*103-26] 3 . v e NC induct u t'K (l)

I- . (1) . #12343 . D K Prop

#12345. h:.a!K .D:v€NGinduct. = .K >«'.= .v<K [*123'43-44]

#123-46. I- : a e Cls induct .^e^ .3.aw)8eK

Bern.

V . #1 10-32 . #2291 .31-. Nc<(« u /3) = Nc</3 + Nc'(o - £) (1)

h. #120481 21. D I- :Hp.D.N c f(a-/3)eNC induct (2)

K*l 23-322. Dl-:Hp.D.K = Nc^ (3)

I- . (2) . (3) . (#110-04) . #123-41 . D I- : Hp . D . Nc</3 + Nc'(o - /3) = « (4)

I- . (1) . (4) . #100-44 . D I- . Prop

*12347. I" :. g ! N . D : o e Cls induct uK,.£. (g7) . 7 e K . a C 7 .

= . Nc'a< N
Bern.

h. #123-46. 3h:.Hp.3:aeClsinduct.D.(a7).7eN .aC 7 (1)

I- . #22-42 . D I- : a e H . D . (g7) . 7 e tt . a C 7 (2)

h. #123-16. 3h:(a7). 7 eX .aC7.D.aeClsinductv;K
() (3)

I- . (1) . (2) . (3). D I- :. Hp . D : a eCls induct u tf . = . (37) . 7

e

K . a C

7

(4)

I- . #1 23-44-322 . D I- :. /3 e N„ . D : N c'a e NC induct u t'K . = . N c'a< N c'/3 :

[*103-26.#120-21 .#117-107] D : a e Cls induct uKD . = . Nc'a< Nc</3

.

[#123-322] == . Nc'a< N (5)

I- . (5) . #1011-23 . 3 I- :. g ! K . D : a e Cls induct u»,. = . Nc'a< K (6)

1- . (4) . (6) . 3 I- . Prop

The following propositions are concerned in proving N U = K . The proof

given is roughly Cantor's. It consists in showing that the relation R defined

in the hypothesis of #123*5 is a progression.

#123 5. h:P,QeProg.

X =
f
iF ll Q .Y=l I>l(fl + l)Q].l.Rel-*l

Dem.

K #122-34. Dl-:.Hp.D:Z = Atp|re .F=(M +c l)P Jf
(r-c l)Q 0.

(*, v e NC induct - t<0 . v * 1 (1)
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i

l-.(l);Dl-:.Hp.D:(a^ir).Z-^|yg.F-0*+.l)p|(v-c l)g.D.

~<a*o. x =/xP ii Q .F=ip iu+ i)Q (2)

K (2). #123*3.3

Z = X'.F=F /

(3)

h . (2) . Transp . #1233 . 3

h::Hp.3:.(a^).X = /*pile .F=lp4(^+ l)e :XKF'.X'12F:3.
X =Z'.F=F (4)

h . (3) . (4) . 3 I- : Hp . 3 . £ e 1 -» 1 : 3 I- . Prop

*123-501. I- : Hp #1235 . 3 . D<R = D'P x D'Q

Z)em.

I- . *12234 . 3 1- :. Hp . 3 : fi t v e NC induct - t'O . v * 1 . 3 .

(/*p|v«)i2(0i+8 l)i»|(v-.l)Q} (1)

h . #122-34 . 3 I- : . Hp . 3 : /-i e NC induct - t'O . 3

.

0*P |ie)iqip!Oi +c i)e } (2)

I- . (1) . (2) . 3 I- : Hp . 3 : /*, * e NC induct - 1
<0 . 3 . ^P J,

vQ e J)'R :

[#122-341] Dixe'D'P.ye'D'Q.D.xlye'D'R (3)

h . #2133 . 3 I- :. Hp . 3 : X e T)'R . 3 . (ft/*, v) . Z = fiP I vQ .

[#122-341] 3 . (arc, y) . « e D'P . y e D'Q .X=x I y (4)

K (3) . (4) . #113101 .31-. Prop

#123-502. I- : Hp #123-5 . 3 . d'R C D'R .*R#'(1P I lQ) C D'R

Dem.

l-.»21-88.3h:Hp.r=(^+.l)p|(i'-8 l)o-i'-.l + 1.3-
Fi2{(M+0 2)P |(v -c 2)Q } (1)

»-.*21-33.DI-:Hp.F-(/*+o l),41 <l
.D.FiJ{l,|0*+ o 2)g| (2)

h.*21-33.DI-:Hp.F=lpX(^+ l)e.3.Fi?2p|^ (3)

I- . (1) . (2) . (3) . 3 I- : Hp . 3 (1*12 C D<12 : 3 I- . Prop

*123'503. I- : Hp #1235 . 3 . D<£ C^(1P 4 l c)

I- . #123-501 . #122-11 . 3 h : Hp . 3 . 1P 4 le e #*<(lp 4 lQ) (1)

I- . #90-16 . 3 I- : Hp . (1 P 4

1

Q) R* (>P 4 va) . v± 1 . 3 .

(lp | lg) ## {0* +o l)p I (v -. 1)qI (2)

I- . (2) . #120-47 . 3
HsHp.(l,4l g)12»0*,J p

vg).D.(lp4lQ)i2*{(/*+.»-B l)pil <,}.

[•00-16] 3 . (lp i 1Q) R* {1p i 0* + *)<?]

[(2).#120-47] 3 . (lp 4 1„) £* {^ | (* +c l)e}

.

(3)

[*9016] 3 . C1P 4 1 q) #* {(/* +o l)p 4 *q} (4)

K(l). (3). (4). #120-47. 3
h :. Hp . 3 :/t) veNC induct - t'O . 3 . (1P 4 l Q) R^if^p 4 vQ ) (5)

I- . (5) . #122341 . 3 I- . Prop
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#123-504. I- : Hp #1235 . D . B'R = 1P | l Q [#123*34 . #120*414]

#123-51. h : Hp #123*5 . D . R € Prog . D'R = D'P x T)'Q

[#123o'501'502-503'504]

#123-52. h.N =K x c X =^ [*123'51. *116'34.#113'25-204]

#123-53. I- : v € NC induct - t'O . D . N V =K [#123-52 . #116-52]

#123-7. I- : Infin ax (x) . Mult ax . D . g ! K (t'x)

Dem.

V . #123-34 . #120*301 . 3 I- : Hp . D . NC induct (t'x) e K (1)

I- . #100-43 . #120-301 . D h : Hp . D . NC induct (t'x) e Cls ex* excl (2)

1- . (1) . (2) . #88-32 . D I- : Hp . 3 . a ! Prod'NC induct (t'x) (3)

h.(l). (2). #115-16. D h : Hp . D . Prod'NC induct (t'x) C N (4)

I- . #115-18 . (#65-02) . D 1- : K e Prod'NC induct (t'x) . 3 . * e t't't'x (5)

I- . (3) . (4) . (5) . (#65-02) . D I- . Prop
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Summary qf#l 24.

In this number, we have to take up the second definition of infinity

mentioned in the introduction to this Section. A class which is infinite

according to this definition we propose to call a reflexive class, because a

class which is of this kind is capable of reflexion into a part of itself. A
class is called reflexive when there is a one-one relation which correlates the

class with a proper part of itself. (A proper part is a part not the whole.)

A reflexive cardinal is the homogeneous cardinal of a reflexive class.

We prove easily that reflexive classes are not inductive (#124-271), that

reflexive cardinals are such as are greater than or equal to ^ (#124-23), and

such as are unchanged by adding 1 (excepting A) (#124-25). To prove that

classes which are not inductive must be reflexive has not hitherto been found

possible without assuming the multiplicative axiom. We do not need, how-

ever, to assume the axiom generally, but only as applied to products of N
factors. With this assumption, the result follows by a series of propositions

explained below. Thus if a product of X factors, no one of which is zero, is

never zero, then the two definitions of the finite and the infinite coincide

(#124-56).

We will call a cardinal v a " multiplicative cardinal " if a product of v

factors none of which is zero is never zero. Thus all inductive cardinals are

multiplicative cardinals; and the assumption needed for identifying the two

definitions of finite and infinite is that N should be a multiplicative cardinal.

For a reflexive class we use the notation " Cls refi," and for a reflexive

cardinal we use "NCrefl." We define a reflexive cardinal as the homogeneous

cardinal of a reflexive class, i.e. we put

NCrefl = N c"CIsrefl Df.

The only effect of this is to exclude A from reflexive cardinals, which is

convenient. We then need (on the analogy of #110 ,03 ,

04) a definition of

what is meant when an ambiguous symbol such as Nc'ot is said to be reflexive,

and we therefore put

Nc'p e NC refl . = . N cV e NC refi Df.

For the class of multiplicative cardinals we use the notation "NC mult."

Thus we put

NC mult = NC n a {* e a n Cls ex 2 excl . D„ . 3 ! e^/c] Df,

whence it follows that if a e NC mult, a product of a factors, none of which is

zero, will never be zero.
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We begin, in this number, with the more obvious properties of Clsrefl,

proving that a Cls refi is one which contains sub-classes of N terms (#124-15),

that it is one whose number is unchanged when a single term is taken away
(#124-17), and that it remains reflexive if any inductive class is taken away
from it (#124-182).

We then give corresponding propositions concerning NCrefl(#124 -23'25

•252), proving, in addition to propositions already mentioned, that a reflexive

cardinal is greater than every inductive cardinal (#124'26), and that a class

which is neither inductive nor reflexive (if there be such) is one which

neither contains nor is contained in any progression (#124'34). On such

classes, see the remarks at the end of this number.

We then (#124*4'41) give a proposition merely embodying the definition

of NC mult, and show that all inductive cardinals are multiplicative, which

follows immediately from #120'62.

The following series of propositions (#124'51 ff.) are concerned with the

proof that, if N is a multiplicative cardinal, then the two definitions of finite

and infinite coalesce. The proof, which is somewhat complicated, proceeds as

follows.

To begin with, we know that if p is a class which is not inductive, it

contains classes having v terms, if v is any inductive cardinal. Thus we have

a i on civ, giinCi'/o, • aimci'p, ...>

The classes of classes OnCl'/o, 1 n CVp, ... vr\0\ l
p, ... thus form a pro-

gression, which is contained in CYGYp. Hence (#124
,

511)

\-ip~e Cls induct . Z> . CYGYp e Cls refl.

So far, the multiplicative axiom is not required.

The above progression of classes of classes is

(n Cl'p)"NC induct.

If P is a selective relation for this class of classes, D'P is a progression con-

tained in Cl'p. Hence

#124-513. h : a ! eA'(n CI»"NC induct . D . CYp e Cls refl

whence

#124-514. h :. N eNC mult . D : p~e Cls induct . . CYpe Clsrefl

To prove the next step, namely

N e NC mult . a ! N n GYCYp . D . 3 ! N n GYp,

we make a fresh start. We have, by hypothesis, a progression R whose

domain is contained in GYp; hence s'D'i£ Cp. Thus it will suffice to prove

N e NC mult . R e Prog . T)'R C Cls induct . D . g ! N„ n s'D'R,

where the conditions of significance reqiiire that D'R should consist of classes.
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For this purpose, we prove that no member of T)'R can be the last that

has new members which have not occurred before. The proof proceeds by

showing that if this were not so, s'D'R would be an inductive class, and

therefore, by #120*75, D'R would be an inductive class. Hence (#124'534)

the members of ~D'R which introduce new terms form an N , by #1 23*19;

and so therefore do the classes of new terms which they introduce (#124*535).

Hence (#124-536) a selection from these classes of new terms, which is a sub-

class of s'VR, is also an tf , and therefore (#124 -

54) there is a progression

contained in s'D'72 if the selection in question exists. This completes the

proof.

In virtue of #1 24*5 11 and #120*74, we have, without the multiplicative

axiom,

#124*6. I- : p~e Cls induct . = . Cl'Cl'p e Cls refl

Hence if it could be shown that Cl'p cannot be reflexive unless p is

reflexive, a double application of this would enable us, by means of #1246, to

identify the two definitions of the finite without the multiplicative axiom.

#124 01. Cls refl = p {(rR) . R e 1-»1 . (TR C V'R .>&lB<R.p = V'R] Df

An equivalent definition would be

Cls refl = D"{(1-*1) * d'B - Cnv"(F5} Df.

#12402. NC refl = N c"Cls refl Df

#124 021. Nc'p e NC refl . = . N c
l
p e NC refl Df

#12403. NCmult = NCna{*6anClsex 2 excl.3
(t .a!e/*} Df

#1241. r : p e Cls refl . = . (aJB) . R e 1->1 . <J'R C D'R . a ! ~B'R . p = V'R

[(#12401)]

#12411. \-:Rel-+l.a'RCI) tR.Rl~B<R.D.'D'ReCtereft [#1241]

#12412. h . K C Cls refl [#12312 . #1241]

#12413. h : p e Cls refl . D . a ! N n Cl'p [#1241 . #123192]

#124*14. I- : p e Cls refl . 3 . p u a- e Cls refl

Dem.

h. #71242. *50-552. 3

\-:Rel-+l.a<RCD'R.ft\l3<R.r><R = p.S=It(<r-p).1.
RvSel-*l.D'(RKjS) = *D

eRv(r.(l t(RvS) = <I
tRyj((r-p).

[Hp.*93101] I.RvSe 1-*1 . V'(R uS) = pu<r. ^(R v S)=~B'R .

[Hp.#1312] 3 . Rv S el-*l .B'(Rv S) = p u <t .Rl'B'iRv S) .

[#12411] D.puo-eClsrefl (1)

r. (1). #1241. DK Prop
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#124141. h : a ! Cl'p a 01s refl . 3 . p e Cls refl

Dem.
I- . *12414 . D I- : ^ e Cls refl . 3 . /i w (p - /*) e Cls refl .

[*24'411] Dh-./iCp./LteClsrefl. 3 . pe Clsrefl : 3 r . Prop

#12415. I- : p e Cls refl . = . a ! J* * Cl'p

h . #124*12 . 3 I- : a ! K * Cl'p . 3 . a 1 Cls refl a Cl'p .

[#124*141
J 3. pe Cls refl (1)

I- . (1) . #124*13 .Dr. Prop

#124-151. h:peClsrefl. = .Nc'p^J<, [#12415 . #117-22]

#124*16. I- : p e Cls refl . = . (go-) .crCp.^lp — <r.psm<r.

= . 3 ! Nc'p a Cl'p - t'p

Dem.

r . #73*1 . 3 r : (a<r) . o- C p . a ! p — o-.psmcr.s.

(gii,<r) • * Cp . a P -<* --B e 1-*1 D'iS* P • <3'-R = <r .

[*i3-i95] = . (a#) . a-u Cp . a \p-a'R . jz ei-»i . v'R= P .

[#13-1 93] = . (a-fl) . a'^ C D'R . a ! D'i2 - d'R . R e i-*i . d<r « p

.

[*93-101.*124-l] = . p e Cls refl : 3 r . Prop

#124*17. l-spe Cls refl . = . (a#) • x e p . p — i'x &m p

Dem.

r . #124-16 . 3 h : (a#) . # e p . p — t'# sm p . 3 . p e Cls refl (1)

h.#123l7l92-311.3

r : £ e 1-*1 . d'R CT>'R . we B'R . 3 . R*'xsm R*'x- i'x.

[#73-7] 3 . (D'i? - i^'a;) w R*'x sm (D'i2 - .%<#) u (i^'« - t'tf)

.

[#2441 1-412] 3 . D'i2 sm D'R - t'# (2)

h . (2) . *124*1 . 3 r : p e Cls refl . 3 . (a#) . # e p . p sm p - i'x (3)

K(l).(3).3KProp

#124-18. h : p e Cls refl . p sm <r . 3 . <r e Cls refl [*1241 51 . #100*321]

#124-181. h : p e Cls refl . 3 . p - i'x e Cls refl . p - i'x sm p

i)em.

(-.#124-17-18. #73-7 2. 3
h : p e Cls refl . x e p . 3 . p - i'x sm p . p - i'x e Cls refl (1)

h.(l).*51-222.3h.Prop

#124182. h :peClsrefl. o-eClsinduct. 3.p-o-eClsrefl.p-o-smp

[#124-181 . #120-26]

#124-2. r : n eNC refl . = . (gp) . p e Cls refl . /* =N c'p [(#124*02)]

#124*21. r :/A eNCrefl. = .

(ai?) . R e 1-*1 . d'R cn<R.>&l~B'R.fi. = Noc'D-iJ [#124-2*1]

afe-wr ii 18
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[*123-36-322.*103-26]

[#10-35]

[#124-15]

[#124-2]

*124'23. K:/icNCrefl. = .^>«
Dem.

V . #117-241 . D I- : p> K . = . (a«, 0) . /* = N c<« . K = N c</3 . a ! Ol'a* Nc'£.

= . (a«,/9) . /*« N c'a . /3eK . g ! Cl'a a K .

= . (ga) . At = N Ca . g ! Cl'a r» K .

= (a«) A* =N c'« . a e Cls refl

.

= . At e NC refl : D 1- . Prop

#124-231. h : a ' NC refl . = . a '• Ols refl . = . a ! K [*1 24-21213]

#124-232. h : a ! NO refl . D . Infin ax [#124-231 . #12318]

#124-24. r-:.
/
*€NCrefl.s:/*eN C:(ai')./*«No+o»'-i'fNG

Dem.
K #124-23. #11 7-31. D

l-:.^eNCrefl.s:^K,eN C:(ai').peNG.A*-No+,i' (1)

I- . #1 10-4 . D r : a*
= N + v . At eN C . D . K eN C (2)

K(l).(2).DI-.Prop

#124-25. h : jjl e NC refl . = . fi eN C ./£ = /* + l. = .;g!p-At s A*+«l

[#124-17-2]

#124-251. h : At e NC refl . D . At = a* + 1 [#124*25]

#124-252. I- : /* e NC refl . p e NC induct . D . /* = ^ +c v

Dem.
Y . #124-251 .Dr-:A*eNCrefl./*--/*+ i».D.A* = /*+o*'+«l (1)

I- . (1) . #120-11 . D I- . Prop

#124-253. l-:AteNCrefl.D.At = A*+o^o

I- . #124-24 . D I- : Hp . D . (a*) . At = K +c v .

[#123-421] D.(a^)./* s=K + K + p.A*»=«o+,»'-

[#1313] D.At = K +c/*:^ |
-- ProP

#124-26. I- :. a* e NCrefl . D : v e NC induct . D„ . At > v

Dem,.

K #124-231. D I- :.Hp.D:a!No:
[#123-43] D : p e NC induct . X N. > *> (1)

K(l). #124-23. DK Prop

#124-27. h , NC refl n NC induct = A [#124-26 .#117-42]

#124-271. h . Cls refl a Cls induct = A
Dem,

V .#124-2 . D I- : peClsrefl . D . NcV NCrefl .

[#124-27] D . N c'a>~ e NC induct

.

[#120-21] D . p~e Cls induct : D h . Prop
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*124-28. h : p e Cls refl . = . N c<p e NC refl . = . Nc'p e NC refl

Dem.

r . *4'2 . (*124'021) .31-: Nc^ e NC refl . s . N„c'p e NC refl .

[*124-2] = . (a«r) . o- e Cls refl . N c'p= N c'o-

.

[#10314] = .(g^.o-eClsrefl.psmo-.pei'o-.

[*124-18.*73-3.*63103] = . p e Cls refl : D H . Prop

#124 29. h . s'NC refl = Cls refl

Dem.
h . #4011 . D I- : p es'NC refl . = . (a/*) . yueNCrefl . p e/* .

[*103-26] = . (3m) • /" e NC refl . p. = N^V .

[#13195] s . N c'p eNC refl

.

[*1 2428] = . p e Cls refl : D I- . Prop

#124-3. h :: g ! K . D :. M < K . v . p,> K : = . p, eNC induct u NCrefl

[#123-45 . #124-23]

#124-31. r :g ! K . D.spec'K = NC induct u NCrefl [#124-3 .#120-431]

In virtue of the above proposition, if there are any numbers which are

neither inductive nor reflexive, they are such as are neither greater than,

less than, nor equal to Ha . (The existence of K in a suitable type can be

deduced from the existence of numbers which are neither inductive nor

reflexive; cf. #124 -

6.) Two further propositions (#124 ,33 ,

34) are given below

on non-inductive non-reflexive classes and cardinals. The subject is resumed in

the remarks at the end of the number.

#124-33. h :. a ! K . D : /* e NC - NCinduct - NCrefl . = .

H e NC .~(/i < No) ~(/*> K) [#1243 . Transp]

#124-34. h :: a ! X . D :. «~e (Cls induct u Cls refl) . = :

~(37) :7eN :«Cy.v.yCa
Dem.

h . #120-21 . #124-28 . D h : o~e (Cls induct w Cls refl) . s .

Nuc'a~ e (NC induct v NC refl) (1)

h . #123-36 . #103-26 . D h : /3 e N . D . K = N c</3 (2)

I- . (1) . (2) . #124-31 . D h :: /3 e K . D :. a~e (Cls induct u Cls refl) . = :

N c'a~ e spec'N c
f
/3

:

[#120-432] = : ~(N c'a< N c</3) . ~(N„c'a> N c</3)

:

[#117107-22] = :~(Nc'a <Nc</3) :^(S7> 7 eNc'£'-7 c «

=

[#123-322] = :~(Nc'a < K„) :~(37> 7 <? **o • 7 c * =

[#123-47] =:^(a7).7eK .aC7:~(a7)-7eN .7Ca (3)

r. (3). #1011-21. Dh. Prop

#124-4. I- :. p, € NC mult . = : p, e NC : k e p, r\ Cls ex2 excl . DK . g ! eA '/c

[(#12403)]

18—2
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1

#12441. h . NC induct C NC mult [#120-62 . *124'4]

The following propositions give the proof of #124-56, which identifies the

two definitions of the finite, on the assumption that K is a multiplicative

cardinal. (#124-513, however, is only used in proving #124*514, and #124-514

is not used in the proof. It is retained as marking a stage in the argument,

although the actual propositions subsequently used are not it, but the lemmas

which lead to it.)

#124-51. h : p~ € Cls induct . Q = (n Cl'p)
\
N\ Oiv'(a Cl'p) • 3 •

Q e Prog . ~D'Q C Cl'Cl'p . V'Q = (a Cl'p)"NC induct

N here has the meaning defined in #12302.

Devi.

h . *120-61-21 . #123-25 . 3 I- : Hp . 3 . N e Prog (1)

I- . #120-491 . 3 h :. Hp . 3 : /*, v e NC induct . Dh< v . g ! /* n Cl'p .ftlvn Cl'p

:

[#22"5] 3 : ji, v e NC induct . /* r> Cl'p = v r\ Cl'p . 3M> „

.

Ql fir\pr\ Cl'p

.

[#10043] 3M)V ./t=i>

[#71-55] 3 : (« Cl'p) T NC m<*uct e 1->1 (2)

h . (1) . (2) . #123-32 . 3 I- : Hp . 3 . Q e Prog (3)

h.*22-43. 3h:«eD'Q.3.aCCl'p (4)

h . (3) . (4) . #37-32-321 . 3 h . Prop

#124-511. h :p~ e Cls induct. 3.

Cl'Ol'p e Clsrefl . i> Cl'p)"NC induct e H " Cls ex2 excl

[#124-5 115 . #120-491 . #100-43]

#124 512. h : P e <?A 'i> Cl'p)"NC induct . 3 .

D'P e K a Cl'Cl'p . D'P C Cls induct

Dem.

h . #8311 . Transp . 3 h :. Hp . 3 : v e NC induct .D,.g!^ Cl'p (1)

h . #11516 . (1) . #124-511 . *120'491 . 3

h : Hp . 3 . D'P e Nc'(n Cl'p)"NC induct . p~ e Cls induct

.

[#124-511] 3.D'PeK (2)

h . #8321 . 3 h :. Hp . 3 : a e D'P . 3 . (gy) . r e NC induct .ae^ Cl'p .

[*10-5.#120-2] 3 . a e Cls induct . a e Cl'p (3)

h . (2) . (3) . 3 h . Prop

#124-513. h : a ! e4 '(n Cl'p)"NC induct . 3 . Cl'p € Clsrefl [*124*51215]

#124-514. h :. K <:NC mult . 3 : p~e Cls induct . 3 . Cl'p e Clsrefl

[#124-5 11 -513-4]

The following propositions are concerned in proving that, if tt is a

multiplicative cardinal, then a class such as D'P in #124*512 must be such
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that a progression is contained in s'D'P. The characteristics of D'P which

are used in the proof are D'PeK . D'P CCls induct. Since D*PeN , we
have (gP) . P e Prog . D'P= D'P. Hence the hypothesis with which the follow-

ing series of propositions is concerned is

P e Prog . D'P C Cls induct,

but the earlier propositions do not need the full hypothesis.

—*
In what follows, note that if 7 e D'P, 7 — s'Pp0'7 is the class of those

terms which occur in 7 and have never occurred before in any earlier member
of D'P. We prove that, with our hypothesis, members of D'P for which this

class of new terms is not null form a class which has no last member, and

therefore form a progression.

*12452. h :. P « Prog ,<r = $ {(H7) . 7 e D'P . fi= 7 - 5'Pp0
'

7 . g ! 0\ . D :

a- e Cls ex2 excl : 7, 8 e D'P . 7 4= 8 . D . (7 - s'R^'y) f\{8- s'R^'B) = A
Bern.

h. #20-33. Dh:.Hp.D:/9eo-.D^.g!/3 (1)

h. #122-21. Dh:.Hp.7,SeD'P.7^S.D:7PpoS.v.8Ppo7 (2)

h . #4013 . D h :. Hp . 7PP0S . D : 7 C s'Ppo 'S

:

[#24-3] D:(y-s^pQ
<

J)
n (8-s<'RpQ <8) = A (3)

Similarly h :. Hp . 8RpoJ . D : (7 - *<P
P0'y) n (8 - s'Pp0

'S) = A (4)

h . (2) . (3) . (4) . D h : Hp . 7, 8 e D'P . 7 4 8 . 3

.

(7-5'Ppo'7)a(S- S'PPo^) = A (5)

h . (5) . #20-33 . Dh:Hp./3,/3'e<r./3=|=/3'.3./3*/3' = A (6)

h.(l).(6).(5).Dh.Prop

#124-521. I- : Hp *124'52 . it = $ {7 e D'P .317- s'Pp0'7} . D . <r sm tt

Pern.

h . #124-52 . #24-57 . D

h:Hp.7,8e7r.74=S.D.7-s'Ppo'74=8-5'Ppo
'5 (1)

h.(l).Dh:Hp./Sf = ^{7 6 D'P./3 = 7-*%o'7-a!/3}-=>-
£e 1 -* 1 . D'£ = cr . a'5 = 7r :. D I- . Prop

#124-53. h:PeProg.3.s'D'P~eClsinduct [#120'75 .#122-37]
—>

#124'531. h:Re Prog . D'P C Cls induct . 3 . s'R*'y e Cls induct

Dem.

h . #122-38 . D h : Hp . D . ~R**y e Cls induct (1)

h . (1) . #120-75 . D h . Prop

#124-532. h : P e Prog . D'P C Cls induct . D . g ! s'D'P - s'P*'7
[#124-53-531 . #120-481 . Transp]
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*124 533. I- : R e Prog . D'R C Cls induct . 7 e D'R . D .

(3/3). yRvo0. a l/3-s<RvQ
'$

Bern.

V . *124"532 . D h : Hp . D . (a/3) . eD'R . a ! P- 8'R#'v (1)

K*40'13. D\-:ftR%y.D./3Cs'R*'y:

[Transpj D h : g ! /3 - s'R*'y . D . ~(/3%y) =

[*122-21] D h : Hp . /3 e D'i* . a ! /3 - *'^'y . D . yRpo(3 (2)

h.(l).(2).D
_^

r:.Hp. D:(g/3). 7^/3.^1/3-^7: _^

[#122-23] D : E ! min (fl^'fl {yRm/3 . a ! j8 - *%o^l :

_^
[*93-llip: (a/3) : 7£po/3 . a ! /3 -^'7 = ^o/3 3a j^^7 :

[#40-151] 3 : (a£) 7-^o/3 3 ! j8 -^'7 ''Xo'? C^7 =

[#22-81] D : (a/3) . yR^/3 . a ! £ - *%<>'# :. D I- . Prop

#124-534. h : R e Prog . D'R C Cla induct

.

ir = y{yeD<R.Rly-s (Rv0'y}.3.7reK
Bern.

h . #124-533 .Dh:Hp.D.a!7r.7rC i2po
< *« (1)

h. (1). #12319. Dh. Prop

#124-535. h : R e Prog . D'R C Cls induct

.

^ = ^Ka7)-7eD^./3 = 7-*%o i

7-a^}-^-°- e ^o

[*1 24-534-521. #123-321]

#124-536. h:Re Prog . D'i2 C Cls induct

.

<r = ${(m)-yeV'R.l3~v-s<~RpQ<ry.nli3}.

8 e eA '«r . D . D<£ e K„ . D<£ C s'D'R
Bern.

h . #115-16 . *124-52-535 . D h : Hp . D . D'S e N (1)

h . #83-21 . D h : . Hp . D : D'S C s'o-

:

[*40-ll]D:«eD^.D.(a/3,7).7 6D'i2.^ = 7-s (Epo'7.a! /
g.«e/3.

[#13-195] D . (37) . 7 e D'J2 . x e 7 - s'iV7 .

[#22-43] D. (fry), y eD'R. cccy.

[#40-11] D.#es'D'i2 (2)

K(l).(2).Df-.Prop

#124-54. I- : K e NC mult . R e Prog . D'R C Cls induct . D . a I No a CIVD'E

h. #124*52-535-4. 3

h:.Hp.3: --
/S{(a7).7eI>^./3 = 7~*^po (7.a!/3}.3-a^iV.

[#124-536] D.g!K n Cl's'D'R :. D K Prop
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*124541. h : N e NO mult . P e e4 <(* Cl'p)"NO induct . D .

Dem.

h . *124512 . D h : Hp . D . D'P e tf . D'P C Cls induct

.

[*123-1] D . (aiJ) . D'P = V'R . R e Prog . D'iS C Cls induct

.

[*124-54] D .
(ai?) . D'P = T>'R . g ! N n CIVD'E

.

[*13-193.*10-35] 3 . a ! K n CIVD'P (l)

h . *124"512 . D h : Hp . D . D'P e Cl'Cl'p .

[*602] D.D'PCCl'p.

[*6052] 3 . s'D'P C

p

(2)

K(l).(2)OKProp

*12455. I- : N € NC mult . p~ e Cls induct . D . a ! N n Cl'p

Dem.
h . *124-511'4 . D h : Hp . 3 . a ! eA '(rt Cl'p)"NC induct

.

[*1 24-541 .#60-4] D . 3 ! N n Cl'pOK Prop

*124-56. h : N eNCmulfc.D.-Clsmduct=Clsren.N C-NCinduct=NCrefl

Dem.

h . *124'5515O h : Hp . D . - Cls induct C Cls refl (1)

K #124-271. D K HpO. Cls refl C- Cls induct (2)

h . (1) . (2) . D r- :. HpO : - Cls induct = Cls refl

:

(3)

[*120'21.*124-28] D : N„c'p~eNC induct . = . N c'p eNCrefl

:

[*103-2.*124-2] D:aeN C-NCinduct. = .aeNOrefl (4)

K (3) . (4)O K Prop

The above proposition identifies the two definitions of the finite, on the

hypothesis N eNC mulfc.

#12457. r- : ft, e N C - NC induct . 2* e NC refl [#124-511 . #11672]

*124'58. h : . 2* e NC refl O, . fi e NC reflO . N C - NC induct = NC refl

h . *124-57 O h :. HpO : ^eN C - NC inductO . 2* eNCrefl .

[Hp] D./t eNCrefl (1)

K (1) . *124-2-27 O K Prop

The above proposition gives another hypothesis which would enable us to

identify the two definitions of the finite if it could be proved, namely

2* e NC refl 0„ . fi e NC refl,

or, what comes to the same thing,

CI {
p e Cls refl O.pe Cls refl.
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*124'6. f- : p~ e Ols induct . = . Cl'Cl'p e Cls refl

Bern.

h . *1 24-511 . D V : p~e Cls induct . D . Cl'Cl'p e Ols refl (1)

h . #120-74 . D h : p e Ols induct . D . Cl'Cl'p e Cls induct

.

[#124-271] D.CI'Cl'p~e Cls refl (2)

h.(l).(2).Dh.Prop

#124-61. h:.K eNCmult.D:peClsrefl. = .01V«OIsrefl. = .Cl'01'p€Clsrefl

Dem.

h . #124-6-271 . D h : p e Cls refl . D . Cl'p e Cls refl . D . Cl'Gl'p e Cls refl (1)

h.*l 24-6-56. Dh:.N eNCmult.3:Cra'p«Clsrefl.D.peClsrefl. (2)

[(1)] D. Cl'p e Ols refl (3)

K(l).(2).(3).Dh.Prop

The following properties of cardinals which are neither inductive nor

reflexive (supposing there are such) are easily proved. Let us put

NO med = N C - NC induct - NC refl Df,

Cls med = - Cls induct - Cls refl Df,

where "med" stands for "mediate." Then

p, e NC med . D . p + 1 e NC med . p - 1 e NC med . p, ={= p +a 1 . p. =j= p -«. 1.

Hence mediate cardinals have no maximum or minimum.

ft, v € NC med . D . p +a v e NC med,

p, e NC med . v e NC med \j NC induct — i'O . D . p, x c v e NC med,

whence p. e NC med . D . p?, p?, . . . e NC med.

pv
eNC med . D : p e NC med . v . i> e NC med,

/teNCmed.D.2^eNCrefl,

whence g ! NC med . D . (gi>) . v e NC med . 2" e NC refl,

since we have either p. e NC roed . 2* e NC refl or 2» e NC med . 2^ e NC refl.



*125. THE AXIOM OF INFINITY

Summary of #1 25.

The present number is merely concerned to give a few equivalent forms

of the axiom of infinity, and of the kindred assumption of the existence

of N .

In virtue of #125'24'25 below, if the axiom of infinity holds in any one

type, then it holds in any other type which can be derived from this one, or

from any type from which this one can be derived. Hence if we assume, as

it seems natural to do, that all extensional types are derived from a first type,

namely that of individuals, then the axiom of infinity in any such type is

equivalent to the assumption that the number of individuals is not inductive.

We deal, in this number, first with equivalent forms of Infinax, then

with equivalent forms of Infin ax (#), then with equivalent forms of g; ! N
or g!N (#). When "Infinax" or "g ! N " occurs in this number without

typical definition, it and all other typically ambiguous symbols are to be

taken in the lowest logically possible types, or with the same relative types

as if this had been done. The propositions of this number are often not

referred to in the sequel, but are here collected together on account of their

intrinsic interest.

*1251. h :. Infin ax. = :aeNC induct. Da .a!« [*120'3]

*12511. h:.Infinax. = :aeNCinduct.3a .a^a+ l [*120'33]

$12512. h :. Infin ax . = : a eNC induct . Da . g ! a + 1

Dem.
h.*101\L2.*125\L.D

h :. Infin ax . = : a e NC induct - I/O . Oa . 3 ! a :

[*120-423] = : a e NC induct . Da . a ! a +c 1 : . D h . Prop

*12513. r- : Infin ax . = . A~e NC induct [#125*1 . *24"63]

*12514. !- : Infin ax . = . (+ 1) [ NC induct e 1 -> 1

Dem.

h.*123-22-24. D h : Infin ax. D. (+ l)fNC induct e I -* 1 (1)

h .#71-55 . D h :. (+ 1) [ NC induct e 1 -* 1 . D :

a, y9 e NC induct . a + 1 = /3 + 1 . Da,p . a = j3 :

[Transp] D : a,/3 eNC induct . a + /3 . D«)/s . a + 1 + /3 + 1 :

[*10'1] D : A, £ eNC induct . A + £ . Dp . A +, 1 * £ + 1 :

[*1 10-4.Transp] D : A e NC induct . £ e NC induct . g ! . Dp . 3 ! (/3 + 1) (2)
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h. (2). #1011 2. #120-13. D
h :. (+ l)f NC inducte 1 -» 1 . A e NC induct . D : j3 eNCinduct . Dp . a I /3 :

[#24-63] D:A~ eNC induct (3)

h . (3) . #201 . *125\L3 . D h : (+ 1) [ NC induct e 1 -* 1 . D . Infin ax (4)

h . (1) . (4) . D h . Prop

#12515. h :. Infin ax . = : p e Cls induct . Dp . a ! — p

Dem.

h. #110-63. Dh:#~e p. Dx .pv i'weNc'p+e l :

[*10'28] Dhigl-p.D.g! Nc'p +c 1

:

[Syll] D h :. p e Cls induct . Dp . g ! - p : D :

p e Cls induct . Dp . g ! Nc'p -t- 1 :

[#120-2] D : a eNC induct . p e a . Da>p . g ! Nc'p +c 1 :

[#100-45] D : a eNC induct . a ! « . Da . g ! a + 1 :

[*12013.*10M2] D:aeNCinduct.Da .a!« (1)

!- . #13-12 . D h :. a eNC induct . D tt . a ! (a + 1) : D :

a e NC induct . N c'p = a . Ds p . g ! (N c'p + 1)

:

[#120-21] D : p e Cls induct . Dp . g ! (N c'p + 1 )

.

[*103-ll.*63-101.*110-63] Dp . (37, s) . 7 sm p. z~e 7. 7 ei'pv-i'p (2)

h . *1312 . *10'24 . Dh:7 = p.£~e7.D.g!-p (3)

h . #120-426 . #24-6 . D h : p e Cls induct . 7 + p . 7 C p . D . ~(7 sra p)

:

[Transp] D h : p e Cls induct .7smp.7=j=p.D.a!7~ p.

[#24-561] D . g ! - p (4)

h . (3) , (4) . D h :. p e Cls induct : (37, z) . 7 sm p . ^~e 7 . 7 e t'p u — t'p : D .

3!~P (5)

h . (2) . (5) . D h :. a e NC induct . Da . g ! (a + 1) : D :

p e Cls induct . Dp . a ! — p (6)

h . (1) . (6) . #125-121 . D h . Prop

#125-16. h : Infin ax . = . g ! Cls - Cls induct . = . 3 ! N C - NC induct .
= .

V~ e Cls induct

Dem.

h . #125-15 . D h :. Infin ax . = : p e Cls induct . Dp . p 4= V :

[#13-196] =:V~ e Cls induct (1)

h . #120*481 . Transp . D h : a ! Cls - Cls induct . D . V~e Cls induct (2)

r . (1) . (2) . #120-21 . D h . Prop

#125-2. h :. Infin ax (x).= : a e NC induct . Da . a ! a (x) [*120'301]

#125-21. h : Infin ax (x). = . t'x~ e Cls induct

Dem.

H . #125-15 . D h :. Infin ax (*) . s : p e Cls induct a Cl'*'a? . Dp . a ! - p :

[#63-102] = : p e Cls induct a Ol'i'a? . Dp . p *^

:

[#13196] = : t'x~e Cls induct :. D h . Prop
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*12522. h : InHn ax (#). = . f"x e Cls refl [*125'21 . #6366 . #124-6]

#12523. h : Infin ax (x). = . a ! N (V'x) [*1 25-22 . #124-15]

*12524. I- : Infin ax (x). = . Infin ax (t'x) . = . Infin ax (t
2'x) . = . etc.

Bern.

h . *12521 . D h : Infin ax (x). = . t'x~e Cls induct

.

[#12074] = . C\'t'x~ e Cls induct

.

[#6366] = . t
2'#~ e Cls induct

.

[#125-21] = . Infin ax (t'x) : D I- . Prop

#125 25. h : Infin ax («).= . Infin ax (V*) = Infin ax (ta
u
a) . = .

Infin ax (t
nt

a) . = . etc.

[*116-91-92 . *120-56-52 . #125-21]

#125-3. h : g ! « . = . a ! (1 -> 1) n E (a ! li'R .~a ! B'R)

Dem.

H. #123-1. Dh: a !X . = . a !Prog.

[#12211-141] D.Rl(l-*l)nR(RllB'R.~>z\B<R) (1)

h . #123-192 . D h : a ! (1 -> 1) n R (a llfi'ig .~a I i?LR) . 3 . a ! K (2)

h.(l).(2).DKProp

#12531. h : a ! K (a?) . = . t
lx e Cls refl [#124-15]

#125-32. h : a ! K„ (a;) . = . a I (1 -> 1) n D'i<# - O'e'a?

Dem.

h . #63-102 . D h : a ! (1 -> 1) n D'*'* - (Way . = .

(3^) i? £ 1 -> 1 •WR = t'x . d'R Ct'x.ftl t'x-d'R .

[#124-1] = .t'xe Cls refl (1)

I- . (1) . #125-31 . D h . Prop

#125-33. h :. a ! « (*) . = : a C i
(* . a ! a . Da . a ! (1 -> 1) n D fa - afa

Z)em.

h . #73-7 . #51-222 . D h : aQt'x.yea.zet'x-a. 3 .asm (a-i'y) u t^

:

[#731] 3 . (a#) . E e 1 -> 1 . D'iJ = a . (Fi? = (a - t'y) w t^

.

[#33-6-61] D.a!(l-*l)nD'a-<I'a (1)

h
. (1) .

D h : a ! a a ! *
f* - a => 3 ! (! -> x ) ft D 'a ~ a'a :

[#63-102] D h : a ! a a C i
f*

. a + f* . 3 . a ' (1 - !) rt D'« - a<a (2)

h. (2). #125-32. Dh. Prop

#125-34. h : a ! K„ (a) . = . i't'x~€ NC

h . #125-32 . D h :.~a ! ^ («) . = : E e 1 -> 1 . D'i^*'*. DR . (Ti2 = «<a;

:

[#100-13] = :m't<x=l't'x.

[#100-41-45] ^ii't'xeNC (1)

K (1) . Transp .!>!-. Prop
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#125-35. I- : K e NC mult . D : g ! K (a?) . s . Infin ax (x)

Dem.

\- . *125'21 . *124'56 . 3 h : . Hp . D : InHn ax (#). = . t'x e Cls refl .

[#125-31] = . g ! K (x) :. 3 h . Prop

#125-36. V : Infin ax (Cls) . = . g ! N (Cls)

Derm.

V . #24-14 . #63-102-66 . D H . f lx = Cl'V

[#24-11] =Cls (1)

f- . (1) . #125-24 . D h : Infin ax (Cls) . = . Infin ax (x)

.

[#125-23.(1)] = . g ! K„(Cls) :Dh. Prop



#126. ON TYPICALLY INDEFINITE INDUCTIVE CARDINALS

Recapitulation of Conventions and Summary of #126.

We have now arrived at the stage where we can adopt the standpoint of

ordinary arithmetic, and can for the future in arithmetical operations with

cardinals ignore differences of type. In order to understand how this is so,

it will be necessary briefly to recall the line of thought of some of the previous

numbers and the conventions upon which the symbolism is based.

The symbolism of #102, though perfectly precise as to the typical relations

of the various symbols, is in fact too complex for use, except in cases of

absolute necessity. It is better to use the typically ambiguous symbols Nc
and sm, combined with some simple rules of interpretation of the symbolism,

so as to secure that the various occurrences of the same symbols are in their

proper relationships of type. This is the course followed in #100, #101, and

in every number from #110 onwards.

The important symbols which involve an explicit or implicit use of Nc or

sm are called " formal numbers," and it is only necessary to make the rules of

interpretation apply to them.

A constant formal number is any symbol representing a typically ambiguous

constant such that there is a constant a such that, however the ambiguities

of type may be determined, the former constant is identical with Nc'a. The
variable formal numbers are denned by enumeration. They are divided into

three Sets, the Primary Set, the Argumental Set, and the Arithmetical Set.

The Primary Set consists of Nc'a, 2 Nc'/t, II Nc'*, where a is a variable

Cls of any type and k is a variable Cls2 of any type. Also a and k may them-

selves be complex symbols which in some way involve variables.

The Argumental Set has only one member sm"/i, where /i is a variable

Cls2 of any type. In its capacity of a formal number sm"/* is only interesting

when fi is an NC; then sm"//, gives the corresponding NC in another type,

provided that /t is not A. Also /a may be a complex symbol which in some

way involves a variable, e.g. sm"Nc'a is a formal number of the Argumental

Set: fi is called the argument of sm"/x.

The Arithmetical Set consists of fjb+ v, /t x v, /i", /t — v. These formal

numbers are only interesting when /t and v are also members of NC. Also

fi and v may be complex symbols, so long as one of them at least involves a

variable. For example 23"1
"

'' is a formal number, and so is a+„(3 + v).

The Primary and Argumental and Arithmetical Sets of Formal Numbers
are derived from the corresponding sets of variable formal numbers, by
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T

adding to them the constant formal numbers obtained by substituting constants

for the variables occurring in the expressions for the members of the variable

set in question.

In the formal numbers of the arithmetical set as written above, fi and v

are called the first components. Thus every formal number of this set has

two first components. The first components (if any) of the first components

are also called components of the original formal number, and so on; so that

components of components are components of the original symbol.

A formal number of the arithmetical set, whose components are all formal

numbers, either constant or variable but not belonging to the argumental set,

is called a pure arithmetical formal number. These are the formal numbers

which it is important in arithmetic to secure from assuming the value A
owing to lowness of type.

The logical investigation of #100 and #101, where typically ambiguous

formal numbers are used, is directly concerned in investigating the premisses

necessary to secure various propositions from fluctuating truth-values owing

to the intrusion of null-values among the cardinals. The convention, necessary

to avoid determinations of type which we never wish to consider, is as follows,

where the terms used are explained fully in the prefatory statement:

IT. Argumental occurrences are bound to logical and attributive oc-

currences; and, if there are no argumental occurrences, equational occurrences

are bound to logical occurrences. This rule only applies so far as meaning

permits after the assignment of types to the real variables.

In #110, #113, #116, #119 we consider the arithmetical operations of

addition, multiplication, exponentiation, and subtraction. Also in #117 we
consider the comparison of cardinal numbers in respect to the relation of

greater and less.

There is no interest in complicating our theorems by allowing for the cases

when a pure arithmetical formal number, whose components are ambiguous

as to type, becomes equal to A owing to the low type of one of its components.

Also in the theory of greater and less the possibility of null-values in low

types has no real interest. Accordingly these are excluded from any con-

sideration by the definitions

#110-03-04, #113-04-05, #116-0304, #117-02-03,

as far as members of the primary set of formal numbers are concerned; and
for other formal numbers by the following convention:

II T. Whenever a formal number a occurs, so that, if it were replaced by
Nc'a, the dominant type of Nc'a would by definition have to be adequate,

then the dominant type of u is also to be adequate.
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When a- is a pure arithmetical formal number, this convention secures

that the type of every component is adequate.

But in arithmetic we also wish to avoid the intrusion of null-values into

the consideration of equations, so far as this avoidance can be attained by the

use of high types. Accordingly when we are concerned with the purely

arithmetical point of view, we add also the following definition and con-

vention (AT).

Definition. An arithmetical equation is an equation between pure arith-

metical formal numbers whose dominant types are both determined adequately.

AT. All equations involving pure arithmetical formal numbers are to be

arithmetical.

This convention is used in #117 and in some earlier propositions which

are noted in the prefatory statement.

Its effect is to render the statement of hypotheses often unnecessary.

Examples of its application to the numbers where it is not used in the

symbolism are also considered in the prefatory statement.

In the case of the inductive numbers we cannot logically prove, apart

from Infinax, that one type exists which is adequate for all the formal

numbers 0, 1, 2, 3, etc. But we can prove that for any particular inductive

number, say 521, a type exists for which 521 is not equal to A. Accordingly

for a given symbolic form, in which the symbolism necessarily has only finite

complexity, when the types of variables which by hypothesis represent

inductive classes or inductive numbers, not A, have been settled, it is always

possible to fix on a type which will be adequate for all the pure arithmetical

formal numbers produced by the symbolism of the form, and also at the same

time (and here the peculiar properties of inductive numbers come in) to have

chosen the original types of the variables so that any of the variables can assume

the value of any assigned constant inductive number, say 521, without being

null.

The result is that we may assume that the symbols representing inductive

numbers are never null, and thereby obtain the stable truth-values of propo-

sitions about them.

Accordingly we proceed as follows: we put

#126*01. NCind = NC induct - t'A Df

We make the rule that when NG ind appears, convention AT is always

applied. The result is that when a formal number is an NCind we need

never think about its type, and accordingly all the conventions vanish from

the mind, as far as pure arithmetical indefinite inductive cardinals are con-

cerned. We supersede all other conventions by the single one that, if it has

been proved or assumed that a formal number represents an inductive cardinal,
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the types are so arranged that that formal number is not equal to A. The

proofs of propositions in this number consist largely of the production of a

definite type in which this result is attained.

The important propositions are

#12612. b : v € NC ind . D . (v + 1) n t'v e NC ind

#126121. Kl,2,3,...eNCind

#126131415. r : a, € NC ind . D . a + /3, a x c /3, a? e NC ind

#126141. 1- : a, /3 e NC ind -«'0..= ,«x
fl^ NC ind - t'O

#12615! b : a, £ e NC ind - t'O . a
=f=

1 . = . a8
e NC ind - t'O - tl

Also #126 ,4 ,42 ,43 give the fundamental propositions for subtraction,

division, and "inverse exponentiation"; and #126'5*51'52 -53 the fundamental

propositions for the relations of greater and less.

#12601. NC ind = Nc induct -t'A Df

Whenever the symbol NC ind is used the Rule of Indefinite Numbers is

adhered to, so that all consideration of distinctions in type among inductive

cardinals can be laid aside (cf. Prefatory Statement and also the Summary of

this number).

#126011. h : v e NC ind . = . v e NC induct - i<A [(#1 26-01)]

#1261. b : v € NC ind . = . (ga) . a e Cls induct . v = Nc'a . g ! v

Dem,

b . #12014 . #100-4 . #126011 . D
hive NC ind . D . (get) . v = Ne'er . v e NC induct - 1'A .

[#118-01] D . (ga) . v = Nc'a . Nc'a e NC induct - t'A . g ! v .

[#120-211] D . (ga) . a e Cls induct . * = Nc (a.g!i> (1)

h . #120-21 . D h : (g«) . a eCls induct . i/= NVet . g ! v .

D . (ga) . N„c'a e NC induct . v = Nc'a . g ! v .

[*12015.#1 00-511] D . v e NC induct - 1<A (2)

h.(l).(2).Dh.Prop

#126*101. b :. fi, v e NC ind . g ! /** . D : /** = j^a. . = /u = v . = . ^ = v

[#1261. #10316]

#12611. KOeNCind [#12012 . *101'12]

#12612. b : v e NC ind . D . (v + 1) n t'v e NC ind

b . #120151 . D h : v e NC ind . 3 . * + 1 e NC induct (1)

b . #117-66 . #118-01 . D h : a e Cls induct . i/ = N c'a . g ! v . D . Nc'Cl'a > v

.

[*126-l.#120-429] D . Nc'Cl'a>v+c l.

[*10313.#117-32] D . g ! (v +c 1) n i'Cl'a

.

[*10312.*60-34] D.g!(y + C l)n^ (2)

b . (1) . (2) . #126-1 .Dr. Prop
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#126121. h. 1,2, 3,. ..eNCind [*1261112]

This proposition, taken in connection with #120-4232, embodies the con-

vention named the Rule of Indefinite Numbers and its justification. The
convention is that 1, 2, 3, ... are always in future to be used in existential

types. In other words whenever any particular inductive number is employed,

it is determined in a type in which it is not A. The justification is that by

#1261112 such a type can always be found for each particular inductive

number.

The convention is also applied to arithmetical formal numbers in

#126131415.

For all arithmetical and equational occurrences this convention is really

the outcome of IT, II T, and AT.

*12613. h:a,£eNCind. = .a+ /3eNCind

[*120-71 . #126-1 . *1103 . #10313]

#12614. h : a,£ eNC ind. D. a x £ eNCind
[#120-72 . #1261 . #113-25 . #103-13]

#126-141. I- : a, e NC ind - t'O . = . a x $ e NC ind - t'O

[#120-721. #113114]

#12615. h:«,/3 eNCind. I), a* eNCind [*12073. #11625 . #10313]

#126151. h : a, 13 eNC ind - i<0 . a + 1 . = . a* e NC ind - t'O - i'l

[#120-731 . #116-35 . #117-592]

#126-23. h : fi e NC . g ! p n t'a . 3 . ft ! 2" n tH'a . g; ! (ji + 1) n t't'a

Bern.

h . #63-661 . #116-72 . D
h : peNG . & e >in t'ct.D >CY0 e2» ntH'a (1)

h.(l). #11732.D
h:Hp(l).2^>i/.D.a!smui/n^a (2)

h . #117-661-31 . D h s Hp (1) . D . 2^> /* + 1 (3)

h . (1) . (2) . (3) . #100-511 . D I- . Prop

#126-31. h : a+ 1 e NC ind. =-=. a eNCind [#1261213121 .#120-452]

Note that the specification of the type of a + 1 is omitted in accordance

with the convention. The reference to #12612 shows that it is always

possible to apply the convention.

#126-32. h : a« NC-t<0 - t
fA . v eNCind . D . a +8 v> v [*120'428 . #110-3]

#126-33. h:.aeNCmd./8eNC-i'A.D:a<£.v.a«£.v.a>£ [#120-441]

#126*4. h : . p, v, vr e NC ind ,D : /x + «r = p +„«- . = . p=v
[#12613. #120-41]

*126'41. h i.fiyVy-er eNCind .ta-4=0.D:/AX o« = px o w.= ./xs=i;

[#120-51. #12614]

K&W II 19
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#12642. h:./i,iMireNCind. vr + 0.D:/*»«y*. = .^«y
[*120-55 . *126*15]

*126'43. hi.^i/.-sreNCind.w^O.w+l . D : st" = «r1' . ==
.
/z = v

[*I2053 . #126'15]

#1265. hi.^^oe NC ind . D : /i + w > v + ta- . = . ^ > v

K #117-561. Dh:Hp./*>»-.D.j4+ 8r^*+ o w (1)

K*126'4. Dh:Hp.^>y.D./A+ tir 4= v+ v (2)

h . (1) .(2) . #117-26 . D h : Hp . p > v . D . p, + w > v + w (3)

h .#117-561 . Transp . #117-281 . D

h : Hp./i+„iir> v + -5r. "D .~(v^ /m).

[*126-33] D./a>p (4)

h . (3) . (4) . D h . Prop

#12651. h :./i,y, tsreNCind .Br4= 0-^!/i x
o
tB"> I' >< o'sr ' = '/*>i'

[#117-571. #126-41]

The proof proceeds as in #126*5.

#126'52. h :./*,v,weNCind. sr=j=0.D:/Aw >*or
. = ./i>i>

[#117-581. #126-42]

#126-53. I- :. fi, v, vr e NC ind . v + . « 4= 1 . 3 : w1* > «" . = fi > v

[#117-591. #126-43]



PART IV

BELATION-AEITHMETIC



SUMMARY OF PART IV

The subject to be treated in this Part is a general kind of arithmetic of

which ordinal arithmetic is a particular application. The form of arithmetic

to be treated in this Part is applicable to all relations, though its chief

importance is in regard to such relations as generate series. The analogy

with cardinal arithmetic is very close, and the reader will find that what

follows is much facilitated by bearing the analogy in mind.

The outlines of relation-arithmetic are as follows. We first define a

relation between relations, which we shall call ordinal similarity or likeness,

and which plays the same part for relations as similarity plays for classes.

Likeness between P and Q is constituted by the fact that the fields ofP and

Q can be so correlated by a one-one relation that if any two terms have the

relation P, their correlates have the relation Q, and vice versa. IfP and Q
generate series, we may express this by saying that P and Q are like if their

fields can be correlated without change of order. Having defined likeness,

our next; step is to define the relation-number of a relation P as the class of

relations which are like P, just as the cardinal number of a class a is the

class of classes which are similar to a. We then proceed to addition. The

ordinal sum of two relations P and Q is defined as the relation which holds

between x and y when x and y have the relation P or the relation Q, or when

a? is a member of C'P and y is a member of C'Q. If P and Q generate series,

it will be seen that this defines the sum of P and Q as the series resulting

from adding the Q-series after the end of the P-series. The sum is thus not

commutative. The sum of the relation-numbers of P and Q is of course the

relation-number of their sum, provided C'P and C'Q have no common terms.

The ordinal product of two relations P and Q is the relation between

two couples zlx,wly, when x, y belong to C'P and z, w belong to C'Q and

either xPy or so = y . zQw. Thus, for example, if the field of P consists of

1P , 2P , 3^, and the field of Q consists of lQ , 2Q , the relation PxQ will hold

from any earlier to any later term of the following series:

1q I lp, 2q j, lP> 1q J, 2p, 2<j j, 2p, 1q 4 3i>, 2e | SP .

It is plain that, denoting the ordinal product of P and Q by P x Q, we have

C\PxQ)-C'PxC<Q,
where the second " x " as standing between classes has the meaning defined

in *113'01.

Infinite ordinal sums and products will also be defined, but the definitions

are somewhat complicated.
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The arithmetic which results from the above definitions satisfies all those

of the formal laws which are satisfied in ordinal arithmetic, when this is

not confined to finite ordinals; that is to say, relation-numbers satisfy the

associative law for addition and for multiplication* they satisfy the dis-

tributive law in the shape (where the + and x are those appropriate to

relation-numbers)

(/9 + 7)xa = (£xa) + (7Xa),

and they satisfy the exponential laws

a* x oP = a?+v,

They do not in general satisfy the commutative law either in addition or in

multiplication, nor do they satisfy the distributive law in the form

a x (£ + 7) = (a x j3) + (a x 7),

nor the exponential law

arx£y = (ax£)y.

But in the particular case in which the relations concerned are finite serial

relations, the corresponding relation-numbers do satisfy these additional

formal laws; hence the arithmetic of finite ordinals is exactly analogous

to that of inductive cardinals (cf. Part V, Section E).

If the relations concerned are limited to well-ordered relations, relation-

arithmetic becomes ordinal arithmetic as developed by Cantor; but many

of Cantor's propositions, as we shall see in this Part, do not require the

limitation to well-ordered relations.

* For the associative law of multiplication, a hypothesis is required as to the kind of relation

concerned. Cf. *l74'241-25.



SECTION A

ORDINAL SIMILARITY AND RELATION-NUMBERS

Summary of Section A.

Two series generated by the relations P and Q respectively are said to be

ordinally similar when their terms can be correlated as they stand, without

>!/
P=SQ8

sv
->Q

sv

change of order. In the accompanying figure, the relation S correlates the

members of C*P and C*Q in such a way that if ocPy, then {Slx) Q (S*y), and

if zQw, then {S*z)P {S'w). It is evident that the journey from % to y

(where xPy) may, in such a case, be taken by going first to S'x, thence

to S'y, and thence back to y, so that xPy . = . x (S\ Q | S)y, i.e. P = S
| Q \

S,

Hence to say that P and Q are ordinally similar is equivalent to saying that

there is a one-one relation S which has C'Q for its converse domain and gives

P = S
| Q 1

S. In this case we call S a correlator of Q and P.

We denote the relation of ordinal similarity by "smor," which is short for

"similar ordinally." Thus

P8morQ.= .(RS).S € l-*l.C<Q = a<S.P=*S\Q\S.

It will be found that the relation S
J Q \

S plays the same part in relation

to Q in relation-arithmetic as S"0 plays in relation to ft in cardinal

arithmetic. It is therefore desirable to have a simpler notation for S
| Q \

S.

We put

S'>Q = S\Q\S Df.

We shall find that the semi-colon so defined has the same kind of properties

in relation-arithmetic as the two inverted commas have in cardinal arithmetic.

Corresponding to the notation &'#, we put

SfQ = S\Q\S Df.
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We shall thus have Sf = S\\ 8. It will appear that Sf has ordinal properties

analogous to the cardinal properties of 8t . Thus e.g. where 8\\St appears as

a cardinal correlator, 8\\ Cnv'Sf will appear as an ordinal correlator (in each

case with the converse domain suitably limited).

The elementary properties of 8>Q will be considered in #150. We shall

then, in #151, be able to study ordinal similarity, taking as our definition of

an ordinal correlator

PsmorQ = 3{Sel-»l.C'Q = CT'S.P = S;Q} Df,

and defining two relations as ordinally similar when they have at least one

ordinal correlator, i.e. putting (on the analogy of #73)

smor = pQ {3 ! P slnor Q] Df.

There is no need to confine the notion of ordinal similarity (or likeness,

as we shall also call it) to serial relations. When two relations have ordinal

similarity, their internal structures are analogous, and they therefore have

many common properties. Whenever similarity has been proved between

two classes a and & then if £ is given as the field of some relation Q, and 8
is the correlating relation, S'*Q is like Q, and has a for its field. Hence

similar classes are the fields of like relations. It must not be supposed,

however, that like relations are coextensive with relations whose fields are

similar. This does not hold even when we confine ourselves to serial relations,

except in the special case of finite serial relations.

The definition of relation-numbers (#152) is as follows: The relation-

number of P, which we call Nr'P, is the class of relations which are ordinally

similar to P; and the class of relation-numbers, which we denote by NR, is

the class of all classes of the form Nr'P. The elementary properties of

relation-numbers, treated in #152, are closely analogous to those of cardinal

numbers treated in #100.

After a few propositions about the ordinal and the ordinal 2, which we
call r and 2r (#153), we pass to the consideration of relation-numbers of

various types. It will be observed that "smor," like "sm," is a relation

which is ambiguous as to the type both of its domain and of its converse

domain. Thus "PsmorQ" only has an unambiguous meaning when the

types of P and Q are determined. P and Q may or may not be of the same
type; the only restriction upon the type of either is that both must be

"homogeneous" relations, i.e. relations whose domain and converse domain
are of the same type. This restriction results from the fact that C lQ occurs

in the definition of " P smor Q," and a relation does not have a field unless it

is homogeneous; hence Q must be homogeneous, and therefore, whatever

S may be, S
\ Q \

8 must be homogeneous, i.e. P must be homogeneous. Thus
e.g. such relations as D, t, or e are not ordinally similar either to themselves
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or to anything else. Whenever "PsmorQ" is significant for a suitable Q,
we have PsmorP; but if P is not homogeneous, "PsmorQ" is never
significant. Hence throughout the theory of ordinal similarity, the relations

of which ordinal similarity is affirmed or denied must be homogeneous. The
correlators, on the contrary, need not be homogeneous.

Owing to the homogeneity of our relations, the types of relation-numbers

are much more easily dealt with than they otherwise would be; for the type

of a homogeneous relation is determined by that of a single class, namely its

field, whereas the type of a relation in general depends upon the types of two

classes, namely its domain and its converse domain. Since, where likeness is

concerned, the type of the field determines the type of the relation, proposi-

tions concerning the relations between different typical determinations of a

given relation-number are, for the most part, exactly analogous to and

deducible from those for cardinals. In fact, a relation ordinally similar to Q
exists in the type of P when, and only when, a class similar to C'Q exists in

the type of C'P, i.e.

a ! Nr (P)'Q . = . a ! Nc (C<P)'C<Q.

The half of this proposition follows from the fact that, if P is like Q, GlP is

similar to C'Q. The other half follows from the fact, mentioned above, that

if # = C*Q and a sm & then there is a relation like Q and having a for its

field. Now if a belongs to the type of ClP, any relation having a for its field

is contained in t^Q'P \ t
fC'P. Hence in the case supposed there is a relation

like Q and contained in t^CP | t^CP. But the relations contained in

tJC'P I to*C
lP constitute t

lP. Hence there is a relation which is like Q and

is a member of t'P, whence our proposition results. By means of this propo-

sition and those of #102—6, the properties of relation-numbers with respect

to types follow easily. The conventions IT, IIT and AT apply to relation-

numbers as to cardinals; they are to be applied in the same way as in the

analogous propositions of Part III, Section A.



*150. INTERNAL TRANSFORMATION OF A RELATION

Summary o/#150.

In this number we introduce two notations which have uses in regard to

relations closely analogous to the uses of R lta and Re in regard to classes.

These two notations are defined as follows

:

S'>Q = S\Q\S Df,

5tQ-S|Q|S D£

We then have h .S^Q = S
m

>Q= S\Q\S=(S\\8)'Q.

SfQ is merely an alternative to S>Q, just as Re'a is an alternative to R"a.

Also £f = £j|#, in virtue of *38-01 and *4301.

The uses of 8>Q occur chiefly when S is a one-one relation and G'Q C d l
S.

This case is illustrated in the figure in the introduction to this section. Here

if Q relates x and y, S>Q relates S'x and S'y. Thus given a class a similar to

O'Q, if S is the correlating relation, S>Q has a for its field, and has, in very

many respects, properties analogous to those of Q,

S>Q is important for many special values of 8. For example, let Q be a

relation between relations; then C>Q will be the corresponding relation of the

fields of these relations. If Q be any relation, \, x>Q will be the corresponding

relation between ordered couples of which x is the relatum; i.e. if yQz, the

relation l x">Q will hold between y \x and z I x. If Q is a relation between

classes, and we have fiQ<y, then the relation au»Q will hold between a w ft

and a u y. In short, whenever 8 is a one-many relation, and therefore gives

rise to a descriptive function, then S>Q is the relation which holds between

S*y and S'z whenever Q holds between y and z.

We introduce one other new notation in this number, corresponding to

a?y in #38. This notation is thus defined:

Qp=$y>Q Df.

The purpose of this notation is to enable us to proceed to Q $ »P and other

similar notations; or, otherwise stated, to enable us to treat $ y>Q as a function

of y rather than of Q. Take for example the case of x I » Q. We may wish to

consider various relations as I >Q, y I >Q, where we are to have (say) xPy. To
express the relation of x I >Q to y X 'Q resulting from xPy, we need the above

notation. By its help, we have

xl'>Q = Ql'x.yl->Q = Ql'y.

Hence xPy . = . (Q J <x) (Q | IP) (Q \ 'y>
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Thus Ql >P is the relation between x $, >Q and y J, >Q corresponding to the

relation P between x and y. Ql'P plays the same part in relation-arithmetic

as is played by a 1 "^ in cardinal arithmetic.
>>

The notations of this number are capable of occasional uses in cardinal

arithmetic*, but their chief utility is in relation-arithmetic, in which they
are fundamental.

In order to minimize the use of brackets, we put

R'S'>Q = R'(S
m

>Q) Df,

R'>S>Q = R'>(S'>Q) Df-

As an immediate result of the definition of S>Q, we have

*150'11. I-

:

x (S">Q) y.= . faz, w) . xSz . ySw . zQw

We have also

#15012. \-.Cnv'S>Q = S">Q

#15013. \-.R'>S
m

>Q-(R\S)>Q

This proposition, which is the analogue of (P
|

Q)"7 = P"Ql<y (#37-33),

is very often used. We have also

#150-3. \-.S">(QvR) = S'>QvS'>R

#15042. \-.S'>A = A
The remaining propositions of this number (with a few exceptions) may

be thus classified

:

(1) Propositions concerning the domain, converse domain, and field of

S>Q (#150*2—*23). Owing to the fact that the chief applications of this

subject are to cases where Q and S>Q are serial, the field of S>Q is more

important than its domain or converse domain. Thus the chief propositions

here are

#150-22. \-:C'QCa<S.D. C'S'>Q = S"C'Q

#150-23. \-:C'Q = a tS.D.GtS
m

>Q = D tS

The hypothesis C'Q C G'S is verified in almost all applications of S>Q.

When it is not verified, the part of C'Q not contained in G.'S is irrelevant to

the value of 8>Q. The hypothesis C'Q = G.'S is very often verified in practice,

since it is verified when 8 is a correlator of S>Q and Q.

(2) Propositions concerning relations with limited domains, converse

domains, or fields (#150-32—-38). Broadly speaking, a limitation on the

field of Q is equivalent to a limitation on the converse domain of S, and both

are equivalent to a corresponding limitation on the field of S>Q provided

* E.g. in *116*53 and following propositions, where the notation 5f was introduced by a

temporary definition.
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SeCls—>1. The limitations that occur in practice are limitations on the

converse domain of 8, with consequent limitations on the fields of Q and 8>Q.

The chief propositions on this subject are

#150-32. \-.(S[c<Qy>Q=s
m

>Q

#150 35. \-z.yeC<Q*Dy .Il <

y = S
ty:D.R'>Q = S

m

>Q

(This follows from #150'32 and *35'7l.)

#15036. h.(Sr/3)'>Q = S'>(Qt/3)

#15037. \--.SeC\s-*l.D.S
m

>(Qtl3) = (S'>Q)tS«{3 = (Stj3y>Q={(S"{3)
A
{Sy>Q

(3) Propositions on S'Q when S is one-many or many-one (#150'4—*56).

We have

#1504. I- :. S e 1 -* Cls . D : a? (8JQ) y . ~ . {^z, w).x = Stz.y^8'w . zQw

This proposition is used constantly. Only slightly less useful is

*150'41. h :. 8 e Cls- 1 . D : x (S'>Q)

y

. = . (S'x) Q (S'y)

The remaining propositions of this set are chiefly applications of #150'4"41

to special cases.

(4) A few propositions on Q?y (#150*6—"62). These are immediate

consequences of the definition.

(5) A set of propositions on couples and matters connected with them

(*1507—-75). The chief of these is

*15071. h : 8 e 1- Cls . z, w e d'S . Z> . 8\z \ w) = (S'z) I (S'w)

This proposition is very often used in relation-arithmetic. Useful also is

#15073. h . 8>(a f £) = S"a f S"j3

(6) We next have four propositions (#150*8—'83) on S'P when P is a

power of Q. These belong with the propositions of #92; they are useful in

the ordinal theory of finite and infinite. We have

*150'82-83. h : . 8 e Cls -* 1 : D'Q C <!'£ . v . <PQ C <I'SO .

Fot<s'>q= st'Tot'Q . (s;<2)p6
= S'>Q„

It follows that, in the hypothesis supposed, if S is a correlator of P and Qt

it is also a correlator of P^ and Qpo*

(7) Propositions concerning the relation Sf (#15014—'171 and #1509

—

•94). These have uses analogous to those of propositions concerning 8( . The
most important are

#150-14. h.i2f|tff--(12|<Sf)t

(This follows immediately from #15013, above.)

#150141. \-.Sf=*S\\S

(This follows immediately from the definition.)
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*16016. r . s'Rf'X = R\ (s'\) = R m

>i'\

This proposition is analogous to s'R'"* = R^s'k (#40'38), i.e. to

S<Re
"K = Re i

s'tC = R"S<K,

as appears on substituting 5 and i2f for 5 and Re in this variant of #40-38.

The remaining propositions are mainly of the nature of lemmas, to be used
once or twice each in relation-arithmetic.

#15001. S'>Q = S\Q\S Df

#15002. #fQ«flf|Q|3 Df

#16003. Q%y=*%y>Q Df

Here, as in #38, "%" stands for any sign which, when placed between

two letters, defines a descriptive function of the arguments represented by
those letters. Thus for example " % " may represent any of the following:

n, v, n, v>, |,1, [, I, f, I.

The two following definitions serve merely for the avoidance of brackets.

#16004, R'&Q~R\S'>Q) Df

#15005. RWQ*>RWQ) Df

1601. h.S'>Q**S\Q\S=(S\\syQ = SfQ = Sf'Q
[#43-112 . #38*11 . (#150*0102)]

#16011. b : x (S>Q) y . = . (32, w) . xSz . ySw . zQw [*341 . #3111]

#16012. h . Cnv'#Q » S">Q [#342 . #3133]

#16013. \-.&&Q = (R\SfiQ

Dem.

h . #150-1 . (#150-05) . D h . R'>S'>Q = R'>(S \Q\8)

[*i50i] «.R|jS|Q|£|fl

[#34-2] = .R|S|Q|Cnv'(22|flf)

[#150*1] «(B|j8)»Q.Dh.Prop

#160-131. h . (R>S)'>Q = Ri(S
|

R)'>Q

Dem.

h > #150*13 . D h . RJ(^
I

S)'Q = (i«
1 5 1 R)'>Q

[#150-1] = (E'S)^ . D h . Prop

Observe that we do not have (R>S)>Q = R>(S>Q).

#16014. h.22t|St-6R|S)t

Dew.
I- . #150-1-13 . D h . iZfSf'Q = (R 1 S)f'Q (1)

h
.
(1) . #3442 . D h . Prop

This proposition is the relational analogue of #37*34.
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#150141. \-.Sf*=S\\S [#1501. #30-41]

#15015. h.^fel-^Cls [#7214]

#160151. r- :. (x) . E ! S'x : S e Cls- 1 : D . Sf e 1 -> 1 [#74772 . #150141]

The following proposition is used in the theory of double ordinal similarity

(#16413).

#150152. h : Sts'C«\ e Cls -* 1 . s'C'X C d'S . D . (Sf) [ X e 1 -* 1

Dem.

h. #74-775 §4- D
v, R

h : iSf
f «

fc«\ € cis -> i . s'D"x c ass . s'a"x c a<£ . d .

(8\\8)f\el-^l (1)

h . (1) . #4057 . #150-141 . D h . Prop

#150153. h :. 8 [ s'C'X e Cls -* 1 . s'C"X C d'S . Q, P e X . D :

S'>Q = S>R.O.Q = R
Dem.
\-

. #150152 . #71-55 . D h :. Hp . D : Sf'Q = Sf'R .D.Q = R:
[#1501] Z>:#Q = #P.D.Q = P:.Dh.Prop
The above proposition is used in dealing with relations of relations of

couples (#16523).

R
#15016. I- . s'Pf'X = Pf(i'X) = R'>s<\

The following proposition is a lemma for #150-171

#15017. h.(i2fX)t«iJt|C^

#4343=^. #1501411

Dem.

(1)

(1)

h.*l50-l.Dh.(i2| fc X)fP = (i2|
k 3i)|P|(\1 JB)

[#35-354] = P|X1PTX|P
[*1501.#3611] = Pf(P£X)
[#3811] = Pf£X'P
h . (1) . #34-42 . D h . Prop

#150171. h : s'C'C'Q C X . D . (R [ X)+5Q = Pf<2 . £ X^Q = Q
Pern,

h . *150-17'13 . D h . (P f X)f»Q = Pf5 £ X?Q
h. #15011. Dh:if(^x;Q)JVr . = .(aS>

T).M = >SrtX.^ = TtX./SfQT (2)

I- . #33-17 . D h : SQT .D.S,TeC'Q.
[#37-62] D . C'S, G'Te C'C'Q

.

[#4013] D.C'SC s'C'C'Q . C'TCs'C'C'Q (3)
I" . (3)

.

D h :. Hp . D : SQT . D . C'S C X . C'T C X

.

[*36-25] D.StX = S.TtX=T (4)

h.(2).(4).Dh:.Hp.D:if(t;xJQ)^. = .(a^T).iW = 5.iV=T.^T.
[*13-22] ~.MQT:
[#21-43] D:fc\SQ«Q (5)

K(l).(5).Dh.Prop
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The above proposition is required in the theory of double ordinal
similarity. It is used in proving #164-141, which is used in #164'18, which
is a fundamental proposition in the theory of double ordinal similarity.

The following propositions, on the domain, converse domain and field of
StQ, are much used, especially #150202-22-23. #150-201 is hardly ever used,

but is inserted in order that the general case may not remain unconsidered.

*1502. h . V'SIQ » S"Q"d'S . d'S'>Q = S"Q"d (S [*37-32 . *150\L]

#150 201. h . C'&Q = S"(Q u Q)"d'S = V'S'>(Q v Q)

Bern.

h . #150-2 . #3722 . D h . C'S^Q = S"(Q"d'S w Q"d'S)

[*37-221] = S"(Q c/ Q)"d'S

[#150-2] = D'S'>(Q ci Q) . D h . Prop

#150202. h . W&Q C S"~D'Q . d'S'Q C S"d'Q . C'&Q C S"C'Q

Dem.

h . *37'1516 . Oh. Q"d'S C D<Q . Q"d'S C d'Q

.

[*37-2.*150-2] h . D'SiQ C S"T>'Q . a'S>Q C S"d'Q (1)

[#37-22] D h . C'8'>Q C S«C*Q (2)

h.(l).(2). DKProp

#150 203. I- . CS'Q C D'S [#150202 . #3715]

#150-21. h : d'Q C d'S . . V'S'>Q = S"T>'Q = B'(S
| Q) [#1502 . #3727-32]

#150-211. h:I)'QCd'S.D. d'S'>Q = S"d'Q = D'(S

|

Q)

[#1502. *37-271'32]

#15022. h:C'QCd'S.O. C'S'>Q = S"C'Q [#15021 '211 . #37-22]

In practice, when S>Q is used, we almost always have C'Q C d'S. For the

use of S>Q is to obtain a relation analogous to Q and having a different field;

now S>Q is analogous to Ql d'S, for the part of C'Q which lies outside d'S is

unaffected by S. Hence if we have, to start with, a relation Q whose field is

not contained in d'S, we shall usually find it profitable to limit the field to

d'S, and consider the transformed relation rather as S>(Ql d'S) than as S>Q.

Thus the hypothesis C'Q C d'S will be verified in almost all useful applications

of the notion of S>Q.

#15023. h : C'Q = d'S . D . C'S'>Q = D'S [#15022 . #37-25]

#15024. h : . C'Q C d'S . O : a ! S>Q . = . a I Q
Dem.

h . #37-43 . #150-22 . O h :. Hp . D
:
a ! C&Q . = .RlC'Q:

[#33-24] D:a!^Q. = .a!Q:.DI-.Prop
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#15025. h :. (y) . E ! S'y . D : 3 I S>Q . = . a ! Q [*150'24 . *33'431]

#150 3. h . S>(Q wR) = S">Q u S'*R [#34-25-26 . #150-1]

#150 301. h . S'>(Q A R) G (##) A (S5J2) [*3423-24 . *1501]

#15031. \-:PGQ,RGS.D. R'>P G S>Q [*34'34 . *1501]

The following propositions are frequently useful when we have to deal with

correlators of the form S [ C'Q, which often happens.

#15032. \-.(S[C(Q)'Q = S>Q M .

5
8£0%VQ ^
q,r, «, e

#150'33. \-:C<QC/3.D.(Sr/3)'>Q = S->Q *43'5^-f .#150141

#15034. \-:-D'QCa.a<QC/3.0.Sta\Q\/3
J
\S=S'>a

J

\QtP = S
m

>Q

[*43-5 . #35354 . 15014M]

#15035. h :. y e C'Q . Dy . J2'y = S'y : D . itfQ = #Q
Z)em.

h. #35-71. D h :Hp.D.#r C'Q = £f C'Q.

[*34-27-28.*150-l] l.(R[ C'Q)
m

>Q = (>SrpC"Q)5Q

.

[#150-32] D . i^Q - S>Q : D h . Prop

The above proposition, which is the analogue of #37'69, is much used in

relation-arithmetic.

The following proposition is much used after we reach the theory of well-

ordered series, but not before (except in #1 50*37).

#15036. \~.(St{3)'>Q = S
m

>(Qt/3)

Dem.
h. #150-11. #35*101.3

h : x {(S [ j3)»Q] w. = . fay, z) . xSy . y e ft . yQz .zefi. wSz

.

[#36-13] = . fay, z) . xSy . y (Q£ /3) z . wSz

.

[#150-11] = . m {iS5(QD £)} w:Dh. Prop

#150-361. h . (« 1 S)5Q = (SiQ) p o [Proof as in #16036]

#150-37. H#eCls^l.D.#(Qt £) = (##)£ £<<£

Dem*
h . #74-141 . D h : Hp . D . (S [ /3)*Q = {(£"/3) 1 S\'*Q

h.(l).#l 50-36-361. Dh. Prop

The above proposition is not used until we reach the theory of series,

(1)



SECTION A] INTERNAL TRANSFOBMATION OF A RELATION 305

Dem.

h.*1501. Db.S'SiQ = S\S\Q\S\S (1)

h . (1) . *72-59'591 . D h : Hp . D . SiS'>Q = (D<S)
J
\Qt*D<S

[#3611] ^Q^D'SOh.Prop

The above proposition is used in dealing with the correlation of series

(*208'2).

*150'4. h :. Sel -»Cls. D :x(S'>Q)y. = . (a-s.w) .x = S'z .y = S<w.zQw

[#15011. #71-36]

This proposition is fundamental in the theory of S>Q, because in most of

the uges of this notion S is one-many. The proposition states that when $ is

one-many, S>Q is the relation between the S'a of terms related by Q. Thus

if S is the relation of wife to husband, and Q is the relation of brother to

brother, 8>Q is the relation between wives of brothers. If Q is a relation

between relations, C»P will be the corresponding relation of their fields;

and so on.

*150'41. h :. S e Cts -> 1 . D : x (S>Q)

y

. = . (S'«) Q (S'y) [#15011 . #71-331]

#150-42. KS;A = A [#1501. #34-32]

The following propositions, down to #15056, are, with the exception of

#150 52—-535, all illustrations of #150'4*41.

#150-5. h : a (R>P) .
== . (gp?, y) . a = R'x . £ = R'y . xPy

#150-51. h : a (D'>R) j3 . s . (gP, Q) . a = D'P . = D'Q . PEQ
#150-511. h : a (d*.R) . s . (gP, Q) . « = d'P . £ = d'Q . PEQ

#150 512. h : a(C;.R) £ . 3 . (gP, Q) . a = C'E . £ « C'Q . PRQ
#150-52. r : x (FW)

y

. s . (gP, Q).xeC'P .yeC'Q. PRQ
[#150-11. #33 51]

PJ.R is a relation which plays a great part in relation-arithmetic.

#15053. h./;P = P [#50-4]

#150-531. h.PJ/ = PjP [#504]

#150 532. \-.P>I>Q = P>Q [#15013. #50 4]

#150 534. I- (/ T C'P)'>P =P [*150-53-32]

#150-535. h:C"PCa.D.(/r«)JP = P [#1505333]

#150-54. h : a (»R) & . = . (t
l
a) R (t'p)

#150-541. h : x (i">R) y. = . (i'x) R (t'y)

#150-55. VxQ{izfP)R. = .{r3u> v).Q = uiz.R^v\r
z.uPv

B &W II 20
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*150*56. \-iM(Sy>Q)N. = . (aZ, Y) . XQY. M= S'>X . JV=# F
[*150'415'1]

#1506. h.P?y-?yiP [(*150'03)]

#150*601. r . P 2 <? 1 -> Cls [#150*6 . #14*21 . *71'166]

#150*61. h : * (P ? y) w . s . (gw, v).z = u%y *w = v%y . uPv

[#15011. #38*101. #150*6]

#150-62. hiR(PpQ)S. = .('g
L
z,w).Il = $z>P.S = $w>P m zQw

[*150'4-601"6]

Relations of the form P$>Q are frequently useful in relation-arithmetic,

especially in the particular case of P 1 >Q, which takes the place taken by

a i "8 in cardinal arithmetic. Relations of the form P 1>Q will be considered

in #165.

The following propositions are chiefly concerned with correlations of

couples. They are of great utility in relation-arithmetic. #150*71, in

particular, is fundamental.

#150-7. h . S>(z lw) = S'z t S'w [*55"6]

#150-71. h : S e 1 -> Cls . z, w e d'fl . D . &(z I w) = {S'z) | (S'w) [#55-61]

#150-72. b:z^w.S=xlzuyl<iv.3.S>(zlw) = a;ly [#55*62*61]
\j

#150-73. h . S>(a t £) = S"a 1 S"8 I
#37-82 ^ S

\-.&(at/3) = 8"atS"l3 [*3

#150-74. r . (SvT)'*Q = S
m>Qvr>QvS\Q\Tv T\Q\S [#150*1]

#150-75. h :~{yQy) . D

.

(Svwly)>Q = S>Qv S"Q<y f I'uwt'a f &"#V

h . #150-1 . D h : Hp . D . (a
J, y) 'Q = A

.

[#150-74] D.(Svaslyy>Q = S>QvS\Q\ylxvtBly\Q\S

[#55-57-571] = S">Q iy S'tQ'y f i'ar a i'a? | S'<Q'y : D h . Prop

The four following propositions belong to the subject of #92, but could

not be given in that number owing to the fact that they involve the notations

of #150. They are required for proving that, if S is a correlator of P and Q,

it is also a correlator of P^ and Qvo (#151*45), and for one of the fundamental

propositions in the ordinal theory of progressions (#263*17).

#1508. h:.£eCls^l:D'QCa<&.v.a<QCCISSf:PePot<QO.
S">P e Pot'OSfJQ) . (S'>P)

|

(S'>Q) = S'>(P
| Q)

Dem.

K #91-351. Dh.SiQePot'OSiQ) (1)

K*150*l. • D\-.(S'>P)\(S->Q) = S\P\S\S\Q\S (2)
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h.(2).*7M91. D\-:TZv .3.(S'>P)\(S'>Q)*=S\P\I[a<S\Q\S (3)

h . *50'63 . D I- : D'Q C d'S . D . I p a 's
I

Q = Q (4)

h . #50-62 . #91-271 . D h : Pe Pot'Q . d'Q C <J'£ . D . P\ I[ <1<S=P (5)

h.(3).(4).(5). 3\-:-Kv .P € -Pot<Q.l.(S->P)\(S->Q) = S\P\Q\S
[*1501] «#(P|Q) (6)

I- . #91-282 . D h : 8>P e Pot'^Q . D . (S5P)
|

(#>"Q) e PotSSfJQ (7)

K(6).(7). D h :. Hp. P<? Pot'Q. Di^PePot'tfJQ.D.
#(P|Q)ePot'£iQ (8)

h.(l). (8). #91-373
VP'WSiQ^

<pP

h :. Hp . D : P e Pot'Q . Z>P . #P e Pot'(£5Q) (9)

h (6) . (9) . D h . Prop

#150-81. h :. £ 6 Cls-> 1 : D'Q C <J'£. v . <J'Q C <!'£ : TePot'SJQ : D

.

(gP). Pe Pot'Q. T=SJP

h . #91-351 . Z> h . (gP) . P € Pot'Q . ^Q = S>P (1)

K #150-8. D \- -.Hp . P eFot'Q . T= S'>P .3 . T\(S'>Q) = S'>(P\Q)

.

[#91-282] D . (g.R) . R e Pot'Q . T\ (S'>Q) = £*# (2)

h . (2) . #1023 . D
h :. Hp . D : (gP) . P 6 Pot'Q . T= S'>P . D .

(gfl). Re Pot'Q. r|(flJQ)-fl;.R (3)

h . (1) . (3) . #91-171
SiQ,TteP).P,?o*Q.T-SiP

_ D

h : Hp . Te Pot'tfJQ . D . (gP) . P e Pot'Q . 2
1 = S>P : D h . Prop

*150'82. h:. <Sf€Cl3-^l:D'QCa'5.v.a'QCa'-Sf:D.Pot'^Q = ^t"Pot <
Q

Dem.
h . #150-8-81 . D

h : Hp . D . Pot'SJQ = T {(gP) . P e Pot'Q . T= S'*P}

[#150-1] = ^f'Pot'Q : D h . Prop

#150-83. h :. 8 e Cls -* 1 : D'Q Cd'tf.v. a'Q C a t8iD.(8'*Q)vo = 8>Qvo

Dem,
h . #150-82 . (#91-05) . D h : Hp . D . (^Q)po = $'£f"Pot'Q

[*150-16.(*91-05)] =^ ;Qpo : ^ I" Pr0P

The following propositions, down to #1 50*94 inclusive, resume the subject

of the relation Sf, which has already been treated in #15014—'171.

#150-9. h.(i"t)3Q = Q
Dem.

h . #150-56 . D h : M(IfiQ)N. = . (gZ, F) . XQY . M= I>X.N = I">Y.

[#150-533 = (aX ^) XQY. M=X.N= Y.
[#13-22] =.4/QF:Dh.Prop

20—2
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The following propositions lead up to #1 50*931 94, which are used in the

theory of double ordinal similarity (*164'3'21).

*150'91. b:s'C"CQCa.O.(I[a)Y>Q = Q
Dem.

h . *150535 . D h : . Hp . D : X e C'Q . D . (7 f a)5X =X (1)

h.(l).*150-56.Dh:.Hp.D:
M{(I[a)^Q}^. = .('3

L
X> Y).XQY.M =X.N=Y.

[*13'22] = . MQN :. D h . Prop

*150-92. h : 8 e Cls-» 1 . s'C'C'Q Cd'S.D. 8Y>Sy>Q = Q
Dem. w ^

h . #1501314 . D h . Sfi^tJQ = (S
i
£) t 5Q (1)

h . (1) . *71-191 . D h : Hp . D . Sf^f ;^ = (7 TG'WQ
[#150-91] = Q: Dr. Prop

*150'921. h : & e 1 -» Cls . s'C'C'P CD'^.D. Sf'St

'

P = P
#150 93. h :. £ e 1 - 1

.

s'C'C'P C D'S

.

s'C'C'Q C d'S . D :

P = Sf>Q. = .Q = Sy>P [*15092'921]

#150-931. h : *'C"Cf'Q Ca f^.D. C"C'8f>Q<=S "C'G'Q
Dem.

h. #150-22. Db.G'SY'Q = S\"G'Q (1)

h . *150-221 . D h :. Hp . D : M e C'Q . D . C#t'^= £"C*ilf :

[*37-68-ll] D : C"#t"CQ = &"C"C'Q (2)

h . (1) . (2) . D h . Prop

#150932. I- : s'C'C'Q Cd'S.D. s'C"C'Sy>Q = S"s'C"CQ
[#150-931. #37-11. #40-38]

#150933. I- : s'C'C'Q CO'S.D. s'C'CSf'Q C D'& [#150932 . #371 5]

#150-94. h :

.

S e 1 - 1 . D : s'C'C'Q Cd'S .P = Sf>Q. = .

s'C'C'P CD'S. Q = sy>p
Dem.

h . #150-933 . D h : s'C'C'Q Cd'S.P = Sf>Q . = .

s'C'C'P C D'£ . s'C'C'Q Ca'S.P = Sf'Q (1)

h . *150'933 1 . D h : s'C'C'P CD'S.Q = Sf'P . = -

s'C'C'P C D'iS . s'C'C'Q C <J'£ . Q = SfP (2)
h . #150-93 . #5-32 . D
r :. S e 1 -* 1 . D : s'C'C'P C D'£ . s'C'C'Q C <J'£ . P = #t'<2 • = •

s'C'C'P C D'S . s'C'C'Q C d'S . Q = SfJP (3)

K(l).(2).(3).DKProp
The above proposition is the analogue of #74'61, which (with a few trivial

transformations) may be written

b:.Sel-+l.D:s'\Ca'S.K = S€"\.s.s'K C~D'S.\ = (S)e"K.
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In obtaining ordinal analogues of such propositions, Se will be replaced by

$f, and the two inverted commas will be replaced by the semi-colon; a class

of classes k will be replaced, in most of its occurrences, by a relation of

relations P, but will sometimes be replaced by CfiC'P.

The above proposition (#150'94) is used in proving that the converse of a

double correlator of P and Q is a double correlator of Q and P (#1 64-21).

The corresponding cardinal proposition (#111 '131) uses #7 4*6, which is

practically the same proposition as #74-61, which is the analogue of #150*94,

#15095. h:0'EC Cl'a .D.(8[ a)e'>R = S'>R

Dem.
r. #37-421. D\-:.KV .0:/3eC

tR.D.(S[a)"/3 = S"p.

[#37-11] D.(#r«y/3 = &</3 (1)

h. (1). #150-35. Dh. Prop

The above proposition is used in the theory of "first differences"

(#1 70-41).

#15096. h :a's'\Ca'S.D .D^S)^ Tt$J)<<\

Dem.

h . #150-51 . D h : a {D>(T\\ S) [ X] j3 . = .

faM, N).Ne\.M=T\N\S.a = T) tM.j3 = 'D tN (1)

h . #4113 . D h :. Hp . D : Ne\ . D . d'N C d'S .

[#37-321] D . D'(N
|

S) = D'N ,

[#37-32] D.D<(T\N\S) = T"T)'N (2)

>.(1).(2).*37-6.D

h:.Hp.D:a{D5(r||^)p\}/3. = ./3eD"\.« = 2
T"/3,

[#37-101] = . a(re f D"\)£:. D h . Prop

#150-961. h . «!( (7 1|
W> f X = ( U 1|

IF) f s"X

h. #150-4. Dr:ie{sKtf|iTF)erx}£.= .(a/3).£e^

[#43-43] = . (g/3) . /3 eX .S=s'l3.R=(U\\ W)f
s

f$ .

[*13193.*37-6] = . S es"\ .R = (U\\ W)'S Or. Prop

The above proposition is used in the theory of ordinal exponentiation

(#176-21).



*151. ORDINAL SIMILARITY

Summary o/#151.

In this number, we give the definition, of ordinal similarity, and various

equivalent forms; we prove that ordinal similarity is reflexive (#151*13),

symmetrical (#151*14) and transitive (#151*15), and we give some particular

cases of ordinal similarity (#151*6 ff.). Propositions in this number should be

compared with those in #73, to which they are analogous.

The class of ordinal correlators of P and Q is written P smor Q, where

"smor" stands for "similar ordinally." We put

P£mdrQ = S{Sel->l.C(Q= a<S.P = S
m

>Q) Df.

(We might equally well put

P smor Q = (1 - 1) n (I<C'Q n fQ'P Df,

which is an equivalent but more condensed form of the definition.) We then

define "P is ordinally similar to Q" as meaning that there is at least one

ordinal correlator of P and Q, i.e.

smor = £$(a!PsmbrQ) Df.

We shall find that if P and Q generate well-ordered series, they have at

most one correlator (#250*6), but this does not hold in general for other

series.

After giving the elementary properties of ordinal similarity, we have

three important propositions on its connection with cardinal similarity,

namely: (#151*18) if P is similar to Q, the field of P is similar to the

field of Q (the converse does not hold in general, but holds ifP and Q are

finite serial relations); (#15119) if G'P is similar to C'Q, there is a relation

R similar to Q and having C'P for its field, and vice versa; (#151-191) S is

an ordinal correlator of P and Q when, and only when, it is a cardinal

correlator of G'P and C'Q and P = S>Q.

We then have a set of propositions on correlators of the form S [ C'Q

(#151*2—*243). Most of the correlators with which we shall be concerned

are of this form. The most useful proposition here is

#151*22. \-:S\;C<Q<:l-+l.C<QC<I<S.P = S
m

>Q. = .S\'CtQ€P£m6iQ
A useful consequence of this proposition is

#151*231. \-:.(y).-E,lS <yiStCtQel-+l.P = S>QzD.StC<QePsmrQ
This consequence is useful because the hypothesis (y) . E ! S'y is satisfied

by most of the relations which occur as correlators.
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1

We have next a number of propositions on the inferribility of Q *» S>P or
\-»

QGS'>P from P = S'>Q or PQS'Q, and connected matters (*1 51"25—-29).

We have

#151*25. b : S eC\a-+l . C'QQd'S . P = &Q .D . Q = S">P

#151*26. \-'..S € Cte-+l.ClQCa<S.3:P<iS
m

>Q.0.&P(ZQ:

S'>QGP.D.QGS'>P

#151*29. h :. P smor Q . = : (a£) : xPy ,D9>V . <3*a?) Q (S'y)

:

jfQ«;.D^.(S**)P(i8f'w)

#151*29 is never used, but is inserted in order to show that our definition

of "ordinal similarity" agrees with what is commonly understood by that

term. If P and Q are regarded as serial, so that "xPy" means "x precedes

y in the P-series," and "zQw" means "z precedes w in the Q-series," then

our proposition states that two series are ordinally similar when their terms

can be so correlated that predecessors in either are correlated with predecessors

in the other, and successors with successors, i.e. when the two series can be

correlated without change of order.

We have next (#151*31—*52) a set of miscellaneous propositions, of which

the most useful are

#151*401. r : T \ C'P e X smor P . T \ C'Q e Fsmof Q.SeP smor Q . D

.

#151-5. \-:StCfQeP£^Q.O.B'P=S"I)'Q.a'P=S"a<Q.~B tP=S(<B<Q.

B'P=S"B<Q

#151*401 will be useful in such cases as the following: Let P and Q be

relations between relations, then D>P and D>Q will be the corresponding

relations of their domains. Suppose DfO'P, D
f"
C'Q e 1 -> 1. Then, by

#151401, if S is a correlator of P and Q, D>S is a correlator of D5P
and D>Q.

#151'5 shows that if S is a correlator of P and Q, it correlates D'P with

V'Q, <J'P with d'Q^'P with 1^'Q, and B'P with B l
Q.

Our next set of propositions (#151 '53—'59) is concerned with the correla-

tion of powers of P and Q and kindred matters. We show (#151'55) that a

correlator of P and Q is also a correlator of P^ and Qp0 , and therefore if P
and Q are similar, so are Ppo and Q^ (#1 51*56); we show also (#1 51*59) that

if P and Q are similar, so are P„ and Qv . These propositions are used in the

theory of progressions (#263*17).

The remaining propositions (#151*6 to the end) are concerned with

applications to particular cases. The most useful of these are

#151-61. h.fc'PsmorP
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which shows how to raise the type of a relation without changing its relation-

number;

*151'64. h . x 1 >P smor P . (x I ) f G*P e (x
J,
JP) amor P

#151-65. h>lx'>P smor P . ( I x) [ G'P e ( I x>P) sTnor P
We prove also that all members of 2r {i.e. all relations of the form x I y,

where x^y) are similar (*1 51*63), and that all relations of the form x j, x are

similar (#151-631).

*15101. PimdiQ=S[Sel-+l.C tQ = a iS.P = S>Q} Df

#15102. smor ^PQfalP smor Q] Df

#1511. h:PsmorQ. = .(a£).£el^l.C'Q==a'S.P = £;Q [(#151'02)]

#15111. h'.SeP smor Q.5.Sel-+l.C'Q=a*S.P = S'>Q [(#151-01)]

#15112. h:PsmorQ. = . a !Ps~morQ [(#15102)]

#151121. b. I [ C<Qe(Q amor Q) [#7217 . *50-552. #150-534, #15111]

#15113. KQsmorQ [#15112112]

#151131. H:^ePii5of Q. = .SeQsmorP
Dem.

h. #71-212. Z>h:&el-»l. = .£6l-*l (1)

h. #15013. Dh:P«£»Q.D.£SP*=(£|fl)JQ:

[#71192] D h : £ e 1 -* 1 . P = SJQ , D . £JP = (7 f (I'£)iQ

:

[#150-534] Dh;S€l-+l.C<Q~(I <S.P = S>Q.'D.S>P = Q (2)

h . #150-23 . D I- : C'Q = d'S. P = £JQ . D . C"P = D<£ (3)

h . (1) . (2) . (3) . #33-21 . D

\-:Sel->l.C<Q = a<S.P = S
m

>Q.D.S € l-+l.G'P = a<S.Q = S'>P (4)

1--(4)|^|..*31-33.D

\-:Sel-+l.C'P = a (S.Q=rS
m

>P.3.Sel-+l.CtQ = a<S.P = S'>Q (5)

I- . (4) . (5) . #15111 . D h . Prop

#15114 h : P smor Q. = .Q smor P [#15113112 . #31*52]

#151141. h : 5 e Pernor Q . Te Qsmor E . D . 8\ Te Pernor R
Dem.

h . #15111 . #71-252 . D h : Hp . D . £
|
T e 1 - 1 (1)

h . #15111 . #15023 . Z> h : Hp . D . d<£= C'Q . D'T= C'Q . aT= C'E

.

[#37-323] D . d<(S\ T) = <JT. d lT= GlR .

[#13-17] 0.d<(S\T)= G'M (2)

I- . #15111

.

D 1- : Hp . D .P = S">T'>R

[#150'13] =(S\T)>R (3)

r . (1) . (2) . (3) . #15111 .Dr. Prop
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#15115. \-:PsmorQ.QsmorR.D.PsmorR [#151141]

*15ri6. h.JGsmor [#15113]

#151161 Ksmor = Cnv'sraor [#15114]

#151162. h . (smor)9 - smor [#15115161 . #34-81]

#15117. h :. P smor Q. 0:R smor P. = .R smor Q [#1 511415]

#15118. h : P smor Q . D . C'P sm C'Q

Dem.

h . *151'11 . *15023 . D h : Hp . D . (gflf) . Sel -*1 . D'S = C'P . d'S = C<Q .

[*73'1] D . C'P sm C'Q : D h . Prop

#16119. h : C'P sm C'Q . s . (giJ) . C'R = C'P.R smor Q

\-.*131.DhiC'PsmC'Q.==.(ftS).S€l-+l.~D'S = C'P.d'8=C'Q.
[#150-23] = . (a£) . 8 e 1 -> 1 . d'S = C'Q . C'tfJQ = C'P

.

[#13195] = .(!gL
R,S).Sel-*l.a tS=C<Q.Re*S>Q.C'R=G<P.

[#1511] = . (gJ2) . C'E = C'P.R smor Q : D h . Prop

#151191. h:£ePsmor Q.=.Se (C'P) sm (C'Q). P = S5Q

Dem.

h. *15113111. Dh:5ePs"morQ.D. C'P = D'S:

[*4-7l.*15111] D l-:&ePsmor Q. = . Sel->1. C'Q** d'S.P=S>Q. C'P = DSSf,

[#73-03] = .fife (C'P) sm (C'Q) . P = £>'Q : D h . Prop

*151'2. h : S el->l. C'Q Cd'S . P = S">Q .D ,S[ C'QeP smor Q
De?n.

h. #71-29. Dr:Hp.D.£rC'Qel-»l (1)

h. #35-65. Dh:Hp.D.a'^pC'Q=C'Q (2)

h . #15032 . D h : Hp . D . P = £f C'QJQ (3)

h . (1) . (2) . (3) . #15111 . D h . Prop

#151-21. h : P smor Q . = . (aS) . £ e 1 -* 1 . C'Q C d'S . P - S'>Q [#151-2]

#151-22. r : £ f C'Qe 1 -* 1 . C'QC d'S . P = £5Q . = . Sp C'QeP smor Q
Ztewi.

h . #35-65 . #150-32 , D h : S[ C'Qe 1 -* 1 . C'Q C d'S . P= £>Q. D .

SfCQePsmdrQ (1)

h. #15111. #150-32. DhiSf C'Q ePslHorQ. D.&f C'Qe 1 -*1 . P=#>"Q (2)

r . #151-1 1

.

Z> h : &f C'Q eP smor Q.^.C'Q=* d'(S \ C'Q)

[#35*64] = C'Q n d'S.

[#22-621] D. C'Q Ca'Sf (3)

I- . (1) . (2) . (3) . D h . Prop
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*151'23. h:P8morQ. = .(nS).StC'Qel-+l.C'QCa<S.P=S'>Q [#151-22]

The above proposition (#151-23) is very useful. It is the analogue of

#73"15. (It should be observed that, in all propositions concerning likeness,

S>Q plays the same part as S"/3 plays in propositions concerning similarity.)

By means of #151"23, we can establish likeness in all those numerous cases in

which a relation which is not usually one-one becomes one-one when confined

to a certain converse domain, as for example if we have to deal with D [ e^te,

where k e Cls2 excl, or with D f P±'k, where P f k e Cls —> 1. Thus e.g. by the

above proposition, if Q is any relation whose field is P&'k, where P f /e e Cls —» 1,

T>>Q will be an ordinally similar relation whose field is D"P4'/c.

#151-231. r- :. (y) . E ! S'y : 8 [ C'Q e 1 -» 1 . P = S'>Q : D . 8 [ C'Q e P smor Q
[#151-22. #33-431]

#151-232. )-:.(<&S):(y).ElS<y:SrC<Qel-+l.P = S'>Q:O.P8morQ
[#151-231-12]

#151-24. h : . (y) . E ! S'y : y,z e C'Q . S'y = S'z . D„, , . y = z : P = 8 '>Q : D .

SfC'QeP smor Q . P smor Q [#71-166-55 . #33-431 . #151 22-23]

#151-241. h:.Sel-+Cte.C'QC<I'S:y,Z6C'Q.S'y = S'z.0yiZ .y=z:P=S'>Q:3.

SfCQeP smor Q . P smor Q [*71'55 . *151'2223]

#151-242. \-::y,Z€C'Q.1yy.S'y=:S'z. = .y=z:.P=S'>Q:. = .StC'Q€PwfiiQ
[#71-59. #151-22]

#151-243. \-r.y,z6C'Q.3ytZ :S<y = S'z. = .y = zi.P = S
m

>Q:.3.PsmoYQ
[#151-24212]

#151-25. h : SeCIs-> 1 . C'Q C (FS . P = S'>Q . 3 . Q= £JP

h . #150-13 . 3 r : Hp . D . S5P = (£ j #)5Q

[#7M91] =(Jp(P£);<2

[#150-535] = Q Oh. Prop

#151-251. (-:.S€l-»l.D:C<QCa'S.P = fi
, JQ. = .C'rPCD^.Q=SjP

[#151-25. #150-22. #3715]

#151*252. \-:SeC\s^l.C<QC(I'S.O.Q = S'>S
m

>Q [*151'25]

#151-253. h:Sel->Cls.C'PCD<S.D.P= S;#;P #151-252

<-» \->

#151-254. r-:#el->l.D.£tr C'Cl'd'S= Cnv'{#t [ CCl'D'ty

Dem.

h . #151-251 . 3 h :. Hp . D : C'Q e Cl*a*j8f . P (flff) Q = .

(7'P e Cl'D'S . Q (Sf)P : - 3 h . Prop

This proposition is the analogue of #72-54. "Sy means "(CnvSS)t>" not
" Cnv'(St).

M
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#151-26. h:.£eCls-»l.C'QC(I'&.D:

PGS'>Q.1.S
m

>P<lQ:S'>Q<lP.3 m Q<lS;p
Dem.

h . #15031 . D I- : P G 8 ">Q . D

.

S>P G &SJQ :

[#151-252] D h :. Hp . D : P G #JQ . D . &P G Q

Similarly h :. Hp. D : S>Q GP- 3 . Q<ZS'>P

h.(l).(2). Dh.Prop

#151-261. h :. S e 1 -> Cls . C'P C D'S . D :

QG^JP.D.5JQGP:^PGQ.D.PG^Q

(1)

(2)

#151-26
S,Q,P
8
>Q>P-]

',P,Qj

#151-262. l-:.Sel->l.C'PCD'#.C'QCCP£.D:

PGS'>Q. = .S
m

>P(lQ:QGS
m

>P. = .S'>Q<lP [*151'26'261]

#151-263. h :. S* 1-»1. C'P CD'S. C'Q Cd'tf. D :

PGS'>Q.Q<lS'>P. = .S
m

>P<lQ.S'>Q<lP. = .P=S
m

>Q. = .Q=S'>P

[#151-262]

#151-264. \-:.StC'Q€l-+l.3:P<lS'yQ.Q<lS'>P. = .P = S
m

>Q

Dem.

h . #150-202 . #37-401 . D h : P G £JQ . D . C'P C D'Sf C'Q (1)

h.(l).*151-262^t^.3h:Hp.PG^Q.D:

QG (C<Q1Sy>P. = .(SlC'Qy>Q<lP:

[*150-36132] D : Q G (&P) £ C'Q . = . S'>Q G P

:

[*35-9.*36-29] 3 : Q G £5P . = . S">Q G P (2)

h . (2) . #5-32 . D h . Prop

#151-27. \-:S<-l-+l.PGS
m>Q.QG&P.

= . Se 1-»1. C'P CD'S. C'Q Cd'S.#PGQ.#QGP.
= . £ e 1 -» 1 . C'Q C d'S . P = S>Q

.

= .Se 1-»1. C'P CD'S.Q =#P
[#151-263 . #532 . #150-203 . #4-73]

#151-271. f- : (g<S) . S e 1 -» 1 . P G#Q . Q G S?P .

= .(<&S).S€l-+l. C'P CD'S. C'QCa<S.$'>P<ZQ.S'>QGP.

= .PsmorQ [*151-27'21]
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*151'28. \-:.PsmorQ. = :(>&S):S€l-+l:xPy.lXtV .(S'x)Q(S'y)'.

zQw.OZii0 .(S'z)P(S'w)
Dent. w ^ ^

h.*l50Al.Dhi:Sel^l.Oi.(S'x)Q(S'y). = .xS'>Qy:(S'z)P(S'w). = .zS'>Pw'..

[#23-1] 3 :. xPy . X>

y

. (S'w) Q (S'y) : = .PGS'>Q:

zQw . D*. «, . (S'z)P (S'w) : = . Q G &P :.

[#151*27] D :. #Py . D, „ . (S'x) Q (S'y) :zQw.3zw . (S'z)P (S'w) : = .

C<QC<I<S.P = S'>Q (1)

h . (1) . #532 . #151*21 . D h . Prop

The above proposition shows that ordinal similarity as we have defined it

has the properties which are commonly associated with the term "ordinal

similarity," namely that P and Q are ordinally similar when their fields can

be so correlated that two terms having the relation P are always correlated

with two terms having the relation Q, and vice versa.

The hypothesis 8 el—>1 is redundant in *151'28; this is shown in the

following proposition.

#151-281. hi.xPy.DXty . (S'x) Q (S'y) : zQw . Dz> w . (S'z)P (S'w) :

3'.C'P1S= S\-C<Q.StC'QeP£morQ
Bern. ^ ^

h . #14-21 . Z> h :. Hp . D : xPy . . E ! S'x . E ! S'y :

[#33-352] D : x e C'P . D . E ! S'x

:

[#71-571] 3 : (C'P)1SeCh-+l . C'P CD'S (1)

Similarly h : Hp . D . S [ G'Q e 1 -» Cls . G'Q C d'S (2)

h.#33-17.Dr-:.Hp.D:aPy.D.3'a?,^'yeC'Q:

[#33-352] D : a e C'P . D . S'x e <7'Q

:

[#14-21-26] DixeC'P.xSz.D.zeC'Q:
[*4'71] 0:xeC'P.xSz. = .xeC'P.xSz.zeC(Q:
[*35-l-102] 3 : (G'P^S^tf'P^Sl C'Q (3)

Similarly h : Hp . D . S f C'Q = (C'P) 1 #f C'Q (4)

h . (3>. (4)

.

D h : Hp . D . (C'P) '\S = 8fC'Q. (5)

[(1).(2)] D.SrC'Qel-^l.C'QCd'S (6)

h (6). #35-7.(1). (2). #150-4-41 . Dh : Hp . D . P G jSTSQ . Q G S?P

.

[#151-264.(6)] D.P = #Q (7)

I- . (5) . (6) . (7) . #151-22 . h . Prop

#151-29. h:.PsmoTQ. = i(KS)iwPy.3Xjy .(S<w)Q(S<y):zQw.0ZiW .(S'z)P(S'w)

[#151-28-281]

#151-31. hr^eCls-^l.^Q-^iJ.C^Ca^.C'-BCa'S.D.Q^iJ
Item.

h . #151-252 . D h : Hp . D . Q = S5#SQ

[Hp] = §;##
[#151-252] = .R:DKProp
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•15132. h:.PsmorQ.D:a!P. = ,g[!Q [*15118 .*7336 .*3324]

•15133. \-iS<-PimdrQ.O.P\S = S\Q.S\P = Q\S

Bern.

K*151110h:Hp.D.P|S==S|Q|SjS.Sel->l.C'Q = <3'#.

[•72-601] l.P\S = S\Q (1)

Similarly h : Hp . 3 . S\ P = Q \

S (2)

h . (1) . (2) . D h . Prop

•151-4. \-:TfC'Qel-+l.C'P = T"C (Q.Q=r>P.3.TrC'QePamoiQ
Bern,

h . *35-52 . *37-4 . D h : Hp . D . (C'Q) 1 T e 1 -> 1 . <I'{(C'Q) 1 T) ** C'P (1)

h .#36-33 . D h : Hp . D . Q = (T>P)t C'Q

[•150-361] ={(C"01?};P (2)

h.(l).(2).*l5l-ll.Dh:Hp.D.(0*Q)1?eQsmorP.

[•151131] D . T [ C'Q e P smor Q : 3 h . Prop

•151401. h iITf C'P e^slnM P. Tf C'Q eFslnwQ.SePslndrQ.D.
TifleXsmorF

Z>em.

h . #151-131-141 . Z> h : Hp . D . Tf G'P
j 5

1

(C'Q) 1 T e

X

smbr F (1)

h . *151-1 1-131 . D h : Hp . D . V'S - C'P . Q'S - C'Q

.

[•150-34] 3 . Tf C'P
1

8
j

(C'Q) 1 ?= T
m

>S (2)

h . (1) . (2) . D h . Prop

•151-41. h : S ePsmor Q. Tp C'P, Tf C'Q e 1 - 1 . C'P u C'Q C d'T . D .

T>8e(T>P)smoT(T>Q) [*151'401'22]

This proposition is the analogue of #73 63.

The following proposition is used frequently both in relation-arithmetic

and in the theory of series.

•1515. HSfC'QePalnorQ.D.

D'P = S"D'Q . d'P = S«<I'Q .~B'P = S'<B'Q .~B'P = 5"B'Q
Bern.

h . *151-22 . *150'21-211 . D h : Hp . D . D'P = S"D'Q . d'P = S"<I'Q . (1)

[•93101] 3 .~B<P=S"D<Q-S"(I tQ.

[*37-421.*151-22] D ."5'P = (S[ C'Q)"D'Q - (flf CQ)"(TQ
[*71-381.*151-22] = (S T C'Q)"(D'Q - d'Q)

[*93101.*37-421] = S'*B'Q (2)

Similarly h : Hp . D .~B'P =S'WQ (3)

h.(l).(2).(3).3h.Prop
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#151 51. \~iStClQePBmMQ.ItGQ.O.S\'C'Re{SiR)§morR.S'>RGP

Dem.
h . #151*22 . #33265 . D h : Hp . 3 . C'R C d'S (1)

h . #151-22 . #71-222 . D h : Hp . D . S\* C'R « 1 -» 1 (2)

I- . #150-31 . #151*22 . 3 I- : Hp . D . #22 G P (3)

h . (1) . (2) . (3) . #151-22 . D h . Prop

#151-52. h : Psmor Q . 3 . Rl'Q C smor"Rl'P [#151-51'1214]

#151-53. h : 8f C'QeP&moi Q . Te Pot'Q . D

.

(8frC'2
T

e((8fJ2')smor5
r'.

iS;7
, ePot'P

h . #150-8 . D h : Hp . D . #Te Pot'P (1)

h . #91-27 . 3 h : Hp . D . C'TC d'S (2)

h. (1). (2). #151-22. 3 h. Prop

#151-54. h:Sr(7'QePsmorQ.D.iSf|k C7'QePpo BmorQpo

Dem.

h. #91-504. #151-22. 3 h:Hp.D. 5 rC"Q=^rC"Qpo .C^po Ca^ (1)

h . #150-83 . #151-22 . D h : Hp . D . Ppo =#Qpo (2)

h . (1) . (2) , #151-22 . D h . Prop

#151 55. \-:SeP smor Q . D . £ ePpo smor Qpo [*1 51 -54]

#151*56. h : P smor Q . D . Ppo smor Q^ [#151-55]

#151*56 is used in #263-17.

The two following propositions are lemmas for #151 "59, which is used in

*263'17.

#151-57. h : S eP slnor Q .z,weC'Q .0 .P {S'z^S'w) = 8"Q (sww)
Dem.

h . *151'33*55 . D h : Hp . D .

4

pvo'S'z= S'?Qpo'z .~Ppo'S'w = S'^'w .

[#91*54] D .^PtfS'z =S"*^ u t'S'z

.

~P*'S'w = iSf'Qpo'w u i'S'w .

[*53-31.*91-54] D . P*^'* = £"Q*'* P*'#'w = S'^'w

.

[(#121-103)] D . P (S'swS'w;) = #"Q (^h«-):DI-. Prop

#151-58. I- : S ePimoiQ . 3

.

8[ C'QV e P„smor Q„

Dem.

h .#151-57 .#73-22 . 3 h :. Hp . Z> : z, weC'Q . D .

Nc'P (S'zt-tS'w) - Nc'Q (*n«;) (1)

H . (1) . #121-11 . 3 (- :. Hp . *, w e C'Q . D : zQvw . = . (S's) P„ (£'«/) (2)

1-. (2). #150-41. Dh:Hp.3.Q, = /SJPv .

[*151*253.*121-322] D . #g„ = P„ . C"Q„ C d'tf (3)

•-.(3).*151-22.Dl-.Prop
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*151*59. h:Psmor£.D.P„smorQ,, [*151*58]

The remaining propositions of this number consist of applications to

particular cases.

#151*6. h . CnvJP smorP . Cnv f C
lP e (Cnv^P) smor P

[*151-231.*31\L3.*72-11]

This proposition is only significant when P is a relation between

relations.

#151*61. h . OP smorP [#151-232 . #51*12 . #7218]

*151'62. h:C"PCl.D.7;PsmorP [#52-62. #151 -243]

#151*63. \- : x^ y . z^w .3 . a; I ysmorz I w.x I zvy I W€(% I y)smor(z I w)

Bern.

h . #150-72 ."3h:S=xlzvylw.z^w.O. S'>(z I w) = x j y (1)

h . #72182 . #71242 . D V : Hp . Hp(l) . D . #e 1 -» 1 (2)

h . #55-15 . D h : Hp (1) . 3 . d'S = C(z I w) (3)

h . (1) . (2) . (3) . *1511'11 . D h . Prop

The above proposition shows that all ordinal couples {i.e. all members

of 2r) are ordinally similar. The following proposition shows the same for

couples whose referent and relatum are identical.

#151*631. h *x^x smor s ! z

Bern.

h. #72182. #55-15. 0\-.x | * e 1 -* 1 . <T(a4 s) = <7'(* j *) (1)

h . #5513 . Db:u{xlz\zlz\ Cnv<(# \z)}u'.s.

u{x\
r
z)z . uf (x I z)

[#55*13] = . u = x.u =x.

[#5513] ~.u(xlx)u' (2)

h. (2). #150-1. 3h.(xlzy>(zlz) = xlx (3)

h.(l).(3).*1511.Dh.Prop

#151-64. \-.#l>P smor P . (x j) [ C'P e (x |5P) smor P
[#72184. #55*12. #151-231]

The following proposition is frequently used in relation-arithmetic.

#151*65. h . I x>P smorP . (j x) f C'P e (| #JP) smor P
[#72-184 . #55*121 . #151*231]



*152. DEFINITION AND ELEMENTARY PROPERTIES
OF RELATION-NUMBERS

Summary o/*152.

The relation-number of P, which we denote by Nr'P, is defined as the

class of relations which are ordinally similar to P, i.e.

Nr'P = smor'P.

Hence our definition is

Nr = smor Df.

The class of relation-numbers consists of all such classes as Nr'P, i.e.

NR = D'Nr Df.

These two definitions are analogous to those of #100, merely substituting

"smor" for "sm." They are justified by similar considerations, and lead to

similar results. With the exception of #152 -7"71 ,

72, the propositions of this

number are the analogues of those of #100, and call for no remarks other than

those in the introduction to #100 (mutatis mutandis).

#152-7'71'72 give relations between relation-numbers and cardinals.

#152*7, which is constantly used, states that the cardinal number of C'Q

consists of the fields of the relation-number of Q, i.e. the classes similar to

OlQ are the fields of the relations similar to Q ; in symbols,

#152-7. h . Ne'C'Q = C'Nr'Q

Hence it follows that the fields of a relation-number form a cardinal

number, i.e.

#152-71. h : ii eNR . 3 . C> eNC
Hence also it follows that cardinals other than A consist of classes of the

form C"/a, where ft is a relation-number other than A, i.e.

#152-72. h . NC - t'A - C'"(NR - t'A)

In #154-9, we shall show how to remove the restriction to numbers other

than A, thus arriving at

h.NC = C""NR.

#152 01. Nr = smor Df

#15202. NR = D'Nr Df

#152-1. h . Nr'P = $ (Q smor P)~§(P smor Q)
[#3211. (#15201). #151-14]

#15211. h:QeNr'P. = .QsmorP.= .PsmorQ [*152'l]

#152-2. h . E ! Nr'P [#152-1 . #14-21]
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*152'21. I- . (TNr = Rel [#1522 . #33*432]

*152'22. I- . Nr e 1 -* Cls [*1522 . #71-166]

*152'3. h.PeNr'P [#15113. *152\L1]

#152-31. h : P e Nr'Q . = . Q e Nr'P [#15211]

#152-32. h : P e Nr'Q . Q e Nr'iZ . D . P e Nr'iS [#151-15 . *152'11]

#152*321. h : P smor Q . Z> . Nr'P = Nr'Q [#15117 . #1521]

#15233. h : g I Nr'P n Nr'Q . 3 . P smor Q . Nr'P * Nr'Q

Dem.
h .#152-11 . #151-14 . D h : Hp . Z> . (giJ) . P smor ij . R smor Q .

[#151-15] D.PsmorQ (1)

h.(l). #152-321.31-. Prop

#152-35. h :. g ! Nr'P . v . g I Nr'Q : 3 :

Nr'P = Nr'Q . = . P e Nr'Q . = . Q e Nr'P . = . P smor Q
Dm.

h . #24-571 . D h :. Hp . D : Nr'P = Nr'Q . . g I Nr'P a Nr'Q

.

[#152-33] D.PsmorQ (1)

h
. (1) . #152-321 . 3 h :. Hp . D : Nr'P = Nr'Q . = . P smor Q (2)

h. (2). #15211. Dh. Prop

In the above proposition, the same remarks as to types are to be made as

in the case of #100'35. If in a certain type Nr'P and Nr'Q are both null, we

have in that type Nr'P =» Nr'Q, but we need not have P smor Q. Thus for

example we shall find that, in the type of x j, x,

Nr'(*a'# f P<x) = A - Nr'^'a; ftux).
But we do not have

(P'x t t*x) smor {t*'x *| t*'w).

#152-4. h : fi eNR . = . (gP) . p = Nr'P [*37*78-79 . (*152*0201)]

Note that "Nr'P," like "Nc'a," is a formal number, and may be subjected

to the conventions IT, II T, AT.

#152-41. I- . Nr'P e NR [*152*4'2]

#152-42. h-.^veNR.Rltirw.D.fji^v [*152'33'4]

#152-43. h . NR e CIsa excl [#15242]

#152-44. h:. /*eNR:a! At.v.a!Nr'P.D:Pe At . = .Nr'P = At

[#152-35-4]

#152-45. h:/*eNR.Pe/*.3. Nr'P =p [#152-44 . #10-24]

#152-5. h : ft

e

NR. P, Qep.O.P smor Q [*152-31'32-4]

b&wii 21
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#152 51. h:/xeNR.Pe/x.3. smor "/* = Nr'P
Bern.

K*37\L. 3\-:Resmor"fi. = .{'g
i
Q).Qefj,.R8morQ (l)

K #152-5. Dhz./ieNR.Pe^.D-jQe/i.PsmorQ.s.Qe/i, (2)

h.(l).(2).3h:.HpO:# e smor'V = .(aQ).Qe/u.PsmorQ.i2smorQ.
[#151*17] =.(RQ).QefM.PsmoTQ.RsmorP.
[(2)] =.(^Q).Q€fi.MsmoTP.
[#10-35] = . a ! /* . P smorP (3)

h . #1024 . D h :. Hp . Z> : g ! fi

:

[*4-73] 3 : R smorP . = . g ! /i . P smorP (4)

h , (3) . (4) . Z> h :. Hp . D : R e smor"/* . = . R smorP

.

[#152*11] = . R e Nr'P :. D h . Prop

#152 52. h : fi eNR . a ! p . D . smor> eNR [*152*51'4]

The restriction involved in g!/i is, as we shall see later, not necessary,

since A eNR in any assigned type.

#152*53. I- : a ! Nr'Q . 3 . smor"Nr'Q = Nr'Q
Dm.

h . #152*5 1 . D h : P e Nr'Q . 3 . smor"Nr'Q = Nr'P (1)

h . #152*321 . D h : P e Nr'Q . D . Nr'P = Nr'Q (2)

h . (1) . (2) . D h . Prop

#152*54. h:."g!/tt.5[! i>. D:/u.eNR. v = smor'V. = . i/ e NR . jm — smor "t>

[Proof as in #100-53]

#152-6. h . tJP eNr'P [#151-61]

#152-62. h.tf^PeNr'P [#151*64]

#152*63. h.|^"PeNr'P [#151-65]

The utility of *152-6*62'63 is that they enable us to raise the type of

a relation-number to any required extent. Thus i>P gives a relation whose

field is a class of the next type above that of C'P, i.e. of the type P'C'P;

while x \,'P gives a relation whose field is #!"CP, which is of the type

*'£'(i'# t c'p)- If x € G'p>
or - more generally, it ate t 'C'P

t
this is the type

i
2'P. Thus if we put Q = so |»P, we have

CQ = t'(C'Q t C'Q) = t'(t'P t t'P) = «'(P | P).

Thus # ^»P is a relation whose field consists of terms of the same type as P.

The following propositions on the relations of cardinals and relation-

numbers are very important.

#152*7. h . Nc'C'Q = C'Nr'Q
Dem.

h . #151-19 .#35-942 .Dh:«6 Nc'C'Q. D . (gP) .C'R = a.Re Nr'Q

.

[#37-6] D.aeCNr'Q (1)

f- . #15118 . D h : P e Nr'Q .LC'Pe Nc'C'Q

[#37-61] D I- . C'Nr'Q C Nc'C'Q (2)

h . (1) . (2) . D J- . Prop
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#15271. H^eNR.D.C^eNC [*1527]

*152'72. h . NC - t'A = C'"(NR - t'A)

Dem.
h. #152-71. 3h.a'"NRCNC (1)

I- . #1527 . #50-5*52 . 3 h : /*eNC . ae/* . D . C"Nrf(7|-a) = NC'a

.

[100-45] 3 C"Nr<(J [ a) = /i

.

[#37103] D./A6(7'"NR (2)

h
. (2) . *10*ll-23-35 .Dh:/AeNC.3!/i.D./i e C'"NR (3)

h . #37-45

.

D h : /* - C"i> . a ! // . D . a ! v :

[#37-103] Dh: /ieC'"'NR.a !^.D. /ieC"'(NR-i'A) (4)

h.(l).(3).(4).Dh.Prop

We shall show in *154'9 that the exclusion of A in #152*72 is un-

necessary.

21—2



*153. THE RELATION-NUMBERS r , 2r AND 1,

Summary o/#153.

The relation-numbers r and 2r have already been defined (in #56),

though it remains for the present number to show that they are relation-

numbers. They are the ordinal and 2 respectively, i.e. they are the ordinal

numbers of series of no terms and series of two terms respectively. But

there is no means of introducing an ordinal 1 which shall be analogous to the

cardinal 1 as completely as r and 2r are analogous to and 2. The only

relations whose fields are unit classes are relations of the form x
J,

x. We
therefore put

#153-01. l 8 =R{(nx).R = xlx] Df

The above definition gives the nearest possible approach to an ordinal 1.

l s so defined is a relation-number, and is the relation-number corresponding

to 1 in the sense that it is the relation-number of all such relations as have

a field consisting of one term. But 1, is not what is called an "ordinal

number," because this term is confined by usage to the relation-numbers

of well-ordered series, and x ^ x is not a serial relation. It is essential

to a serial relation to be contained in diversity; and if, by definition, we
include x ^ x among series, we introduce more exceptions than we avoid.

Moreover l g does not have the kind of properties which we wish 1 to have;

e.g. 1«+1» is not 2r .

We do not use lr , because we shall at a later stage define vr as the class

of those well-ordered series whose fields have v terms, so that l r = A, while

r and 2r have the values i'A and R {(a«, y) • oc 4= y . R = x j, y} }
as already

defined. On account of this general definition of vr , we choose a different

symbol for the relation-number 1, and 1, has the merit of being as like l r as

possible.

To illustrate, by anticipation, the way in which 1, differs from proper

ordinal numbers, we may point out that if 1, is added to 2r , we do not obtain

3r . We shall define 3r as the class of series which consist of three terms, i.e.

the class of relations of the form

x ly\y x\zk) y \zy

where x^y.x^z.y^z. We shall define the sum of two ordinal numbers
as the ordinal number of the sum of two relations having these ordinal

numbers (cf. #180), and it will appear that if P and Q are relations whose
fields have no members in common, then

P vy Q vy C'P f C'Q

has a relation-number which is the sum of those of P and Q. Suppose now



section a] the relation-numbers r , 2 r and l g 325

P = x I y and Q = z | z, where x^y.x^z.y^z. Then

P v Q vy OP f (7*Q = x]f yvx\f
zvy\zK}z\

t
z.

This is not a member of 3r , because of the additional term z\z. Thus the

addition of one term to a series P does not give the same number as results

from the addition of 1, to Nr'P. Hence the addition of 1 to an ordinal

number has to be separately treated*.

We prove in this number that Or = Nr'A (#153-11), that 2r = Nr'(A I l
(x)

(#153'24; observe that we have to take a couple of classes (or relations) in

order to be sure of the existence of two different objects of the class in

question), and that 18 = Nr f

(y I y) (#153'32). We prove C"0r = (#153*18),

C<% = 2 (#153212), and C"l,= 1 (*1 53-36). We have also <7"0 = r (not

proved) and 0"1 = 1, (#153-301). But we do not have C"2 = 2,; e.g.

(xlyvylx)* C"2 if x + y, but (x
J, y u y J,

x)~e 2r . We have a !0r (#153'12)

and a 1 1, (#153-34), but from our primitive propositions we cannot deduce

g; ! 2r unless we rise above the lowest type of relations. The case is exactly

analogous to that of a ! 2 (cf. #101); we have

#153-26-262. b . g ! 2r n Rl'(Cls \ Cls) . a ! 2r n Rel2

But if, as monists aver, there is only one individual, we shall not have

3 ! % in the type of relations of individuals to individuals. Our primitive

propositions do not suffice to disprove this supposition.

#153-01. I s = R{(rx).R = xIx\ Df

#1531. h:PeOr .= .P = A [#56104]

#153101. b : P smor A . = . P = A
AJBTTt

b. #151-32. Transp.Dh:PsmorA.D.~a IP (1)

b. #15113. Dh:P = A.D.PsmorA (2)

h.(l).(2).DKProp

#15311. h . r = Nr<

A

[#1531*101 . #1521]

#153111. K0r€NR [#15241 . #153-11]

#153-12. h . a ! r [#51-161]

#15313. h.3'.0r nRl'.R.Ae0r nRl<.R [*613]

#15314. b : Nr'P= r . = . P = A
Bern.

b . #152-44 . #153-111-12 . D b : Nr'P = 0, . = . P e r .

[#152-1] =.P = A:DH.Prop

* Gf. *161 and *181, where this point is more folly elucidated.
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#153-15. h.smor"0r = r

Bern.

h . #15251 . #153111\L3 . D h . smor"Or = Nr'A

[#153\L1] =Or .Dh.Prop

#153-16. h :. fi eNR - i'0r .0: Pe fi.DP .^\P

Bern.

h . #153*13 . #152-42 .Dh:. fieNU.D ike ft.D . fi=Or :

[Transp] D :/*=}= r . D .A^ejx. (1)

h. (1). #25-63. Dh. Prop

#153-17. h : A e Nr'P . = . Nr'P = r . = . Nr'P = Nr'A . = . P = A
[#152-35. #1531 1-14]

#15318. h.C"Or =

Bern.

Y . #5331 . D h . C't'A = t'C'A (1)

h . (1) . #33-241 . (#56-03 . #54-01) . D h . Prop

#153-2. h:Pe2r . = .(aa>,y).0 + y-P-fl4y [*56-ll]

#153-201. h:« + y.= .a:Xye2r [#56*17]

#153202. h : P, Q < % . D . P smor Q [#151'63 . #1532]

*153'2C3. h:Q e 2r .PsmorQ.D.Pe2r

Dera.

h.#113-123.Dh:/Sfel^Cls.^W€a^.D.^J(^iw;) = (^|,(S'M;):

[#55-15] D h : 5 € 1- Cls . C"(^
J,
w) = d'S . D .

&\z]
f
w) = (S

l£)i{Biw) (1)

h. #71-56. Dh:.,Sel^l.C'(^w) = a',S. I) :* = «;. = . £'*==£'«;:

[Transp] 0:z$w .== . S'z^S'w (2)

K(l). (2). #153-201. D

Y:Sel-+l.z$w. C\z lw) = d'S . P=S">(z
J,
w). D . P € 2r :

[#1511] D h : z^w . Psmor (* J,
w) . D . P e %

:

[#153-2] D h : Q e 2r . P smor Q . D . P e % : D h . Prop

#153-21. 1- : P e 2r . D . 2r = Nr'P [#153-202-203]

#153*211. h:#4=2/.:>.2, = Nr (

(#,l2/) [#153*21-201]

#153*212. h.C"% = 2 [#5515. #56*11. #54101]

#153*22. b'.<3_l2r nt"
tz. = ^l2(z). = .(^w,y).w^y.w€ttz [#153-211 .*101'4]

#153*23. h : P € 2r . D . Rl'P C0r u2r [#56261]

This proposition illustrates the reasons for not putting

lr = P{(Ra;).P=>xla;} Df.
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We want the inductive ordinals, like the inductive cardinals, to form a series

in order of magnitude; but, as the above proposition illustrates, the relation-

number of such relations as x \ x is not in the same series with r and 2r .

The above proposition should be contrasted with #54-411.

#153 24. b . 2r = Nr'(A i i'x) [#153-211 . #51161]

#153-25. h . % € NR [#15324 . #152-41]

#153251. K2r =t=Or .2r nOr=A
Dem.

b . #153-212-18 . #101-34-35 . D b . C"2r + C"0r . C"2r n C«0r = A

.

[#13-12.Transp.#37'21] D b . 2r* r . C"(2r n r) = A

.

[#37-45] Dh.2r + r .2r r.0r =A

#153-26. b . a ! % n Rl'(Cls f Cls) [#153'24 . #152'3]

#153-261. b . A I (x i x) t- 2r [#55-134 . #56*11]

#153-262. Ka!2r nReP [#153-261 . (#61'03)]

#153-27. h . 2r = smor"(2r n Rl'Cls) = smor"(2r n Rel2
)

[#152-53. #153-26-262-24]

#153-28. h : x + y . D . B\x iy) = x. B'Cnv\x ly) = y

Dem,

b . #93-101 . #55-15. D h : Hp . D.B'(x I y)=i'x.B'Cnv'(x I y)=i'y : D b . Prop

#153-281. h:Pe2r .D.P'P=T<D<P.P<P='i'a<P [#153-28 . #55*15]

The above proposition is used in the theory of series (#204'48).

#153-3. b . 1 8 = 2 - 2r
- P {(g#) . P = « J, #} [#56'13 . (#153'01)]

#153-301. h.l s = C"l [#1533 . #56-39]

#153*31. b . x I y € (x I x) smor (y I y)

b. #72182. #55-15. D b .xl yel-+ 1 . d'(x ly) = C*(y ly) (1)

h . #3589 . #551 . Ob .x ly\y ly = x ly

.

[#1501.#5514] Db .(x I y)>(y ],y) = % ],y\y \x
[*35'89.#551] =xix (2)

K (1). (2). #15111. Dh. Prop

#153-311. b:Qel a .PsmorQ.O.Pel a

Dem.

b . #1533 . #1511 . b : Hp . .

(KSt y).Q = yly.Sel^>l.(I<S=i<y.P = S'>Q.

[*150-71] . (aS, y) . P = (S'y) I (S'y)

.

[#153*3] D. Pel, Or-. Prop
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*153'32. l-.l.^Nr'fyjy) [*153-31'311]

*153 33. h . 1, eNR [*153'32]

*15334. Kg!W^0r .l, + 2r .l8 n0r =-A.l,n2r = A
Dem.

h.#1533. Dh.^^el,.
[*1024] DK.gll, (1)

h . *56103104 . D K . 1, n r = A (2)

h.(l).(2). DH.1. + G, ^ ^
(3)

h . #153-301 . #56'113 . D h . 1, n 2r C <7"1 r. #"2 .

[*72-41.*101'35] DKl,n2r = A (4)

[(1)] DKl s*2r (5)

h.(l).(2).(3).(4).(5).Dh.Prop

*153*341. h:i2el,.s.Nr'B=l f [*15333-34. #15244]

*153'35. h : i2 € 1 8 . D . Nc'C'i* - C7"Nr'E = 1

Dew.
h . #5515 . *153'3 . D h : Hp. D . Ne'C'iJ=* 1 (1)

h . (1) . #152*7 . D h . Prop

*15336. KC"1,-1
Dem.

h . *1 53-301 . D h . C'%= C"C"l

[#72'502] = 1 . D h . Prop



*154. RELATION-NUMBERS OF ASSIGNED TYPES

Summary o/#154.

This number gives propositions analogous to those of #102. In accordance

with our general notations for typical definiteness, "Nr(P)'<2" means "the

class of relations like Q and of the same type as P," "Nr(Pg)" means "the

relation to a relation of the type of Q of the class of relations like it and of the

type of P." By a special definition, "NRQ (P)" is to mean all typically definite

relation-numbers of the form "Nr(PQ)'P," i.e. all relation-numbers generated

by the relation Nr (Pq), i-e. the domain of Nr (Pq).

Existence-theorems in this subject can be proved by means of #154*14,

which states that relations like Q exist in the type of P when, and only when,

classes similar to C'Q exist in the type of C'P. In virtue of this proposition,

the existence-theorems of our present topic are deducible from those for

cardinals. In symbols, this proposition is

#15414. h : a I Nr (P)'Q . = . a ! Nc (C'PyC'Q

Hence by #10273 we deduce

#154-242. h.AeNR'^P)

whence, by #15272,

#1549. KNC = C""NR

The remaining propositions are chiefly analogues of those in #102. Very

few of them are subsequently referred to.

#15401. NRy (JQ = :D<Nr(Xy) Df

#154-1. h : a ! Rl'P n Nr'Q . D . a ! Cl'C'P n Nc'C'Q

Dem.
h . #152-1 . 3 h : Hp . D .

(3P) .RGP.R smor Q .

[#151-18] D . (gP) .RdP.C'Rsm C'Q .

[#33-265] D . (gP) . C<R C C'P . C'R sm C'Q .

[#100-1] D . a ! Cl'C'P a Nc'C'Q : D h . Prop

#154-11. h : a ! Cl'C'P a Nc<C'Q . D . (aP) • # smor Q.C'RQ C'P

Dem.

h. #1001. #731. 1)h:Hp.:>.(aSMel->l.D<SC(7<P.<r/S= C'Q.

[#1511] D . (aS) • T>'S C C'P . S'>Q smor Q .

[#150-203] D . (aS) . C'S>Q C C'P . &Q smor Q : D h . Prop
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#15412. b : a ! Rl«(« f «) n Nr'Q . = . a ! Ol'a n Nc<C"Q . = . Nc'a> Nc'C'Q

Dew.

b . #1541 . #35*9 . D b : a ! Rl'(a f a) n Nr'Q . D . a ! Cl'a n Nc'C'Q (1)

h . #154*1 1 . #35*92 . D b : g ! Cl'a n Nc'C'Q . D . a ! Rl'(a |a)n Nr'Q (2)

r.(l).(2).DKProp

#154*121. h . Rl'(* 'C'P t ^C"P) = <'P = ioo'C'P

Dem.
h . #64*5 . D b . RIU'C'P t rVCP) = t'(C'P t C

fP) (1)

b . #64*201 . D b . f'(C'P t CP) = t'P (2)

K (1). (2). #64*54. Dh. Prop

#15413. hgU'Pn Nr'Q . = . g ! t'G'P n Nc'C'Q . = . Nc%'C'P> Nc'C'Q

Dem.

b . #154-12 ^-^ . #154*121 . D
a

h: a !('Pn Nr'Q . = . g ! C1%'C'P n Nc'C'Q (1)

h . (1) . #63-65 . #117-22 . D b . Prop

#154-14. h : a ! Nr (P)'Q . = . 3 ! Nc (C'P)'G'Q [#154-13 . (#65-04)]

In virtue of #154*14 and the propositions of #102, #103, #104, #105,

#106, we see that all homogeneous or ascending relation-numbers exist, while

A is a member of every descending type of relation-numbers. Remembering

that the relations concerned must be homogeneous, we see that there are two

kinds of steps by which their types may be raised, namely (1) from P to

relations of the type of t'C'P f t'C'P, i.e. from P to relations of the type of

C'P i C'P, or of 0P\ (2) from P to relations of the type of t'P f t'P, i.e. from

P to relations of the type of P I P, or of j, x*P iixe t 'C'P. Thus repetitions

of the two steps from P to l>P, and from P to I %>P, where so e t 'C'P, will

enable us, without changing the relation-number, to raise its type indefinitely.

It will be observed that, in accordance with our general definitions for

relative types, the type of i>P is t
lUG'P, and the type of I x>P (where

xeto'C'P) is *
U'P.

#154*2. h . Nr (XYYQ = P{P smoriXtY)Q} [#65*2 . (#152-01)]

#154*201. b . Nr (X)'Q = Nr'Q n t'X [Proof as in #102*6]

#154*202. b : P e Nr (XY)<Q . = . P e Nr (X)'Q .Qet'Y.= .

P e Nr'Q . P e t'X . Q e t'Y [#152-2'201 . (#65-1)]

#154*203. b : Q e t'Y . D . Nr (XY)'Q = Nr (X)'Q [#154*202]

When Q belongs to any other type than t'Y, Nr(Xy)'Q is meaningless.

#154*21 b . NRy (X) = \ {(aQ) . X = Nr (XY)'Q} [(#154*01)]
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b . NR^X)** Nr (X)"<<F= (« i'X)"Nr"*'F
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#15422.

Dem.
b . *154-21'202 . D

K-.XeNRy(X).=
[#63'108.*4-73] =

[#20'43] =

[*37'6] =

(aQ):PeX.=p.PeNr(Z)«Q.Q«««F:

(aQ):QefF:P«X.sp.PeNr(X)«Q:

(aQ).Qe«'F.X = Nr(Z)'Q:

\eNr(Z)"«'F (1)

h.(l;.*154-201.Dh.Prop

h : A e NR« (P) . = . A e NCC'« (C'P) . = . A e NC (C'P)''t'C'Q#15423.

Dem.

h . #154-22 . D h : A € NR« (P) . s . A e Nr (P)"«'Q

.

= . (3P) . P 6 *'Q . A = Nr (P)'P

.

= . (gP) . P e t'Q . A = Nc (C'PyC'R .

= . (gP) . cr ewq . a - Nc (c<pyc<R .

= . (ga) . a e t'C'Q . A = Nc (C'P)'a

.

= .AeNc(C"P)<-WQ. (1)

= . A eNC^ (C'P) (2)

[#37-6]

[#15414.Transp]

[#64-24]

[#35'942]

[*37-6]

[#102'62]

I- . (1) . (2) . D b . Prop

#154-24. b : C'Q = t'C'P . D . Nr (P)'Q = A [#10273 . #154-14]

*154241. h.Nr(P)'I|^'C'P^A [#154-24]

#154242. h.AeNRl,p(P)

Dem.
b . #35-91 . D b . IfWP 6WP f t'C'P

[#63-64] C *o'i"C"P t to'i"C'P

[#150-22] C CC'tiP f tfC'uP

h.(l).*l 54121. D b. If t'C'P et'i>P

b . (2) . *154-22-241 . D b . Prop

#154-25. b:C'Q = tm'C'P . D . Nr (P)'Q - A [*106'53 . #154-14]

#154-251. h.AeNR'^P)
Dem.

b . #154-23 . D b : A e NR'* P(P) . s . A e Nc (C'P)"t'C'(P I P)

.

[#55-15] = . A e Nc (C'P)"t'i'P .

[#63-61] s . A e Nc (C'P)"t't'P .

[#154-121] = .AeNc(C'P)"*%o'<?'P (1)

h . (1) . #10653 . #104264 . D h . Prop

#15426. h : P e

e

fQ . D . a ! Nr (P)'Q [#64'231 . #103-3-13 . #154-14]

#154-261. b : C'P e t*'C'Q . D . a I Nr (P)'Q [#104-21*1 . #154-14]

#154-262. h : C'P e tw'C'Q . D . 3 ! Nr (P)'Q [#106-21*1 . #154-14]

(1)

(2)
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The following propositions are concerned with the two particular trans-

formations from P to l"'P and from P to x I >P, which are useful in raising

the type of a relation-number.

#154'31. h.t'i'>P = t»'C'P

Dem.
h . #154121 . #15022 . D h , t'i>P=* Rl'^VC'P f tQ'i"C'P)

[#63-64] = Rl'(WP f t'G'P)

[#64-56] =WP . D h . Prop

#154311. h . a ! Nr (t
ll'G'P)'P [#15431 . #152-6]

#154*32. h : x eU'C'P . D . t'x
J,
>P = t

atP . t 'x I "C'P = t'P

Dem.

h . #154-121 . #15022 . D h . t'x I ?P = m<{(t 'x I "C'P) f (C* | "C'P)} (1)

h . #64-52 . D h : x, y e tfC'P ,0.x lye t'fa'&P f U'C'P) .

[#154-121] D.xlyet'P (2)

h . (2). D h :x€t <C<P .D.wi "C'PCt'P .

[#63-21] D . V* I "C'P = *'P (3)

h . (1) . (3)

.

D h : Hp . D . t'« i iP= Rl'(£'P f *'P)

[#64-56] - *
U'P (4)

h . (3) . (4) . D h . Prop

#154-321. r- . a I Nr (t
ll<P)'P [#154-32 . #15262 . #6318]

#154-322. h : x e U'C'P . D . t
l

I x>P = t
lUP [Proof as in #154'32]

#154-33. h : x e tfC'P . D . t'P I >x I >P = t"'s'tn'P

Dem.
h . #154-32 . D h : Hp . D . P € tQ'x I "C'P .

[#150-22] D.Pe^C'or^P.
[#154-32] D .t'P I >x I >P - *

u
'<z | >'P

[#64-23] =tu 's
st'xl'>P

[#154-32] = fP'WP Oh. Prop

#154'331. h . a ! Nr (t
ll
's'tn'P) [#154*33 . #152-62 . #6318]

#154-4. h . Nr (XY)'Q = P {(rS) . Se 1.-+ 1 . dSS = C'Q . P = *SfJQ

.

D'SeJ'C'X.a'SeJ'C'F}
Dm.

h . #154-202 . #1521 . D

b:.P6*8r(X YyQ. = :(>&S).Sel-+l.<I'S = C<Q.P=S'>Q:P€t tX.Qet l Y:

[#64-24] =:(nS).S€l^>l.(I'S=:C'Q.P = S'>Q.C'P€t'C'X.

C'Qet'C'Yi

[*13-193.#150-23] = : faS) . £ e 1 -> 1 . d'S = CQ . P « SJQ .

D'SeJ'O'X . d'tf e-4'C"F :. D h . Prop
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#154-401. h . Nr (X¥)'Q = P
{a ! (P smor Q) n t\C'X \ C'Y)}

[#154-4. #151 -11. #6463]

The remaining propositions of this number (except #154'9) are the analogues

of those whose numbers have the same decimal part in #102. They are here

given without proof, because the proofs are, step by step, analogous to the

proofs of the corresponding propositions in #102.

#154-41. h : P e Nr (XZ)<R . Q e Nr (YZ)'R . D . P € Nr (X Y)'Q . Q e Nr (YX)<P

#154-42. KPeNr(Pp)'P

#154-43. h. a !Nr(PP)'P

#154-46. t-:Pe~8r(XYyQ. = .QeNr(YxyP. = .PsmoTQ.Pet<X.Q e t
tY

#154-52. h : a ! Nr (XY)'Q . D . Nr (Xr)'Q € NR* (X)

#154-53. h . NRr (X) - i<A C NRX (X)

#15455. h : A~eNR*(F). D . NRr (X) - t'A ~ NR* (X)

#15464. h^eNR.gl/i.D. (3P, Q) . ^ = Nr (P)'Q

#154-641. h :/te NR.D.(aP,Q).^ = Nr(P)'Q [#15464-241]

#154-8. h:PeNr(ZryQ.Psmori2.i2e*'S.D.B€Nr(iSy)'Q.B€Nr(Sx)'P

#15481. h : P e Nr (XY)'Q . D . smor"Nr (XY)'Q n *<#= Nr {SY)<Q = Nr (SX)'P

#154-82. h : /i eNRr (X) . a ! fi . D . smor> n^eNRr
(5)

#15483. h : fi eNRr (X) . v = smor<> n t'S . a ! v . D .

smor"/tr> £'S= smor' 'v r\ t'S . fi
— smor"y rv t'X

#154-84. h : (aP) . P smorX . P e *<X . Q smor P . = . Q smorX
#154'85. h . smor"/4 n t*Y= smor/'^t

#154 86. h : fi = Nr (X)'Q . a ! /* . D . smorF"/* = Nr ( F)'Q

#154*861. h . smory"smory
u

/u, C smorx"^

#154-87. h : fi = Nr ( Y)'Q . a ! Nr (X)'Q . D . smorp'V = smorP"smorx <

V

#154-88. h : ^ = Nr ( Y)'Q . a ! smorp*V 3

smorp*'^ = Nr (P)'Q . smorx"/i = Nr (X)'Q

.

smorx"^=smorJf"smorp"/Lt = smorx"Nr (P)'Q

#1549. h.NC=C""NR
Bern.

h . #37-29 . D h : ^ =A . D . ^ = C"A .

[#154-241] D.^eC"'NR (1)

h . #87-29 . Z> h : v = A . D . C"v = A

.

[#10273] D.C've'SC (2)

h.(l).(2).*152-72.Dh.Prop



*155. HOMOGENEOUS RELATION-NUMBERS

Summary o/#155.

A relation-number is called homogeneous when it is generated by a

homogeneous relation of likeness, i.e. when it consists of all relations which

are like a given relation P and of the same type as P. For the homogeneous

relation-number of P we write "N r'P"; thus N r'P - Nr'P a t'P. When
P is given, N r'P is typically definite. We have always PeNor'P, hence

g ! N r'P. Conversely, if a typically definite relation-number is not null, it

is a homogeneous relation-number; in fact, if P is a member of it, it is

N rfP. Thus the homogeneous relation-numbers are all the relation-numbers

except A.

Homogeneous relation-numbers play the same part in relation-arithmetic

as homogeneous cardinals play in cardinal arithmetic. The propositions of

this number (except #155-6'61) are the analogues of those with the same

decimal part in #103. Their proofs are exactly analogous to the proofs of

their analogues in #103, and are therefore omitted.

The following propositions are the most useful in this number.

#15511. h : <2eN r'P. = . QsmorP. Qet'P. = . QeNr'P. Qet'P

This merely embodies the definition.

#15512. r.PeN„r<P

whence

#15513. h . a ! N r'P

#15516. h : N r'P = Nr'Q . = . Nr'P= Nr'Q

This proposition is used in the theory of well-ordered series (#253 and

#255). It requires that the equation "Nr'P =NrfQ" on the right-hand side

should be subject to the convention AT. Otherwise, the typical ambiguities

might be so determined as to give Nr'P = Nr'Q = A, which would not imply

N r'P = Nr'Q.

#155-2. I- : fi

e

N R . = .

(

3P)

.

p = Nr'P rxt'P.-. (aP)

.

p = N r'P

This merely embodies the definition of N R.

#155-22. h^eNoR.D.gl/A

#155-26. h:. /A€NR.D:Pe /i . = .N r
(P =

/t

#155-27. h:/i =N r'P. = . /ieNR.Pe /t

#155-34. KNR-t'AC N R
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*1554. I- . smor"N r'P = Nr'P

#155-5. h.Or eN R

#155*6. h . C"N r'P = N c<C"P

This last proposition connects homogeneous relation-numbers with homo-
geneous cardinals.

*155'01. Npr'P^Nr'Pni'P Df

#15502. N R = D'N r Df

#1651. h . N r'P = (Nr'P)P = Nr (P) (P = Nr (PP)<P

#15511. l-:QeN r'P.s.QsmorP.Qe*'P. = .QeNr<P.Qe$'P

#15512. h.PeN/P
#15513. h . a ! N r'P

#15514. h : N r'P =N r<Q. = .P € N
()
r<<2 . = . £eN r'P. = .PsmorQ. Q € *'P

#15515. r : a ! N r'P n N„r'Q . = . N„r'P =N r<Q

#15516. H : N r'P = Nr<Q . = . Nr'P = Nr'Q

#155-2. h:/t€N R. = .(aP)./A = Nr'PA^P. = .(aP). At = N r'P

#155-21. h . N r'P eN R . N r'P e NR
#155-22. hi/ieNoR.D.a!/*

#155-23. KA~eN R
#155-24. h . N R e Cls ex2 excl

#15525. h:.{i,v€N R .D:g!/irti/. = ./t = v

#155-26. h:. /i6NK.D:Pe/i.= .N1r'P = /
i

#155-27. h: /A =N rtP. = . /i eNR.Pe/i

#15528. r : (gJ2) . £ smorP
.
/i = N r'£ . = . 3 ! /i . ju. = Nr'P

*155;3. h : Q e t
lP . D . N r<<2 = Nr (P)<Q - Nr (PP)<Q = Nr<£ a i'P

#155-301. h . NRP (P) = N R (P)

#155-31. h : 3 ! Nr (Z r)'Q . D . Nr (Zr)'Q € N„R(Z)

#155-32. h . NRF (Z) - i'A C N R (Z)

#155-33. r . NR (Z) - i'A C N„R (Z)

#155-34. h.NR-i'ACN R
#155-35. r:A~eNRJC (F).D.NRF(Z)-t tA = N R(Z)

#155-4. h . smor"N r'P = Nr'P

*155'41. r . smor"N„r'P n *'Q = Nr {Q)
lP

#155-42. r : Q smorP . = . Nr (Q)'P =N r'Q

#155-43. h : yu. eNR . D . smor'V n £ '/i = ft
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#155 44. h:./i,j/eN R . D : /a = smor"y . = . v = smor"/*

#155-5. KOr eN R

*155'51. h.2r nRl'ClseN R

*15552. h.2r nRel4 eN R

The following propositions have no analogue in #103.

#155 6. h . C"N„r'P = N c<C*P

Dem.

h . #10011 . #103-11 . D h :. aeN c'O'P . = :

a€t'C<P:(nS).S6l^>l.'D<S = a.(I<S=C<P:

[#150-23] = : a e t'C'P : (g£) . S e 1- 1 . C'S">P = a . (PS= C'P

:

[#151-11] = : a e *'C'P : (gQ) . Q smor P.a = C'Q:

[*64'24] ~ : (gQ) . Q smorP .Qet'P .a=C'Q:

[*15211.*155"11] s : a e C"N r'P :. D h . Prop

#155-61. K<7"'N R = N C [*155'6]

On ascending and descending relation-numbers, propositions analogous to

those of #104, #105, and #106 might be proved by proofs analogous to those

given in those numbers. It is, however, scarcely necessary to add anything to

the propositions already proved, namely #154 ,24'241 ,242'25 ,251 on descending

relation-numbers, *154-26-261'262-3T; -311-32 321 -322-33-331 on ascending rela-

tion-numbers, and #155'23'34 giving the relations of non-homogeneous to

homogeneous relation-numbers. Ascending relation-numbers* all exist, and

those that start from the type of P, wherever they end*, are the corre-

spondents f of the homogeneous relation-numbers of the type of P, and are

only some of the homogeneous relation-numbers of the type in which they

end. Descending relation-numbers consist of A together with the homo-

geneous relation-numbers of the type in which they end: they are the

correspondents of only some of the type in which they begin, or rather, A is

the common correspondent of all those relation-numbers in the initial type

which are not correspondents of any homogeneous relation-number in the

end-type. These properties are exactly the same as in the case of cardinals,

as might be foreseen by #154-14.

* We say that Nr (P)'Q starts from the type of Q and ends in the type of P.

f We call two typically definite relation-numbers correspondents when they only differ as to

the typical determination, i.e. Nr (X)'P and Nr (Y)
lP are correspondents.



SECTION B

ADDITION OF RELATIONS, AND THE PRODUCT
OF TWO RELATIONS

Summary of Section B.

In the present section, we have to consider the kind of addition of

relations which is required in ordinal arithmetic. In cardinal arithmetic,

if k is a class of mutually exclusive classes, s'k has the properties required of

their sum, and thus We do not require a new kind of logical addition before

dealing with arithmetical addition. But in ordinal arithmetic this is not so.

Suppose P and Q are the generating relations of two series, and we wish to

add the Q-series at the end of the P-series. Then we wish every term of the

P-series to precede every term of the Q-series ; thus P w Q is not the

generating relation of the new series, since P o Q gives no relation between

the terms of the P-series and the terms of the Q-series. The relation we
want is

PuQuC'Pf C'Q,

since this makes every term of the P-series precede every term of the

Q-series. Hence we put

P$Q = PvQvC<P t C'Q Df.

It will be seen that P^-Q is in general different from Q^-P-

If OP and C'Q have no common terms, the sum of the relation-numbers

of P and Q is the relation-number of P^-Q (cf. #1«0).

The addition of a single term to a series requires a new definition, and

cannot be dealt with as a particular case of the addition of two relations. It

might be thought that, just as a u i
lx gives the result of adding the one term

x to the class or, so P$.(x ^ x) would give the result of adding the one term x

to the series P. But this is not the case, since, when we add a term to a

series, we do not want this term to precede itself, whereas P^x^x) is

a relation which x has to itself. What we want is a relation which every

member of GlP has to x but which x does not have to itself; thus we take

P c/ GlP f i'x as our relation, and put

P-frx^PvC'P^i'x Df.

This definition defines the generating relation of the series obtained by

adding x at the end of the P-series; similarly for adding x at the beginning

we put

x^P^i'x^C'PvP Df.

R&w II 22
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If x is not a member of C'P, the relation-number of P+ x is the sum of the

relation-number of P and the ordinal 1, which we represent by i. (The

ordinal 1 has no meaning by itself, but only as a summand.)

The sum of a series of series is defined in the same way as the sum of

two series was defined. Let P be a serial relation whose field consists of

serial relations. Then the sum of all the series generated by members of

C*P, when these series are taken in the order generated by P, must be a

relation which holds between x and y whenever either (1) x and y both

belong to the field of one of the series, and x precedes y in this series, or

(2) x belongs to the field of an earlier series than that to which y belongs.

In the first case, we have (qQ) . Q e GlP . xQy, i.e. x (s'C'P) y. In the second

case, we have (aQ, R) . QPR .xeC'Q.ye C'R, i.e. (&Q, R) . QPR . xFQ . yFR,

i.e. x (F>P) y. Hence the generating relation of the sum of all the series is

s'C'P w F>P. Hence we put

t<P = s'C'PvF
m

>P Df.

The relation 2fP has all the properties which we should expect of the sum of

a series of series.

If a series is to result from the addition of a series of series, it is necessary

that no two of the series should have any common terms. For if we have

QPR.xeC'QnC'R,

we shall also have x(2, lP)x.

Hence instead of a series, we shall have cycles; for it is essential to a series

that no term should precede itself. (What seem to be series in which there

is repetition are always the result of a one-many correlation with series in

which there is no repetition, so that a term can be counted once as the

correlate of one term, and again as the correlate of a later term.) For this

reason, as well as for many others, it is important to consider relations

between mutually exclusive relations, i.e. between relations whose fields have

no common terms. We put

Rel2 excl = P \Q, R e C'P . Q =}= R . DQiR . C'Q a C'R = A} Df.

Then Rel2 excl has much the same utility in relation-arithmetic as Cls2 excl

has in cardinal arithmetic. We have

I- : PeRela excl. = .PfC'PeCls-* 1,

which is analogous to the proposition (*8414)

h : k e Clsa excl . = . e \ k e Cls -> 1.

It will be found that in relation-arithmetic the relation F often appears

where e appears in the analogous proposition of cardinal arithmetic.

Analogous to "smsm" is the relation of double ordinal similarity. This

holds between two relations P and Q when they are ordinally similar relations

between ordinally similar relations with known correlators, i.e. when, if T is
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an ordinal correlator of P and Q, so that P = T>Q, then ifX is a member of
C'P, and Y is the corresponding member of C'Q, so that XTY, we shall have
X smor Y, and shall be able to specify a member of X smor F. But as in

cardinals, so here, we have to frame our definition of double ordinal similarity

in such a way as to minimize the use of the multiplicative axiom. We there-

fore take as our definition the following: P and Q are said to have donble

ordinal similarity when there is a one-one relation S which has C'Z'Q for its

converse domain, and is such that P~8f'J Q- A relation S which has these

properties is called a double correlator of P and Q, i.e. we put

Ps™rai^Q = (l->l)rxa<C<VQrxS(P = SY>Q) Df,

a definition which, as will be perceived, is closely analogous to that of

ArsmsmX in #111. Two relations have double similarity when they have

a double correlator, i.e.

A.A.

smor smor =PQ {g ! P smor smor Q] Df.

S is a double correlator ofP and Q when $ is a correlator of S'P and %'Q and

Sf [ C'Q is a correlator of P and Q. This might be taken as the definition of

a double correlator, since it is equivalent to the above definition.

If we assume the multiplicative axiom, we can prove that double simi-

larity holds between similar relations of mutually exclusive similar relations,

i.e. between two relations of mutually exclusive relations P and Q which have

a correlator S such that, if Ye C'Q, then Fand /S'Fare always similar. In

this case, SGsmor. Thus if we assume the multiplicative axiom we have, if

P, QeRel2 excl,

P smor smor Q . = . 3 ! P smor Q n Rl'smor.

In the particular case in which the fields of P and Q consist of well-ordered

relations (i.e. relations generating well-ordered series), this equivalence can

be proved without the use of the multiplicative axiom, because two similar

well-ordered relations have only one correlator, so that the difficulty of selecting

among correlators does not arise.

Double ordinal correlators have the same importance in proving the formal

laws of relation-arithmetic that double cardinal correlators have in cardinal

arithmetic. The construction of double correlators in various cases constitutes

a large part of relation-arithmetic.

In defining the ordinal product of two relation-numbers, and in defining

exponentiation, we use a relation which has properties analogous to those of

a 4 "ft. This relation is P I >Q, of which the structure is as follows: Let z, w

be two terms having the relation Q; then form the two relations
J,
z>P,

X w>P. The relation ^ z>P holds between two couples x \,z and y \, z when-

ever xPy\ thus it arranges couples whose referents are members of C'P, and

whose relata are z, in an order similar to P. The relations
J,
z>P and \ uAP

22—2
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are (by #15003) the same as P 1 2 and P Iw. Thus P \'>Q arranges such
"' "' '

relations as j, z>P in an order similar to Q. Thus P
J, jQ is similar to Q, and

every member of its field is similar to P. Thus the relation-number of P I >Q

is Nr'Q, and every member of its field has the relation-number Nr'P. More-

over P ^ >Q, as it is easy to see, is a relation of mutually exclusive relations.

Hence it is suitable for defining the product of Q and P, and we put

QxP = X'PL
m

>Q Df.

In the next section, after we have defined the product of a relation of relations,

we shall use the same relation P 1>Q for the definition of exponentiation,

putting

PexpQ = Prod'PI >Q Df.

These two definitions should be compared with those in #113 and #116.

In virtue of the definition of X, the relation X'P X 'Q holds between terms
•j

which either have one of the relations of the form P \, z, or belong respectively

to the fields of two relations P \, z, P lw, where zQw. Thus the relation
•t >

"Z'P ],'>Q holds between x^z and y ^z whenever xPy and zeC'Q, and also

between x ], z and y j, w whenever x, y e G'P . zQw. Thus if, for the sake of

illustration, P and Q generate finite series, so that their fields are

lp> 2p, ..., fip,

\q, 2e , ..., vq,

then the field of X'P X >Q will consist of the couples

lpi 1<j> %pI 1q> ••'» Pp 1 1«;

lp \, 2q , 2P I 2q , . . . , fip X 2q ;

and their order as arranged by £*P ],'Q is that in which they are written

above. Thus the above couples in the above order constitute the series Qx P,

and it is evident that this series has v x /a terms.

When the factors of a product are not enumerated, but are given as the

field of a relation, a new definition of multiplication is required. This defini-

tion, which has the advantage of being applicable to infinite products, will be

dealt with in the following section.



*160. THE SUM OF TWO RELATIONS

Summary o/*160.

In this number, we introduce the definition

P$Qr PvQvC'P\C'Q Df,

which was explained in the introduction to this section. Although the

propositions of this and other numbers in this Part do not require that P and

Q should be such as to generate series, yet the reader will find it convenient

to imagine them to be such, since the important applications of the ideas of

this Part are to series. Thuswe mayregard the sum ofP and Q as a relationwhich

holds between x and y when either x precedes y in the P-series, or x precedes

y in the Q-series, or x belongs to the P-series and y belongs to the Q-series.

The most important propositions of this number are:

*160 14. h . G\P 4l Q) = OP vC'Q

*16021. h.P£A = P
*16022. V.A^Q^Q
*160 31. I- . (P$Q)$R = P$(Q$R)
which is the associative law, and

*160-4. H . (P c; Q)$R = (P$R) v (Q$R)

which is the distributive law for logical and arithmetical addition;

*160 44. 1- : C'P C (F& . C'Q CCL'S.D. S'>(P$Q) = S'>P$S'>Q

which is also a kind of distributive law

;

*16047. h : C'PrxC'Q=A . CTnCQ^A. SePsmorP' . TeQmfir Q'.3 r

Sv Te(P$Q) smor (P'j.Q')

whence

*160 48. V:C'PnCiQ = A. C'P' n C'Q' = A . P smor P' . Q smor Q'.D.

P$QsmorP'$Q
whence it follows that if P and Q are mutually exclusive, the relation-number

of their sum depends only upon the relation-numbers of P and Q;

*160-5. h : C'Pn C'Q = A. D.(P$Q)t C'P = P. (P$Q)t C'Q = Q

*16052. \-iC'P*C<Q = A.C<PnC'R = A.P$Q=P$R.3 .Q = R

*16001. P$Q =PvQvCtP'$C(Q Df

*160 1. V . P$Q = P vy Q vy C'P f &Q [(*160-01)]

*16011. h:.x(P$.Q)y. = :xPy.v.xQy.v.xeC<P.yeC'Q [*1601]

*160111. V :.x(P$Q)y. =:xPy.v.xQy.v. xFP . yFQ [*16(H1 . *33'51]



342 RELATION-ARITHMETIC [PART IV

#16012. h : a ! Q . D . T>'(P$Q) = CP u V'Q [*33'26 . #3585 . #160*1]

#16013. h : a !P . D . CF(P.£Q) = d'P u C'Q

#16014. J- . C(P.*fi Q) = CP u CQ
Bern,

V . #33*262 . #160-1 . 3 h . C'(P$Q) = CP w CQ u C(CP t CQ) (1)

I- . *3585*86*88 . Dh. C\C(P f CQ) C CP u C'Q (2)

I- . (1) . (2) . D h . Prop

The above proposition is constantly used. The following propositions

(#16015—161) are not used, but are inserted to show that P$-Q has the

kind of structure that we should expect of a sum.

#16015. h : a ! P . JB'(P$.Q) = B'P - C'Q

Dem.

h . #1601213 .Dh:y!P. 3 !Q.D .~B'{P$Q) = (CP u WQ) - (<PP *-> CQ)

[*93101.#33161] = i?P-CQ (1)

h . #1601 . D h : Q = A . D . P$Q =P

.

[#30-37] D .5'(P^Q) =£ <P
[#33-241] =~B'P-C'Q (2)

h . (1) . (2) . D h . Prop

#160151. H : a ! Q . D . 2*'Cnv'(P£Q) =~B'Q - CP

#16016. h: a !P.l£PnC<2 = A.D.i?(P4i<2) = i£p [#16015]

#160161. 1- : a ! Q .&Q rx C'P = A . D . 5'Gnv'(P4LQ) = 5'Q

#160-2. h.Cnv I(P4LQ)=Q4tP [#31-15 .#35-84]

#160*21. 1- . P^A = P [#35-88 . #2524]

#160-22. \-.k$Q = Q

#160-3. V . (P£ <3) .££ = P u Q vy -R c; CP f C'Q v GlP f C'R u; CQ t C"^

h . #16014*1 . D
h . (P4LQ)4Li2«(P4iQ) ly R u (CP *-> CQ) t C'R

[*1601.*35*41*82] =PvQvCP f CQvRvCP f CRvC'Q f CiJ.Dh.Prop

#160-31. h . (P^Q)^^ = P4l(Q4lP)

Z>era.

h . #160-14-1 . D
h.P4L(Q4L JR) = Pc»Qw JBc»CPtCQc;CPf CRiyCQf CB (1)

K (1).#1 60-3. Dh. Prop
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*16032. P$Q$R = (P$Q)$R Df

This definition serves merely for the avoidance of brackets.

*16033. \-:PCQ. D.P$R GQ$R [*33'265 . *160'1]

#16034. \-iR<LS.O.Q$R<ZQ$S [*33"265 . #1601]

#160-35. h:PGQ.R<lS.D.P$Q<iR$S [#160-33-34]

#1604. \-.(PvQ)$R = (P$R)v(Q$R)

Dem.

V . #160-1 .31". (PvQ)$R =Pv QvRv C'(P u Q) f C'R

[*33-262.#23-56] =PvRvQvRv (C'P u C'Q) f C'R

[#35-41 -82] = P v Rv Qv Rv C'P *$ C'Rv C'Q^ C'R

[#1601] = (P$R) vy (Q$R) .31". Prop

*160-401. \-.P$(QvR) = (P$Q)v(P$R)

The above two propositions state the distributive law for logical and

arithmetical addition. The three following propositions give the generalized

form of this law, when s'X replaces PvyQ; these propositions are not

subsequently used but are inserted for the sake of their intrinsic interest.

#160-41. h : a ! X . D . s'X$R = s'$R"X = s'(X$R)

Dem.

K #41-11. D\-i.x{s<$R"\)y.= :(<&P).P€\.x(P$R)yi

[#1601 1] = : (aP) : P € X : xPy . v . xRy . v .xeC'P .yeC'R:

[*10'42] = : (gP) . P e \ . #Py . v . (aP) . P e\ . #ify . v .

(aP).Pe\.flJeCP.y€C?'i2:

[#41-ll.#10-35.#41-45] = : w (s'X) y . v . a ! X . xRy . v . x e C's'X .yeC'R (1)

K (1) . D r- :: Hp . D :.x(s'$R"X) . = : x(s'X) y .v. xRy .v. xe C's'X .yeC'R:

[#160-11] = : x (s'X$R) yz-.Dh. Prop

#160-411. \-:<rIX.D.P$.s'X = s'P$"X [Proof as in #16041]

#160-412. h:a!X.a!/A.D. s'X^-s'fi = s's'X$."p

Dem.

h . #160-411 . D h : a ! /a . D . s'X^s'fi = s'(s'X)$"p (1)

H. #160-41. D\-:ft\X.D.(s'X)$"fi = s"X$"fi (2)

h . (1) . (2) . D h : a ! \ . a ! /* . D . Vx^s'/i = s's"^"/*

[#42-12] = sV\4'V : 3 *- Prop
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The following propositions lead up to #1 60'44, which is frequently used.

*160"42. \-.(P$Q)\S =P\SvQ\SvC'PtS"C<Q
Bern.

h.*160-10h.(P4iQ)|S= P|SciQ[#ci(C<PtC<Q)|#

[*37'8j = P
|

Sci Q \SvC'P^S"C'Q Oh. Prop

*160421. h .S\(P$Q) = 8 |Pc/ S\ Q ci S"C'P f C'Q

#160 43. h . iS!(P4: Q) = S'>P ci <S!Q ci S"C'P f <S"C'Q

h . #1501 . #160-421 . D

h . tf(P£Q) = (8 1 P a S
|
Q ci fiWP t C'Q)

\

S
[*150'l.#37-8] = &P v &Q c; 8"C'P | S"C'Q Oh. Prop

*16044. h : C'P C d'S . C'Q ca'5f.D. #(P£ Q) = S'>P$S'>Q

Dem.
h. *16043. #1 50-22. D

h:Hp.D.»s';(^4L Q)=^-P^'Sf;Q^(c'^;p)T(C^; ^)

[#160-1] = #P£#Q Oh. Prop

#16045. hzSfiC'FvC'Q^el^l.SfC'P'ePswrP'.StC'Q'eQsHorQ'.D.

StC<(P'$Q')€(P$Q)8mor(P'$Q')
Dem.

h.*151-22 0h:Hp.D.C'P'Ca^.C(

Q
/ Ca^.P = ^P'.Q =^Q /

. (1)

[#160-44] 5 . P$Q = S'>{P' $Q') (2)

h . (1) . *160'14O h : HpO . C'(P'$ Q') C d'S (3)

h . #16014 . D h : HpO . Sf C'(P'£Q') t- 1 -> 1 (4)

h . (2) . (3) . (4) . #151-22 Oh. Prop

#160-451. \-:S$C'P'€Ps™rP\8$C'QeQsmorQ'.S"(C<F--C'Q,)*C<Q=A

.

D.StC<(F$Q')e(P$Q)smoi(P'$Q')
Dem.

h . #15122 . #15022O h : HpO . C'Q = S"C'Q'

.

[*71-381.#37-421] D . S"(C'P - C'Q') n S"C'Q' = A

.

[#74-823] D . S f (C'P' u C'Q) e 1 -> 1 (1)

h.(l). #160-45 Oh. Prop

#160-452. h-.StC'P'ePiwrP'.SfC'Q'eQi^Q'.C'PnC'Q^A.I.
flf f C'(P' 41Q') € (P4LQ) smlTr (P £Q')

Dem.

h . #151-22 . #15022O h : HpO . C'P = S"C'P' . C<Q = 8"C'Q'

.

[Hp] D . S'tC'P'n S"C'Q' = A .

[#74-833] O.StG'(P'$Q')el-+l (1)

h.(l). #160-45 Oh. Prop
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#16046. H : C'P = d'8 . C'Q = d'T . C'P ^ C'Q = A . D .

(SvTy>(P$Q)=s*>p$r>Q
Bern.

I- . #160-44 . D h : Hp . D . ($v T)'>(P£Q) = (SvT)'>P$(Sv T)'>Q

[#15032] = {(S v T) \ C'PY'P$ [(S c; T) [ C<Q}
m

>Q

[*35-644.Hp] -{flff 0*P)!P4:(2
1

|

k CQ)SQ

[#150-32] «jSf»P^TiQ:DI-.Prop

#160*47. hCPn C'Q =A . C'P' n C'Q' =A . 8 ePsmof P'.TeQ smor Q' . D

.

£u re(P£Q) smor (P^tf)

h . #151-11\L31 . D h : Hp . D . D'S= C'P . DT= C'Q . d'# = C'P' .

d'T^C'Q'. (1)

[Hp] 3.T><Sn~D<T= A.a<Sn<I*T = A.
[#15111.#71'242] O.SvTel-*! (2)

h . (1) .#160-14 . D h : Hp . D . C'(P' £Q') = Q'S v (IT

[#33-261] =a<(SvT) (3)

r- .#160-46 . #151-11 . D h : Hp . D . P^Q = (SvT)i(P'^Q') (4)

I- . (2) . (3) . (4) . #151-11 . D r- . Prop

#160-48. h : C'P n C'Q = A . C'P1

r> C'Q' = A . P smor P' . Q smor Q' . D

.

P£QsmorP':fiQ' [#160*47 . #151-12]

#160-5. h : C'PnC'Q = A.D.(P$Q)t C'P = P .(P$Q)tC'Q = Q

Dem.

h. #160-1. #36-23. D
h . (P$Q)t C'P ~ Pi C'P v (C'P t C'Q)t C'P v Qt C'P

[#36-29-33] = P v {{C'P f C'Q) n (C'P | C'P)} u Q£ C'P (1)

h. #36-31. DHHp.D.QpC'P^A (2)

H . #35834-88 . D h : Hp . D . |(C'P f C'Q) A (C'P f C'P)} = A (3)

I- . (1).(2).(3). D J- : Hp . D . (P$Q)t C'P = P (4)

Similarly h : Hp. D. (P£Q)£ C'Q = Q (5)

h . (4; . (5) . D h . Prop

#160-51. I- : C'P n C'Q = A . D . (P 41 Q)
2 = P3 a Q2

c; D'P f C'Q a C'P t d'Q

Dem.

h. #34-73. Dh:Hp.D.(Pc/Q) 2 = P2 *yQ2 (1)

f- . #35-895 . D h : Hp . D . (C'P f C'Q)2 = A (2)

h . #34-62 . D h . (P£ Q)
2 = (P c; Q)

2
vy (C'P f C'Q)2

c; (P c; Q)
|

(C'P f C'Q) u (C'P t C'Q) \(PoQ)

[(1).(2)] =P2 c;Q2 c;(Pc;Q)j(C'PtC'Q)c;(C'PtC'Q)](Pvy Q) (3)

K #37-81. Dh:Hp.3.(Pc;Q)j(C'PtC'Q) = D'PtC'Q (4)

1- . #37-8 . D h : Hp . D . (C'P f C'Q)
|

(P u Q) = C'P f d'Q (5)

h.(3).(4).(5).Dh.Prop
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The above proposition is useful in proving that, if C'P r\ G'Q = A, P$-Q is

transitive when P and Q are transitive (cf. #201'4).

16052. r- : G'Pn C'Q = A . GlP n G'R = A . P$Q =P$R . D . Q =P
Dew.

h . 160-14 . 3 h : Hp . D . (P£Q)£ (- C'P) = (P$Q)t C'Q

.

(P$Q)t(- C'P) = (P$R)t C'R .

[160-5] D . (P$Q)t (- C"P) = Q . (P$R)t (- C"P) = i2

.

[Hp] D.Q = P:DI-.Prop

The above proposition is used in dealing with the series of segments of

a series (213*561).



#161. ADDITION OF A TERM TO A RELATION

Summary of #1 6 1

.

The addition of a term has two forms, according as it occurs at the

beginning or end of the field of the relation in question. If we add first x
and then y at the end, the result is the same as if we added x

], y(*161"22);

if at the beginning, it is the same as if we added y^ a; (#161 '221). The
propositions of the present number are all obvious, and offer no difficulties of

any kind. As explained in the introduction to this section, we put

P^x = Pc/ClP^i lw Df,

x*\-P = t'xtC'PvP Df.

Most of the propositions of this number require the hypothesis a ! P, because

if P = A, P-t>« = a;<4-P=A(#161-2-201). This is connected with the fact

that there is no ordinal number 1. Apart from propositions already

mentioned, the chief propositions of this number are the following (we omit

propositions about x <4- P when they are merely analogues of propositions

about P -\*%):

#16112. h.xM-P= Cnv'(P+ x)

#16114. h : a ! P . D . G\P 4> sc) = C'P u t'x = C'(x <f P)

#16115. h : a ! P . x~e C'P . D .

~B'{P 4* as) =~B'P . ~B'Cnv\P 4* *) = I'a • B'{x *±P) = x

#161-211. \-.x<±{y\,z) =xlyvxlzvylz = {x^y)-{*z

#161*31. h : Psmor Q . #~e C'P

.

y~e C'Q.3.

P-\*x smor Q -f» y . ar «f P smor y <4- Q

#161-4. h:C(QCa^.^ € a^.^el->Cls.D.^(^-r> a;) = 'Sf;Q-^'Sr^

#16101, P+>x = PvC'P\i'x Df

#161 02. a; «f P = t'a t ^'P w p Df

#161-1. h . P 4* a = P c; CWP t i'x [(#161-01)]

#161101. \-.x*\-P = i'xlC'PvP [(#161-02)]

#16111. \-i.y(P-frx)z.^:yPz.v.yeC'P.z = x [#1611]

#161111. b:.y(x*\-P)z.=='.y = x.zeC'P.v.yPz [#161101]

#161-12. h . x «fP = Cnv'(P -f* «) [#1611101 . #35-84 . #33-221
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#16113. h . D'(P+ x) = C'P . (T(a- <+ P) = C'P

Bern.

h . #161-1 . 3 h . D'(P -f> *) = D'P u D'(C'P f *'«:)

[#35'85] =D'PuC'P
[#33-161] = C'P (1)

Similarly h . d'(x <+ P) = C'P (2)

h.(l).(2).3h.Prop

#161131. h : a ! P . D . d'(P -f> «) = d'P « *'« • D'(* <+ P) = D'P u t'x

[#35-86. #161-1]

#16114. h : a ! P . D . O'(P^ic) = C'P u t'x = C*(a?«f P) [#161-13-131]

The hypothesis a ! P is necessary in this proposition, since without it we

have P -+ x = A.

#161141. I- : a ! P . D .^'(P -f» a) = B'P - t'x .~B'Cnv'(P -^x) = i
fx - C'P

[#161-13-131. #93-101]

#16115. h-.RlP.x^eC'P.D.

~B'(P -J* <c) = P'P.~fl'Cnv'(P -f* *) - t'# . P'(# <+ P) « x [#161141]

#16116. h : a~e C'P. D . (P-f>*)t C'P- (P-f>«0D (- i'x) = P [#1611]

The above proposition is used in the theory of connected relations

(#202-412).

#161161. \-ix~eC<P.0.(x*\- P)tC'P = (xM-P)t(-i'x) = P
The two following propositions are frequently used.

#161-2. h.A-f>#= A [#35-75-82 . #161-1]

#161-201. \-.x<±A = A
#161-21. V.{xly)-\^z = xlyK)x]f

zK)y^z
Bern,

V . #161-1 . #5515 .D\-.(xly)-\*z = xlyv (i'x u I'y) f i'z

[#35'82-41 .#55-1
]

=x lyoxlzvylz .3\- . Prop

Note that x lywx J,
zoy \z is the relation which orders x and y and z

in the order x, y, z.

#161*211. )r.x<Jr{y),z) = xlyvxlzK)y),z=(x]f
y)-\±z

[Proof as in #161-21]

#161-212. P+> x +>y = (P-{>x)+>y Df
#161-213. x<±y*\- P = x<± (y«f P) Df

These definitions serve merely for the avoidance of brackets.

#161-22. h:<3_lP.3.(P-frx)-t>y = P$(xly)
Dem.

h . #161-141 . D h : Hp . D . (P -J* a;) 4* y = P \y C'P f t'x o (C'P u t'«) f t'y

[#35-82-41] = P v C'P j t'# o C'P f t'y a t'a ? i'y

[*35-82-412] =PwC"?t (t'# u i'y) a t<* f i'y

[#55-1-15] = P iy C'P t C'(a
J, y) c « | y

[#160-1] = P$(x I y) : 3 h . Prop
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*161-221. h-.&lP.D.a^f (y<t-P) = (xly)$P

*16123. h:a!Q.D.(P4ig)^
2/
= P4i(Q^2/)

Dem,

h . *161*14-1 . *1601 . D I- : Hp . D

.

P$(Q-fry) = PvQvC'QlL<yoC<Pt(C'Qvi<y)
[*35-82412] = P o Q vy GsP \ C'Q ci C'P f t'y vy C'Qf t'j,

[*160'1] = P£Q iy C'P ft'^/iy C'Q ft'y

[*35-82-41.*16014] = P$Q iy C'(P$Q) f t'y

[*161\L] = (P$Q)-fry i D I- . Prop

*16r231. h:RlP.O.x<±(P$Q)~(x<±P)$Q

*161-232. h : a I P . a ! Q . D . P £(« <f Q) = (P -f» #)£ Q

Dem.

h . *16M4101 . *160-1 . D h : Hp . 3 .

P$(x <f Q) = P vy t'a; t C'Q vy Q vy C*P f (t'a u C'Q)

[*35'82*412] = P vy C'P f t'a u Q vy C'P | C'Q vy t'x f C'Q

[*161'l-14.*^5-82-41] = (P+>x)oQo C'{P -f* a) | C'Q

[*160-1] = (P-+>x)$Q:3\-. Prop

*16124. h.ar^-(P-f>2/) = (a!^-P)-f>2/

h . *161101-14 . D h : a 1 P . D .

x4r (P+>y) = t'# t (C'P u t^) c; P a C'P f t'#

[*35'82 412] = t'a; f C'P vy P vy t'a f 1'^/ vy C'P t t'y

[*35-82-41.*161101'14] = (ar «f P) vy C'(a; <f P) f t'y

[*161-1] =(ar<4-P)-f>2/ (1)

l-.*161-2'201.Dl-:P = A.D.a!<f(P-i>y) = A.(«4f P)-j>2/ = A (2)

h . (1) . (2) . D h . Prop

*16125. l-:a!P. a !Q.D.(P-f>«;)41 (y^-Q) = ^^(^|y)41 ^

Dem.

H . *16114 . *160-1 . D
h : Hp . D . (P -f> *)4i(y <4- Q) = (P -f> a) vy (3, <f Q) vy (C'P u t'x) f (C'Q u t'y)

[*161-ri01] = P a C'P t t'# vy t'# f &Q «» Q
vy (C'P u t'ar) t (C'Q u i*y)

[*35-82*41'412j =P vy C'P f {i'x u t'y) a t'x ^t'yvQ
vy (C'P u t'a; u t'^) t C'Q

[*55'15-1.*160-14'1] = {P£(ar
J, y)} vy Q vy C'fP^^ J, ?/)} f C'Q

[*160-1 .(*16032)] =P$(xly)$Q-3b. Prop
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*161'26. \-.a}<±{i/4\-(*lvr)} = (*ly)$(*lw)={(*ly)-fr*}-frn

Bern.

V . #161-221 . #55134 . D h . x «f {y «f (z I w)} = (* | y)£(* 4 w)

[*161-22.*55-134j = {(a-
J, y) +> z) -f* w

[#161-211] ={a;<f (y J,
z)} -|» w . 3 h . Prop

The following propositions lead up to #161 '33.

#1613. h : a ! Q . £e Psmof Q .x~eC'P .y~eC'Q . D .

Saa?,J,2/e(P-t»aO smor (Q+ y)

Dew.

K#151-11131.Dh:Hp.D.#€l^l.C'Q = asSf.P = #Q,C'P = D<# (1)

K(l). #55-15. DI-:Hp.D.D'5nD'(a!4y) = A.a'fifua'(fl;4y) = A. (2)

[*72-182.#7l-242] 1.Svxlyel-*l (3)

h . #55-15 . #151-11 . D h : Hp . D . a<(£vy a
J, y) = G'Q u t'y

[#161*14] = C<(Q+>y) (4)

h.(l).(2).#34-301.Dh:Hp.D.(^|y)|Q=A.Q!(y^) = A.

(*4y)l(0*QT^)-A.(0*Qtt'y)|S-A.

[#34-25-26] D . (flf c; a
J, y) |

(Q vy C'Q t t'y) = S
|
(Q a C'Q f t'y) .

[*35'89.*55\L] = Q [
5 u C'Q f t'a (5 )

h.(5).*150-l.Dh:Hp.D.(fifc;a!j,y)J(Qc;C'Qt t '3/) = ^l{Ql^ c;C"QTt (
«?

}

[#150-1] = £;Qci#|C'Qt^
[#37-31.(l).#150-23] = P w C'P t i'x (6)

h.(6).#161-l..Dh:Hp.D.(<Sc;a! 4,y)J(Q4>y) = P-f*ar (7)

h
.
(3) . (4) . (7) . #151-1 1 . D h . Prop

#161-301. h : 3 ! Q . Se P slnor Q . x~e C'P .y~ e C'Q.D.

xlyvSe(ccM-P) snior (y <+- Q)

#161-31. I- : P smor Q.x~eC'P. y~e C'Q.O.

P-frx smor Q+ y . a; «f- P smor y «f Q
Dem.

h. #161 -3-301. #1511 2. D
h:Hp. a ! Q . D . P -f» # smor Q -f» y . x <+- P smor y «f Q (1)

h. #151-32. #161-2-201. D
h: Hp. Q = A. D.P-^a; =A.Q^y = A.ar*fP = A. y<fQ = A.
[#153-101] D . P 4* a; smor Q -f* y . a> «f P smor y <+- Q (2)

h.(l).(2).Dh.Prop
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1

#161*32. \-:RlQ.x~eC'P.y~ € C'Q.S€(P-l>cc)Emoi (Q~fry).1.

<S T (- l'y) e Psmor Q . xSy
Dem.

h.*151-5. #161-15. Dh:Hp.D.a&, (1)

I- . (1) .#150-1 . D h :. Hp . D : u{S[(- t'yfQ) v

.

= . (g2, w).«(Q4»y)i0.tt4#>t"^®- w$z • vSw .

[#151-11] = .M=j=a;.v=t=a;.tt(P-f*a;)v.

[#161-11] s.uPv (2)

r . #35-64 . D h : Hp . D . (PSf (- i'y) = C'(Q -by)- i'y

[16M4-2] =C'Q (3)

h
.
(1) . (2) . (3) . D h . Prop

#161-321. \-:RlQ.x~€C'P.y~eC(Q.S € (x+\-P)£moi(y4+Q).3.

S[(— t'y) € P smor Q . xSy
#161-33. h:.a>~eC\P.y~ e OQ.D:

P smor Q . = . (P +> a;) smor (Q -f> y) . = . {x <-f- P) smor (y 4f Q)
[#161-3132-321-2-201 . #153101]

The above proposition justifies addition of 1 or subtraction of 1 in ordinal

arithmetic.

The following proposition (#161-4) is much used.

#161-4. \-:C'QC(I fS.a;e(I'S.S<:l->C\8.3.S'>(Q-\>x)*rS'>Q-t>S<x

Dem.

t- . #161-1 . #150-3 . 3 h . S'>(Q +>x) = S'>Qv S'>(C<Q f i'x)

[#150-73] = S'yQ c; (S"C'Q) f (S"i'x) (1)

h . (1) . #150-22 . #53-31 . D h : Hp . D . S>(Q -f>«) = S ;Q c; (C'S'Q) | (*'#'«)

[#161-1] =#;Q-f»S^:Dh.Prop

#161-41. h:C'QCa^a>ea^S.#el^Cls.D..S»(«^Q)~#««r-S JQ

#161-42. h.|^(Q-f>*) = |y JQ-r>(«l2/) [#161-4 . #5521 .*72'184]

#161-43. \-.ly>(n<*-Q) = (xly)<+-ly>Q



*162. THE SUM OF THE RELATIONS OF A FIELD

Summary o/#162.

The form of summation defined in #160 cannot be extended beyond

a finite number of summands, since it involves explicit mention of all the

summands. In the present number, we shall be concerned with a form of

summation which is not subject to this restriction. It will be observed that,

since relational summation is not permutative, we cannot define the sum

of a class of relations, for this would not determine the order in which the

summation is to be effected. Our relations must be given as the field

of some relation which orders them; thus the sum appears not as the sum

of a class, but as the sum of a relation, namely of a relation whose field is the

relations to be summed. In the case of two relations Q and R} the sum of

Q I R, as defined in the present number, will be equal to Q$R; similarly for

three, the sum oi'QlRvQlSvRlS will be equal to Q$lR$.S, and so on

for any finite number of summands.

As explained in the introduction to this Section, if P is a relation between

relations, we put
VP = s'C'PvF'>P Df.

It is convenient to suppose that P is serial, and that every member of C'P is

also serial. Then 2'P holds between x and y if either (1) there is a series,

in the field of P, in which x precedes y, or (2) x belongs to a series which is

earlier, in the P-series, than the series to which y belongs. The following are

the chief propositions of this number

:

162-22-23. h . C't'P = s'C'C'P = C's'C'P = F"C'P = P 2'P

16226. 1- . Z\P iy Q) = X'P a 2'Q

1623. h.%<(QlR) = Q$R
16231. h . $<Q$1<R = V(Q$R)
*162'34 h.2'2'P = 2'2<P [Associative.Law. Cf. *42\L.]

*162'35. r : C'Z'Q C d'R .3.t'R^>Q = R '>t'Q

This is the analogue of #40'38. (Cf. note to #162'35, below.)

*1624. h . S'A = A
*162-42. h : a ! 2<P . == . & ! s'C'P . = . a ! C'P - t'A

*16243. h : a I P . D . 2'(P -frR) = 2'P$R
It should be observed that the ordinal analogues of propositions about

classes of classes often involve the substitution of 2 (not s) for s. Examples

are afforded by #162 ,34 -

35, quoted above.
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#162-01. X'P~s'C<PvF'>P Df

#1621. r . 2<P = s'C'P a F">P [(#162-01)]

#16211. \-Lx{t tP)y. = ix{s'GtP)y.v.x{F">P)y [#1621]

#162-12. h : . x (VF) y . = : (&Q) .QtC'P .xQy.y.(^Q,R).xFQ. yFR . QPR
[#1621. #4111. #15011]

#162'13. Vi.x (Z'P)

y

. = : (g£) .QeC'P. xQy .

v (aQ, R).xeG
tQ.yeGtR. QPR [#16112 . #3351]

#16214. \-t.x (2'P) y . = : (aQ) . QPP .xQy.v. (aQ, P) . aPQ . yFR . QPP
[#16112 . #33-51]

#162-2. h . Cnv'S'P - 2'Cnv JP

Dem,

I- . #162-13 . 3 h :. x (2'CWP) y . s : (aQ) . Q e C'Cnv^P . xQy

.

v . (aQ, R) . Q (Cnv
m

>P)R.x € C'Q.ye C'R :

[#150"22'41] = : (aQ) . Q e Cnv"C"P . «%

.

v.(aQ,i2).QPR.a>eC'Q.y€0' JR:

[#37'64.*33-22] = : (3Q) .QeC'P .yQx.v. (rQ,R) . PPQ .xeC'Q .yeC'R:

[#16213] = : y (S'P)a :. D h . Prop

#162-21. H . D'S'P = s'I>"C'P u s<C"D'(P f
- t'A)

Dem.

[-.*162-13.0\-:.x6V't'P. = :(KQ,y).Q6C'P.xQy.

y,.{KQf R,y).QPR.xeC'Q.yeC<R:

[#3313-24] =:(aQ). QeC'P. xeV'Q.v .(rQ,R) . QPR. xeC'Q.RlRi
[#40-4.#35101] = : x e s'D"C'P . v . x € s'C"~D'(P f

- t'A) :. D h . Prop

#162211. r . d'S'P-s'CT'C'P u s'C"(I<(- t'A)1 P

#162 212. h : A~ e a«P . D . D'2'P = s'C'D'P v s'W'Ib'P

Dem.

r . #16221 . I> h : Hp . D . D'2'P = s'D"C'P u s'C'D'P

[#40-31 .#93-12] = s'D"D'P u s'D(5?« s'C"D'P

[#4057] = s'D'^P u s'O'D'P : D h . Prop

#162-213. h : A~ e D'P . D . d'l'P ~ s'C'a'P u s'(I"i?P

The above proposition is used in #16322.

The two following propositions are used very often.

#162-22. h . C*Z'P = s'C'C'P

Dem.
h. #162-21-211. #40-57.3

h . C'S'P - s<C"C'P u s'C"D'(P T
- t'A) u *'C"(I'(- t'A) 1

P

[#40161] = s<C"C'P .Dr. Prop

R&W II 23
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*162-23. h . C'VP = C's'C'P = F"C'P =F2'P [*162-22 . *42 2]

*16226. h . 2'(P uQ) = 2'P v VQ
Bern, h . *162 1 . D h . 2<(P iy Q) = s'C'(P iy Q) iy 2?M(P iy Q)

[*33-262.*41-171.*150-3] = s'C'P u s'C'Q iy i^JP iy PJQ

[*1621] = 2'P iy S'Q . D h . Prop

*162 27. h . 2<#J(P iy Q) = %'S>P iy 2<£JQ [*162'26 . *1503]

*1623. \-.t'(QlR) = Q$R
Bern, h . *160-1 .Dh ,X'(Q i R) = s'C'(Q I R) u JF5(Q

J,
i?)

[*5515.*150-7] = s'(l'Q u t 'i2) vy 2?*# f3*R
[*5313.*335] =QvRvC<QtC'R
[*160'1] = #££.3!-. Prop

This proposition establishes the connection between the two kinds of

arithmetical addition of relations.

*162-31. h . 2'Q^'R = Z'(Q$R)

Dem.

\- . *1601 .Dr. X'Q^Z'R = Z'Q iy Z'R u C'S'Q f C'2'R

[*162123] = s'C'QvF>Q\js'C'RvF>R\j(F"C'Q)^(F"C'R)

[*15073] = s'C'Q iy s'C'R iy FJQ iy P>i2 iy ^(CfQ f G
'R)

[*41-171.*160-14.*150'3.*1601] = s'C'(Q$R) iy F'*(Q$R)

[*162-1] = 2'(Q4ii2) . D h . Prop

The following propositions lead up to #162'34.

*16232. \-.Z's'k = s'2"k

Dem. h . *41-6 . *162-1 . *1501 . D h . s'%"k = s's"G"k iy s'Ff'ic

[#4212.*15016] =s's'C"kvF>s'k

[#41 -45] = s'G's'k u ^s'k
[*162'1] = 2<s<« 3 H . Prop

*162-33. h . 1't'P = s'C's'C'P u F>s'C'P iy P2JP

Dem. h . *162'1 . D h . S'S'P = s'C'Z'P iy ^Jl fP
[*1 62-23] = s'C's'C'P iy F>(s'C'P iy P*P)

[*150-313] = s'C's'C'P iy PJi'O'P iy P^P . D h . Prop

*162-331. h.F\Z = F\s\C = F*

Dem. h . *7l-7 . D h : x (F\ 2) P . = . xF(VP) .

[*33-51] = .aeC"2'P.

[*162-23] = . aP2P (1)

I- . #71-7 . D h : x (F\ s
\

C) P . = . xF(s'C'P) .

[*33-51] = .xe C's'C'P.

[*42-2] = . aP*P (2)

h . (1) . (2) . D h . Prop
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*162-332. h . 2<1'>P = s'C's'C'P iy F'>s'C'P v F*'>P

Dem.
h . #1621 . D I- . 2l'2'>P = s'C<r>P vF'>Z'>P

[*150-2213] =*s<%"C'Pv(F\Xy>P

[#162-32-331] = fs'C'P u F*>P

[*1621] = s'C's'C'P w F>s'C<P o F*>P . D h . Prop

*16234. h.S f25P= S f2'P [#16233-332]

This is the associative law for arithmetical suras of relations.

The following propositions lead up to #1 62*35.

#162 341. 1- : . C'Q C (I'll .D:x(F\Rf)Q . == . x{R\F)Q

Dem.

V . *71-7 . #150*1 ,D\--.w(F\Rf)Q. = . wF(R'>Q)

.

[*33-51] = .xeC'R'>Q (1)

h . (1) . #150-22 . ;> h ;. Hp . D : x (F
| Rf) Q . = . a; e R"C'Q .

[#33-5] =.x<-R"F'Q.

[*37'3.*3218] = . «(#
|
F) Q :. D I- . Prop

#162 342. h : C's<\ C d<R .^ .(F\R^)[\ = (R\F)[X
Dem.

h . #4113 . D h :. Hp . D : Q e \ . D . C'Q C(M :

[#162-341] D:0€X.«(J*|i2t)Q. = .Q€\.fl?(i2|^Q:.Dh.Prop

#162-343. I- : CX'P C a^ . D . PJ^f'P = i2»^»P

Dem.
h . #162-23 . D 1- : Hp . D . C's'C'P C d'iZ .

[#162342] D.(F\ Rf) [ (C'P)>P = (R
\
F) |* (C<P)'>P

.

[#150-32] D.{F\Rfy>P = (R\F)
m

>P.

[*150-13] D.F'>Ri'>P=R'>F'>P:D\-.¥rov

#162-35. 1- : C't'Q C d<R . D . VRf'Q « i^S'Q

Dem.
h . #162-1 . #15022 . D h . Z tRf>Q = s'Rf"C<Q v F'R^Q
[#15016] =R>s<C'QvF'>RY>Q (1)

h . (1) . #162-343 . D h : Hp . D . 2<Rf>Q = R'>s<C'Q iy R">F'>Q

[*150'3.*162-1] = RifQ : D h . Prop

This proposition is important, since it enables us to infer (with a suitable

hypothesis) that if R'*M is always like M when Me C'Q, then the arithmetical

sum of all such relations as R'*M is like %'Q, being in fact R'X'Q. Iu other

words, if, whenever Me C'Q, R[ CM is a correlator of RIM and M, then

i^fX'Q is a correlator of %'Rf'fQ and X'Q. This proposition is analogous in

its uses to the proposition

S<Re"tC = R"S<K,

23—2
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which is #40-38. In general, in obtaining relational analogues of cardinal

propositions, R"k is to be replaced by R'*Q, Re by R^, and s by 2. When
these substitutions are made in s'Rc"k = R'^'k, #162 -35 results, except for

its hypothesis.

If we regard R'Q as a kind of product of R and Q, #16235 becomes

a distributive law. For it asserts that if we multiply each member of C'Q

by R, and then sum the resulting products, we get the same relation as

if we first sum C'Q, and then multiply by R. The following application

of #162 -35 to the sum of two relations makes its distributive character more

evident.

#162 36. I- : C'P u C'Q C d'R . D . R>P$R>Q = R'>(P$Q)

Dem.
b . #1623 . D 1- .R'>P$R'>Q = Z'{(R'>P) | (RiQ)}

[#150-1-71] =%<Rf'>(PlQ) (1)

h . (1) . #16235 . D r : Hp . D . R'>P$R'>Q = R m

>2.<(P ! Q)

[#1623] = R">(P$Q)OK Prop

This proposition can be extended to any finite number of summands.

#162-37. h:a!\.g!/i.D. 2'(\ f /*) = s'X^s'fi

Dem.
h . #35-85-86 . D h : Hp . D . C'(\ f^) = Xu/i.

[#1621] D . %'{\ t /*) » s'(\ u p) iy F>{\ t fi)

[*41-171.#150-73] = s'\ u s'fj. iy (i^'X) f (^»
[*41-45.*40-56] - i'X a i^ iy (W\) t (O's'/i)

[#160-1] = s'\$s'n : D h . Prop

#162-371. h:3la.D.2'(af i'Q) = i'a.£Q [#162-37 . #53-04]

#162-372. h : g ! £ . D . 2'(i'P) f £ = P-£*'£

#162-4. h.2'A =A

I- . #33-241 . #41-21 . D H .WA = A (1)

I-. #150-42. Dh.PJA =A (2)

h. (1). (2). #1621. Dh. Prop

#162-41. h.2<(AiA) = A
Dem.

h . #1623 . D 1- . 2'(A i A) = A 41A

[#160-21] -A.DKProp
#162-42. h : 3 ! 2'P . = . g ! i'C'P . = . g ! C'P - i«

A

Dem.

V . #162-23 . #33-24 . D H : 3 ! %'P . = . 3 !WP

.

[#41-26] = .g!C'P-t<A
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*162 43. H a ! P . D . %<(P +> R) « 2<P£P
Dem.

h . *162-26 . *] 61-1 . D h . Z'(P +»£) = 2'P e; Z'(C'P f t'P) (l)

h . *162-371 . *33'24 . Dh : g ! P . D . t\GlP f i'P) =WP^tf (2)

h.(l).(2).*1601.D

h : Hp . D . 2'(P +> P) = 2'P w s'C'P u R iy (C<s'C'P) f C'P

[*162-1'23] = 2<P iy P iy (<7<2<P) f <7<#

[*1601] = 2'P^P : D h . Prop

*162'431. h:a!P.D.S'(P*f P) = P4^2 rP [Proof as in *162*43]

Observe that in #162-43431, P and R must be of different types, in fact

R must be of the type to which members of G'P belong. *16243'431 are

often useful.

*16244. h . S'(P 4> A) = 2<(A <f P) = 2'P

h . *16243 . D h : g ! P . D . S'(P +> A) =VP$A
[*1 60-21] = 2'P (1)

h . *33241 . *35-88 . D h : P = A . D . C'P f t'A = A

.

[*162'4] D . %<(C<P t /-'A) = A .

[#25-24] D . 2,'P = 2'P u 2<(C'P f i'A)

[*16226] = 2'(P a C'P f t'A)

[*1611] =2'(P4>A) (2)

r . (1) . (2) . D I- . 2'(P -f> A) = 2<P (3)

Similarly I- . 2<(A «f P) = 2<P (4)

h . (3) . (4) . D h . Prop

*162-45. h:a!P.S fP = A. = .P = A4,A

Dem.
h . *162-42 . D h : 1<P = A . = . O'P C t'A

.

[*3316] ^.D'PO'A.CTPCt'A (1)

h.*3324. :>h:a!P. = .a!D<P.a!(I<P (2)

1- . (1) . (2) . *5l-4 . D

h:g!P.X fP = A. = .D'P = t'A.(I'P = t<A.

[*5516] =.P = A4,A:Dl-.Prop

The above proposition is used in #174'162.



*163. RELATIONS OF MUTUALLY EXCLUSIVE RELATIONS

Summary o/*#163.

In the present number we have to define mutually exclusive relations,

and to give a few of their properties. Mutually exclusive relations play

much the same part in relation-arithmetic as mutually exclusive classes play

in cardinal arithmetic. Prima facie, there are various ways in which we
might define them. We might define P as a relation of mutually exclusive

relations when
QPR.Q$R.DQtR .Q*R = A,

or when Q, ReCP .Q$R.3Q>It .Q n R = A,

or when
Q, R e C'P . Q +R . DQt

E

. D<Q n D'R = A . d'Q n d'R = A,

or in several other ways. But in fact the most useful property to choose

is the property that any two members of the field have mutually exclusive

fields i &

Q) R^CP.Q^R.^Qtli .C
lQnCtR = A.

The principal applications of the subjects studied in this Part are to series,

and in series it is always the fields of the relations that are important. We
want, for instance, to define relations of mutually exclusive relations in such

a way that, if P is a serial relation, and every member of C'P is a serial

relation, then % lP is a serial relation. For this purpose it is necessary that 1 fP
should be contained in diversity, which requires that F'tP should be contained

in diversity, i.e. that

QPR.Dq, R .CtQr^CR = A.

If P is a serial relation, as we are supposing, this is equivalent to

Q,ReC'P.Q*P.DQiB .C'Q*C<R = A.

Again we want to define relations of mutually exclusive relations in such

a way that, if P and Q are two such relations, and P and Q have double

likeness (cf. #164), then %'P is like %'Q; *'•& if we are given a correlator S of

P and Q, and for every M and JV which S correlates, we are again given

a correlator, then 2'P is to be like % f
Q. That is, if X is the class of relations

which correlate pairs of relations M and JV, where JHfeCQ .MSN, we want

s'\ to be a correlator of P and Q. Now this requires that s'\ should be

a one-one relation, which requires

M,M'€C'P.M^M'.DMtM..~D<Mn-D<M' = A . (I'M ^ d'itf ' = A.

This is secured by

M, M'eC'P .M^M'. DM>M , . C<Mn CM'=*A,

but except for special classes of relations it is not secured by

MPM' . MtM. . CM * CM' = A,
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since there may be two relations M and M' which both belong to the

field of P, but of which neither has the relation P to the other. Again, the

analogy with cardinal arithmetic fails at many points unless, when P is

a relation of mutually exclusive relations, G"GfP is a class of mutually

exclusive classes. But this is not secured by any of the other possible

definitions we have been considering. There are further reasons, connected

with the arithmetical product of a relation of relations, for choosing as the

definition

Q, ReG'P.Q$R.OQ , R .G'Q*G'R = A t

From a technical point of view, the properties of a Cls2 excl depend mainly

upon the fact that when k is such a class, ef/eeCls—>1 (#84"14); in like

manner the properties of a Bel2 excl depend upon

i^C"PeCls->l,

which requires our definition, and is equivalent to it (#163'12). We thus

become able to use the propositions of *81 on selections from many-one rela-

tions, which would not otherwise be the case.

It should be observed that

Q, ReC<P.Q$R.DQ, R .C'QnC'R = A
is not equivalent to

C"C'Pe Cls2 excl,

though it implies this. The converse implication will fail if G'P contains

two different relations with the same field. E.g. take a relation P whose

field consists of the four relations S, S, T, T, and suppose CtSr\C'T=A.

Then C"C'P=i'G'S u i'G'T, and G"C'P e Cls2 excl. But unless S=*S and

T~ T we shall not have

Q,ReG'P.Q$R.DQ>R .G'Q* G'R = A.

The property by which we define relations of mutually exclusive relations

is a property which only depends on the field, so that we might equally

well put

(Cl'Eel) excl - \ {Q, R e X . Q * R . 3q, s - G'Q * G'R = A} Df.

But for our purposes this would be less convenient than the definition of

Eel3 excl

We thus put

#163-01. Eel2 excl = P{Q,R€ C'P .Q*R.OQ, R .G'QnC<R = A] Df

We have

#16311. I-:. P e Eel2 excl . & : Qt
ReC'P .kIG'QkC<R.DQiR . Q = R

#16312. r : P e Eel2 excl . = . F [ G'P e Cls -> 1

#163*17. H : P e Eel2 excl . = . G f G'P e 1 - 1 . G"G'P e Cls2 excl

Any of the above might have been used to define Eel2 excl. The following

propositions are important.
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*163 3. r : Q e Rel2 excl . S e Cls -* 1 . D . 8\ ">Q e Rel8 excl

This is the analogue of #84'53.

#163-4-41. r . A, P \ P

e

Rel8 excl

#163441. b:P,Qe Eel2 excl . C'S'P ^ (7'2'Q - A . D . P£# « Re12 excl

#163-451. hPe Rel2 excl . C*£'P « G'R = A . D .P +> 22 6 Rel4 excl

#163-01. Rel 2 excl =P {Q, R e G'P . Q 4= R . 3«, * • #'Q n CR = A) Df

#1631. Vi.P€Re\*exd. = :Q,ReG<P.Q±R.^QtR .G'QnG'R=:&

[(#163*01)]

#16311. h:.P6Rela excl. = :Q,E6C"P.a!afQna^Og)jB .Q = ii:

[#1631 . Transp]

#16312. r : PeReF excl. s.^CPe Cls -+1 [*1631 . #74"632]

For many purposes, this proposition gives the most useful equivalent of

Pe Rel2 excl.

Instead of the above proof, we may use #74'62, which gives us the result

in virtue of #335.

#16313. V :. P e Rel2 excl. D:

Q,R e G'P . Q +R .
Qi R . V'Q r. D'P = A . d'Q r» d'j? = A

[#24*402 . #163-1]

#16314. h : P e Rel2 excl . D . G [ G'P e 1 -> 1 [#163'12 . #74*32 . #33-5]

#16315. I- : PeRePexcl . D . D [ G'P, (I [ C'P e 1- 1

Dem.
h. #74-63. #16313. D 1- :Hp.D.(« | D)p^Pe Cls ->1.

[#74-32] D . 7|Dp (7'Pe 1^ 1

.

[#72-27] D . D f C'P e 1 -> 1 (1)

Similarly h : Hp .O . <I f C'P e 1 - 1 (2)

h.(l).(2).Dr.Prop

#16316. h : P e Rel* excl . D . G"GfP e Cls8 excl [#84-51 . #33*5 . #163-12]

#16317. h-.Pe Rel8 excl . = . G f G'P e 1 -> 1 . C'G'P e Cls* excl

[#163-12 . #84-522 . #33-5]

#163-2. h : P e ReP excl . D . D |*PA fC'P € 1 -> 1 . *VC'P C 1 -> 1

[#81-21-1 . #163-12]

#163-21. r : P e Rel" excl . D . T>"FA'C'P = Prod'C'C'P

Dera,

1-
. #851—^ . #16312 . D I- : Hp . D . W'FSG'P = D"e4'5*'C'P

[*115-l.#33-5] = Prod'C'C'P : D h . Prop
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This proposition is important in connection with the multiplication of

relations, for we shall define as the product of a relation P (whose field

consists of relations) a relation whose field is D^F^G'P. Thus by the above

proposition, whenever P is a Rel2 excl, the field of its product is the product

(in the cardinal sense) of the fields of its field, just as the field of its sum is

(by #162-22) the sum of the fields of its field.

#163*22. I- : P € Rel8 excl . A~ e OlP . D

.

~B<1'P = Bf<B fP .l^Cnv'S'P = 3"Cnv"2?'P
Dem,

h . *162'23-213.*93103 . D h : Hp . D .~B f2 fP = F«C'P - s'C'd'P - s'a"~B<P

[#40-56] = F"C'P - F«a'P - s'(I"~B'P

[*71-381.#37-421.#16312] = F'<(CfP - d'P) - s<(I"B<P

[#40-56.*93l03] = s'C l
~BfP - s'WB'P (1)

K #163-11. D h ::Hp.D:.Qe^P.^€ C'Q .0 : JRe~B'P .xed'R.D .B = Q.

[#1312] O.xed'Qz

[#40-4] 2:*e8 ta ttB eP.2.xea.tQi

[#4013] 2:x€s<a<<B<P. = .xea<Q (2)

h . (2) . #532 . D h :. Hp . D : Q e ~B'P . x e C'Q . x~ e s'WB'P . s .

QeB'P.xeC'Q.x^ta'Q:

[#10281.*40-4.#93103] D : x 6s'C'<B<P-s<(I''B tP . = .(RQ).QeB'P .xBQ.

[•371] ^.xeB'^'P (3)

h . (1) . (3) . D h : Hp . D .I't'P = B"~B'P ^ (4)

h . (4) . #1622 . #33-22 . #1631 . D I- :*Hp . D . B'Cnv'l'P = B"B'Cw?>P

[#151-6-5] =S«Cnv"zf'P (5)

h.(4).(5).DKProp

*163'3. h : Q e Rel 2 excl . 8 e Ols -» 1 . D . £f 'Q e Rel2 excl

Dew.

h.#72-421OH:.HpO:J^,i\r€0^.a!^C^n5"0'iV'.D.a!Cf'itfn0t
iV".

[#163-11] O.M=N.

[#30-37] D.^Jf-flffff (1)

H.(l). #150-202. Dh:.Hp.D:

Jf, iVe C'Q . a I G'iS^M) o C'(StiV) . D . SjM=S\N (2)

K (2) . #163-11 . D h . Prop

#163-31. H:. C'P = C'Q. D:P€ Rel2 excl. = .QeRel2 excl [#163-1 .#13-12]
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*163'311. h :. C'Q = Cnv"C<P . D : P e Rel2 excl . = . Q e Rel2 excl

Bern.

h . #72513 . D h :: Hp . D :. M,N e C'P . = . if, if e C'Q :.

[*31'32]

[#33*22]

[*11-33.*163'1]

[#31-51]

[#1631]

D : . M,N e C'P . M =f N . = . M,N e C<Q . M =f# :

.

D :. M, Re C'P . J/ +N . D . C<MnC<N=A : = :

if,iVe C'Q . if 4= j?. D . C<Mn C'N = A :.

D :. P e Rel3 excl. = :

= :M,N€C<Q.M^N.DMiN .C<MnC'N = A:
= :QeRel2 excl::Dh.Prop

#163-32. l-tPe Rel2 excl . = . P e Rel2 excl . = . CnvJP € Rel2 excl . = .

Cnv>Pe Rel2 excl [*163"31'311 . *33'22 . *15022-12}

#163-33. h : P$Qe Rel2 excl . s . Q$Pt Rel2 excl [#163-31 . #160/14]

#163-331. 1- : P -+» R e Rel2 excl . = . R «f P 6 Rel2 excl

[#163-31. *16114-2-201]

#163-4. h. A e Rel* excl

Dem.

I- . #33-241 . #24-105 . D h . (Q) . Q~e C'A .

[#11-57] Dh.CQ.i2). Q, R~ € C<A

.

[#11-63] Dh:Q,i2 6 C'A.Q + i2.D0)jR .C'QnC''i2 = A (1)

h. (1). #1631. Dh. Prop

#163-41. h.P|PeRel2 excl

Dem.

h . #54-25 . #55-15 . D h . C\P
J,
P) e 1

.

[*52-41.Transp] D h -~(aQ, R).Q,Re C<(P j P) . Q+ P .

[#11-63] Dh:Q,i2e(7(PiP).Q + i2.D
<J , B .C'Qrt(7'i2 = A (1)

h . (1) . #163-1 . D h . Prop

#16342. h :. P i Q e Rel2 excl . = : P = Q . v . C'P o C'Q = A
Dem.

h . #1631 . #55-15 . D

h:.P,|,QeRel2 excl.=

[#54-441] =
[#22-51] =

M, Ne t'P vi'Q.M^N. DMN . C(M *C'N=A:
P = Q.v.C'PnC<Q = A.C'QKClP= A:
P = Q. v. C'P rtC"Q = A :.Dh. Prop

The above proposition is used in #251*22.
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#16343. h : P e Rel2 excl . Q G P . D . Q e Rel2 excl

Dem.

h . *33'265 . D h :. Hp . D : M, N e C'Q . D . M,N e C'P :

[Fact] D : if, JV~ 6 c*q . M+ tf . D . Jf, JV e C'P . Jf 4= tf

:

[*1631.Hp] D . C'Jf n C'JV* A (1)

h. (1). #1631. Dh. Prop

*163431. HiPeRel'excl.D.Rl'PC Rel2 excl [#163-43]

*163'44. H : P$Q e Rel* excl . = .

P, Q e Rel2 excl . s'C"C'P n s'C"(C<Q - C'P) = A
Dem.

h . #16312 . #16014 . D h : P^Qe Rel2 excl . = . F\(C'P u C'Q) eCls-» 1

.

[*74'821] = . P f C'P, Pf C'Q e Cls -> 1 . P"(7fP rs F"(C'Q - C'P) = A

.

[*163-12.*40-56] = .P,QeRel2excl.s fO^(7'PnsfC"(CfQ-(7fP)=A:DI-.Prop

#163 441. \".P,Qe Rel 2 excl . C'Z'P * C'Z'Q = A.D.P$Qe Rel2 excl

[#163*44. #162-22]

The above proposition is used in #173 -

26.

*163-442. h :. C'P n C'Q = A . D :

P$Q e Rel2 excl . = . P, Q e Rel2 excl . CfS fP ^ C'S'Q - A
Dem.

h . #24*313 . D h : Hp . D . C'Q-C'P=C'Q (1)

h . (1) . #163*44 . #162-22 . D h . Prop

#16345. h : P 4>R e Rel2 excl . = . P e Rel2 excl . s'C"(C(P - t
fi2) *C'R = A

Dem.

h.*161\L4. #163-12. D

h:.a!P.D:P-^i2e Rel2 excl . = . F [ (C'P v t'R) e Cls- 1

.

[#74-821.#53-301.#33*5]

= .FtC'P,F\-i'ReC\s-*l.F"(C'P-i'R)nC'R=A.

[#35101.*71-171] = . Pp C'P e Cls- 1 . F"(C'P-i'R) *C'R = A.

[*163-12.*40-56] E:Pe Rel2 excl . s'C"(C'P - t'R) *C'R = A (1)

h . #161-2 . #163-4 .Dh:P = A.D.P+>Pe Rel2 excl . P e Rel2 excl (2)

h . #33-241 . #3729 . #4021 . D h : P = A . D . s'C"(C'P - t'R) *C'R = A (3)

h . (2) . (3) . Corap . #5-1 . D h :. P = A . D :

P-^ Re Rel2 excl . = . P e Rel2 excl . s'C"(C'P -~i'R)r> C'R = A (4)

h.(l).(4).Dh.Prop

#163-451. h : P e Rel2 excl . CL'P n C'R = A . D . P -f> i2 e Rel2 excl

[#163'45. #162-22]

The above proposition is used in #173'25.
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#163-452. f-:.i2~eO^PO:P4»#€Rel2excl. = .PeRel2excI.C'X^PnC^R = A
[#51*222 . #163-45 . #162-22]

#163-46. f- : R «f P « Rel* excl . = . P e Rel2 excl . s<C"(C'P - i'R) o C"£ = A
[#163-45-331]

#163461. hPe Rel2 excl . C'VP n O.R « A . 3 . R 4\- P e Rel2 excl

[#163-451-331]

#163462. f- :. R~ e C'P. D : i2«fP € Rel2 excl. = .Pe Eel2 excl.C'VPkC'R**A
[#163*452-331]



*164. DOUBLE LIKENESS

Summary o/#164.

The subject of this number is of great importance throughout relation-

arithmetic and its applications. Double likeness, or double ordinal similarity,

is a relation which is to hold between P and Q when (1) P and Q are like,

(2) correlated members of the fields of P and Q are like, with a specific given

correlator in each case. (It is necessary, in general, to have a given correlator

in each case, to avoid the necessity of the multiplicative axiom for selecting

among correlators.) This definition can be somewhat simplified by starting

from a relation correlating %'P and %*Q. If S is such a correlator, so that

8 6 1 -> 1 . d'S - C'l'Q . S'P - 8JS'Q,

we want 8 to be such that it not only correlates the whole of 2'P with the

whole of 2'Q, but also correlates each member of C'P with the corresponding

member of Cf
Q, i.e. such that, if N is any member of Gf

Q, S>N is the

corresponding member of C'P. This requires

NQW. = .(S'>N)P(8'>N')>

i.e. writing Sf'N, Sf*N' in place of S>N, S>N', it requires

P = Sf>Q.

When P = Sf '>Q and d'S - Ct'Q, we have 2'P « 8'&Q by *162*35. Hence

double likeness will subsist if there is a relation 8 such that

8 e 1 -* 1 . d'S « G't'Q *P = Sy>Q.

A relation 8 fulfilling this condition will be called a double correlator of

P and Q. Thus two relations P and Q have double likeness when there

exists a double correlator of P and Q, i.e. when

faS).Sel->l.atS-C'2'Q.P~SY>Q.

A double correlator of P and Q is a relation S which is a correlator of.%'P

and 2'$ and is such that fiff f C'Q is a correlator of P and Q.

It will be seen that this definition has the usual analogy to the corre-

sponding definition in cardinals (*111'01). The two inverted commas of the

cardinal definition are replaced by the semi-colon, and Se is replaced by Sf,

and s'\ is replaced by VQ or C'l'Q. The propositions of the present number

consist largely of analogues of the propositions of *111, in accordance with

the above substitutions.

If it were not for the difficulty pf choice among correlators, we could

define two relations as having double likeness when they are like relations of

like relations, i.e. when, if P and Q are the two relations, they have a corre-

lator S such that, ifMSN, then M smor N. In this case, 8 e P smof Q n Bl'smor.
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Thus we have to consider the relations of the class P smor Q o Rl'smor to the

class of double correlators, and we have to consider the relation of the relation

"g ! Psmor Q n Rl'smor" to the relation of double likeness. The propositions

to be proved on this subject in the present number are analogous to the

propositions of #111. But at a later stage (#251 '61) we shall show that if

the field of P consists entirely of relations which generate well-ordered series,

then the use of the multiplicative axiom ceases to be necessary in identifying

double likeness with the relation g ! P smor Q n Rl'smor, the reason being

that two well-ordered series can never be correlated in more than one way.

Our definitions are

#164-01. Psmor&morQ = (l-+l)na tCt2 tQn§(P = Sy>Q) Df

#16402. smor smor= PQ (g; ! P smor smor Q) Df

The principal propositions of this number are

#16415. h-.SePsmorsmaiQ.^.SeX'Pira^t'Q.iSf^C'QePsmoiQ

whence

#164151. f- : P smor smor Q . D . 2'P smor %'Q . P smor Q

#16418. f- : S T C'X'Q € P smor s"mor Q . s .

s\'Ctx tQ e i->i.otvQca ts.p=sy>Q

This is usually the most convenient proposition when a double correlation

has to be proved.

#164'201'211'221. Double likeness is reflexive, symmetrical and transitive.

#164'31. h : S € P s~mor smor Q . = . S e (C'C'P) sin sm (C'C'Q) . P = Sf>Q

(Cf. note to #164-31, below.)

We then have a set of propositions (#164-4 to the end) on the identifi-

cation of g ! P smor Q n Rl'smor with double likeness by means of the

multiplicative axiom. We have

#164-43. f-:.P,QeRela excl.£<?PsmorQ.

/* = X, {(&N) .NeC'Q.\ = (S'N) smor N] . D :

R e

e

AV • 3 • i'D'i* e P smor s"Hor Q.S = (s'D'fyf [

G

l

Q
That is to say, given that P and Q are like relations of like mutually

exclusive relations, if we can pick out one correlator for each pair of correlated

members of C'P and C'Q, then the sum (*) of such selected correlators is a

double correlator of P and Q. Hence, observing that if S is a double correlator

of P and Q, (Sf) [C'QeP sliTor Q n Rl'smor (#1641516), we arrive at

#164*45. f-::Multax.D:.

P,Qe Rel2 excl . D : g ! P smor Q n Rl'smor . = . P smor smor Q
From #16443 we deduce also
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#164-46. f-:.Multax.D:

P, Q e Rel2 excl . g ! P smof Q n Rl'smor . D . 2'P smor Z'Q

#164 48. p :. Mult ax . D : iJ, S e Rel3 excl n Nr<Q . C'R, C'S e Cl'Nr'P . D .

R smor smor jSf . 2 fR smor 5J'#

7.e. in effect, assuming the multiplicative axiom, if two series (Z'R and
X'S) can each be divided into ft sets of a terms (a, /3 being relation-numbers),

then the two series are ordinally similar, and the ft sets in the one case have

double similarity with the ft sets in the other. (Here we have written a, ft

in place of the Nr'P and Nr'Q of the enunciation.)

It is by means of the above propositions that ordinal addition and
multiplication are connected, as will appear in #166.

#164-01. P8m6ismorQ = (l->l)na'Ct2 tQnS(P = Sf'>Q) Df

#16402. smor smor = PQ (g ! P smor smof Q) Df

#1641. h : iSfeP smof smor Q . = . £e 1 ->1 . d'S = CX'Q . P= Sf>Q

[(#164-01)]

#164-11. r : P smor smor Q . = . g ! P smof smof Q [(#164*02)]

#164'12. h : P smor smor Q. = . (>&S) . 8 e 1 -> 1 . <T£= C'X'Q . P = Sf 5$

[#164111]

#164'13. r-rSrC'S'Qel-^l.CS'QCa'iS.D.^rOQel^l
[#150-152 . #162-22]

#164131. h : d'S = C'l'Q .P = SY>Q.1 . D'S = C'2'P . 2'P - £JX'Q

p . #162-35 . D p : Hp . D . 2'P = #2'

Q

(1)

[#150-23.Hp] D . C'S'P = D'S (2)

p. (1). (2). Dp. Prop

#16414. p:£ePs~inor smor Q .0 . Set'P smor % (

Q [#1641131 .#15111]

The two following propositions are required for proving #164*18.

#164-141. p : C'VQ C a . D . (Tf «)f ;Q = T\'>Q [#150171

.

#162*22]

#164142. p . (T\-C<2<Q)Y>Q=Tf>Q={{Tf)\- C'Q}'>Q [#164-141 . #150 32]

#164143. p : SePsifior slnor Q . D . (Sf)[ CQeP smor Q
Dera.

p. #1641-13. Dp:Hp.D.(£t)rC'Qel->l (1)

p . #35-65 . Dp. <P(fff) { C'Q = C'Q (2)

h . #164-1 . #150-32 . D h : Hp . D . P = {(Sf) f C'Q] '>Q (3)

p . (1) . (2) . (3) . #151-11 .Dp. Prop
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#16415. H:SePsm^irHorQ. = .)SeX'PsSior2'Q.(jSt)Jv CtQePslSorQ

Dem.

K #164-14-143.3

f- : 8 e P slfnor smo? Q . D . S e X'P Smor £<Q . (S\) [C'QeP smor Q (1)

K #161-1 l.D

h : 5 e X'P smor £<Q . (flf) [C'QeP slilor Q . D .

8 el -> 1

.

<I'jS = OS'Q . P = {(iSf) T &Q\''Q ( 2)

h . (2) . #15032 . #164-1 . D

h : SeS'Psmor 2<Q . (£f) f C'Q <? P amor Q . D . £ e P slnor srnor" Q (3)

1- . (1) . (3) . D f- . Prop

#164151. h:Psmor smor Q.D.S'Psmor 2'£. PsmorQ [*164'1511]

#16416. h:SeP smor smor Q . D . (£f) f C'Q G stnor

1- . #35-101 . #150-1 . D h : M{(£j-)r C'Q) N. = .NeC'Q. M=S'>N (1)

f- . #164 1 . #162-22 . D h :. Hp . D : S e 1 -* 1 : # e C'Q . Djy . C'N C d'S :

[#151-23] 3:N6C'Q.M=S m

>N.0MiN .MsmorN

[(1)] D : Jf {0Sf)f C'Q} Ar
. DMtJf .MsmorN:. D h . Prop

#16417. h : P smor smor Q . D . g ! P smor Q n Rl'smor [#164-14316]

This proposition states that when P and Q have double likeness, there is

a correlator of P and Q which couples like with like relations ; i.e. if 8 is the

correlator, then, if MSN, M and N are ordinally similar. The converse of

this proposition, namely, that if P and Q have a correlator which couples

ordinally similar relations, then P and Q have double likeness, can be proved

if the multiplicative axiom is assumed, but not otherwise, except in special

cases, such as that of well-ordered series.

The following proposition is used frequently, owing to the fact that, in the

cases we are concerned with, double correlators generally have the form

S [ C'X'Q, where 8 is some relation for which we have ((/) . E ! S'y.

#164-18. h : S f C'X'Q eP slnor smorQ. = .

s\-C'%'Qei-+i.ctx tQca ts.p=sy>Q
Dem.

h . #3564 . #22621 . D h : a'(8[ C'X'Q) - C'X'Q . = . C'X'Q C <T£ (1)

h. #164-142. Ol-:P = (S\-C<X<Q)Y>Q.= .P = Sy>Q (2)

f-. #164-1. D h :S\- C'X'Q eP smor smor Q. = .

8 [C'X'Q e 1 -> 1 . a<(S\- C'X'Q) = C'X'Q .P = {S[ C'X'Q)V>Q (3)

h . (1) . (2) . (3) . D f- . Prop
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#164181. \-\PsmoramorQ.=.(>&S).StC't'Qel-+l.C"Z<Q\CQ.'S.P*=SY>Q

Dem.

h . #35*66 . #1641 . D
h : 8 e P slnor slnor Q.S.Sf C*Z'Q e 1 -* 1 . C'X'Q C d'S .P~SpQ (1)

K(l).#l 64-11. D
\-:P amor amor Q.D.faS). 8f C'2'Qel-+l.C

t
'Z

tQC(I tS.P = SfiQ (2)

h . #164-18-11 . D

h:(>SLS).S\'C'X<Qel->l.C''Z<QCa<S.P = SY>Q;'3'PsmorsmorQ (3)

h . (2) . (3) . D h . Prop

The following propositions are concerned in proving that double likeness is

reflexive, symmetrical, and transitive.

*164'2. K./f C'£'PePs"morsTnorP

Dem.

h . #151-121 . D f- .IfC't'P e X'P smor %'P . Jf C'P ePsmor P (1)

f- . #35101 . #1501 . D

h : M {(I[ C'X'Ptft C'P} N .- . N eC'P . M = (I\- CZ<Py>N

.

[*150-33.#162-22] =.NeC'P . M = I>N .

[*150-53] =.M(1\-C'P)N (2)

h.(l).(2).Df-./p(7f2 tP€2'PsmorS fP.(ir^ tP)tr^PeP^morP.
[#164-15] D r- . Prop

#164201. KP smor smorP [*164-2'11]

#164 -

21. r- : £ eP smor smor Q . = . # e Q smor smor P

r- . #1641 . #71-212 . D f- : S e P smor smor Q . . 3 e 1- 1 (1)

I- . #164-131-1

.

Df-:£ePs"morsTnorQ.D.a<5=C'£'P (2)

h . #150-94 . #164-1 . #162-22 . D f- : SeP slnor smor Q . D . Q = jSf^P (3)

f- . (1) . (2) . (3) . #164'1 . D r- : 5 e P smor smor Q . D . S e Qsmor smor P (4)
<«•

SOP v
r- . (4) q'ps\ ' "Dh : SeQ smor smor P . D . SeP smor smor $ (5)

f- . (4) . (5) . D f- . Prop

#164-211. p- : P smor smor Q . = . Q smor smorP [*164'21-11]

#16422. b\ SeP smor smor Q . T e Q smor smor i2 . D . 8
1
T eP slnof smor .R

Dem.
K #164-1. Df-:Hp.D.^r e l-*l.
[#71-252] D.iSfjTel-^l (1)

h . #1641-131 . D f- : Hp . D . (I'S - C'2'Q . D<T= C'S'Q

.

[#37-323] D.a'(S|T) = aT.
[#i64-i] D-.crcsi^cs'E (2)

K&W II 24
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r- . #150-13*14 . D f- . (S\Tyf'>R**Sy>Tf'>R (3)

f- . #1641 . D h : Hp . D . T-f'R = Q . Sy>Q = P (4)

h.(3).(4). -D\-:Kv.D.(S\T)f>R~P (5)

h . (1) . (2) . (5) . *164-1 . D r- . Prop

#164*221. f- : P smor smor Q . Q smor smor i£ . D . P smor smorR [*164*22"11]

#164 23. h : . P smor smor Q.D:Pe Rel2 excl . = . Q e Rel2 excl

Dem.

h.*16412. 0\-:.Kv.3:(RT).Tel-+l.a tT = C'2<Q.P = TY>Q:
[#163*3] D : Q e Rel2 excl . D . P e Rel2 excl (1)

h . (1) . #164-211 . D h :. Hp . D : P e ReP excl . D . Q e Rel2 excl (2)

f- . (1) . (2) . D h . Prop

#164-3. h:SeP slrTor smor Q . D . S e (C'C'P) sm sm (C'C'Q)

Dem.

f- . #164-1 . #162-22 .Df--Hp.D.£el->l. a^ = s'C"C'Q. P = £fJQ . (1)

[#150-931] 0. C'C'P = 8e"C"CQ (2)

h. (1). (2). #111-1. Dh. Prop

#164301. h : P smor smor Q . D . C"C'P sm sm C"G«G [#164-311 . *111'4]

#164-31. h : S e P smor smor Q.=.Se (C'C'P) sm sm {C'C'Q) . P = Sf'Q

Dem.

h. #164-3*1.3

h:SeP smor smor Q .3 .S e(C"CP)mm(C"CQ). P = Sf>Q (1)

K #1111. #16222. D
h:flf 6 (C"(7'P)iffigm(C"0*Q).D. JSel->l.a*iS=(7'S'Q (2)

h. (2). Fact. #164*1.3

f- : S € (C'C'P) sm sm (C'C'Q) . P = Sf'Q.D .SeP smor smor Q (3)

h . (1) . (3) . D f- . Prop

This proposition has the merit of reducing the ordinal element in double

likeness to a minimum. The proof of

S e (C'C'P) sm sm (C'C'Q)

is a cardinal problem, and what has to be added for ordinal purposes is merely

P = Sf>Q.

#164*32. h . A e (A smor smor A) . A smor smorA
In this proposition, the various A's need not be of the same type. Hence

" A smor smorA " is not an immediate consequence of #164'201.

Dem.
h . *72-l . #162-4 . DKAel->l.(I<A = <7'S'A (1)

K #150-42. Dh.A = A»A (2)

f- . (1) . (2) . #164-1 . D f- . A e (A smor imor A)

.

(3)

[*16411] D.AsmorsmorA (4)

h . (3) . (4) . D h . Prop
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#16433. f- : MePsmof R .NeQmwiS . C'P n C'Q=A . C'R n C'S=A. D.

M v) AT e (P I Q) smor smor (R 1 8)
Dem.

V . *16047 . D H : Hp . D . ifu iV e (P£ Q) smor (£££).
[*162'3.*15M1] D . Jf iy N € 1 - 1 . d'(if u tf) = C"2'(.R

J, 5) (1)

V . #150*32 . D h : Hp . D . (MuN)'>R = {(Mv N)tC'R}'>R

[#35-644.*150-32] =M>R
[#151-11] -P (2)

Similarly f : Hp. D . (M wir)>S** Q (3)

I- . #150*71-1 . D f- : Hp . D . (if iy ^5(22 1 5) = {{M o iv>\R} I {(# o #) '5}

C(2).(3)] = P|<2 (4)

K (1) . (4) . #164*1 . D K Prop

*16434. f- : Psmorii . Q smor 8 . C'P n C"£ = A . C'Rn C'S=A. D .

P IQ smor smorR^S
[#164-33'11. #151*12]

The following propositions are concerned in showing that, if P and Q are

like relations, and the correlator of P and Q is contained in likeness (i.e.

correlates relations which have the relation of likeness), a correlator being

given for each pair of relations coupled by the correlator of P and Q, then

the logical sum of such correlators is a double correlator of P and Qt
provided

P and Q are relations of mutually exclusive relations. That is, assuming 8
to be the correlator of P and Q, and assuming that S'Af smorN whenever

Ke C'Q, let it be possible to choose one correlator out of the class of corre-

lators (8*AT) smor N, for every N which belongs to C'Q. That is, assume that

it is possible to make a selection from the class of classes of correlators.

If fi is such a selection, then s'/j, will be a double correlator of P and Q, if

P,QeRel2 excI.

The following propositions, down to #164*421, are lemmas for #164*43.

#164-4. r- :. Ne C'Q . D^ . R'N e (S'N) smor N: 3 . (I's'R"C'Q = C'VQ
Dem.

h. #41-44. Dh .a's'R"C'Q = s<<I"R"C'Q (1)

h .#151-11 . D h :. Hp . D : Ne C'Q . D . a'R'N= C'N:

[#37-68] 1ia«R«CfQ=*C"C<Q (2)

f- - (1) . (2) . D f- :. Hp . D : (I's'R"C'Q = s'C"C'Q

[#162-22] - C'l'Q .Oh. Prop

#164-41. h : . Q e Rel* excl :N e C'Q . N . R'N e (S'N) smorN : D .

i'.R"C*0el->Cls
Bern.

h . #151*11 . D h :. Hp . D : if, JV e C'Q . a ! d'R'Mn d'R'N . D .

altfifnO'A'.

24—2
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[#16311] 2.M= N.
[#30-37] O.R'M=R'N (1)

r . #15111 . D h :. Hp . D : M e C'Q . D . iZ'M e 1 - 1 (2)

K(l).(2).*72-32.Dr-.Prop

#164-411. \-
: flfJQ e Rel2 excl . S [ C'Q e 1 ->1 . Hp*164*4 . D . s'i2"C'QeCls-*l

Dem.
r- . #15111 . D f- :. Hp . D : it/^e C'Q . g ! D'E'if n D'iW . I) .

[#163-11.#150-22] O.S'M^S'N.

[#71-532] D.M^N.
[#30-37] O.R'M=R'N (1)

f- . #15111 . D f- :. Hp . D : M e C'Q . D . JS^ifcf e 1- 1 (2)

h. (1). (2). #72-321. Dh. Prop

#164-412. f- :. iSf'Q, Q e Rel4 excl . £ [ C'Q e 1 -» 1

:

Ne C'Q . DF . R'NeiS'N) Smor iV: D . s'iJ"C'Q el -*1

[#164-41-411]

#164413. h :.Hp#l6441. D:

# e C'Q . D . E'tf= («'.R"C'Q) f C'JV . S'N= (s'R"C<QY>N

Dem.
h . #4113 . D f- : Hp . N e C'Q . D . 7W C s'.R"C"Q .

[*72-92.#164-41] D .R'N=(s'R"C'Q)\-<I'R'N

[#151-ll.Hp] =(s'R"C'Q)\-C'N (1)

h . #15111 . D f- : Hp . Ne C'Q . D . S'N = (R'N)'>N

[(l).#150-32] =(s'R"C'Q)'>N (2)

f- . (1) . (2) . D h . Prop

#164-414. h : Hp #164-41 . D . S> Q = (s'R"C'Q)f>Q [#164413 . #1501-35]

#164-42. f- : . Q, S">Qe Rel2 excl . S [ C'Q e 1 -> 1 :

# e C'Q. D^. #i^0S'iV)sm^r if: D.

s
(R"C'Q e (8>Q) smor smor Q [*164-4-412-4141]

#164-421. t-:.P,Qe Rel2 excl . £ [ C'Q e P sTnor Q :

tfe C'Q . DN .iW e (S'iV) smor N : D .

s'R"C'Q ePsmorslnorQ [#164-42]

The following proposition, besides being used in proving all subsequent

propositions of this number (except #164"432'433, which are mere lemmas for

#164*44), is used in #251 "6, in the theory of ordinal numbers.
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#164*43. h :.P,(N ReP excl. SePiSorQ.

fi~ X {(ai\T) .NeC'Q . X = (S'#)£mor iV} . D :

R € eA> . D . s'&'R e P smor smor Q . S - (£'D'.R)-j- f C'Q

f- . *83'2-22 . \- :. Hp .Ree^'fi . D :

NeC'Q.3. R'{(S'N) smor if} e (S'N) sinor ilT : s'D'R = E"^ (1)

h.(l)Oh:.Hp(l).r«X^{i^eC»Q.\-(S'il0sinOT Jy}.D:

NeC'Q.O. R'T'N e (S'N) slnor N : £'D'.R = R"T"C'Q : (2)

BIT"
#16442

iJ
D:s'D'PePsl5or slnor Q (3)

f-.(2).*164-413^i^.*l51-ll.*35-71.Dh:Hp(2).O.S = (^D^)t|
ka<Q (4)

h . (3) . (4) . D f- . Prop

#164431. h : . P, Q e ReP excl : (gjS) .SeP smor Q .

g ! e/X {(giV) . iVTe GlQ . X » (S'if) s_m°* #} : 3 P smor smor Q
[*163-4M1]

#164432. r- : 5 e P slnor Q n Rl'smor . D .

A~ e X {(gif) . N 6 C"£ . X = (S'-ZV) smor #}
i)em.

h . #15111 . D I- :. Hp . D : Ne C'Q . D . N € d'S

.

[#71-31] 0.(S iN)SN.

[Hp] :>.(£'#) smor JV.

[#15112] D.a!(j8f'J0smor if:. Dh. Prop

#164433. f- :. Mult ax . D : jSf e P smor Q n Rl'smor . 3 .

a ! e4'X {(&N) . if e C"Q . X = (S'N) smor if}

[*1 64-432 . #88-37]

All the remaining propositions of the number are important.

#164-44. f- :. Mult ax . D : P, Q e ReP excl . a ! P smor Q n Rl'smor . D .

P smor smor Q [*164-433'431]

*164'45. h : : Mult ax . D : . P, Q e ReP excl . D :

g[ ! P smor Q r\ Rl'smor . = . P smor smor Q [#164-44-1 7]

#164-46. h :. Mult ax . D : P, Q e ReP excl . g ! P smor Q n Rl'smor . D .

2'PsmorS'Q [#164"44151]
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*16447. b:R,Se Nr'Q . C'R, C'S e Cl'Nr'P . D . a ! R imof S n Rl'smor

h . *152-5'4 . D I- : Hp . D . R smor 5

.

[*151*12] D.gSiZsmortf (1)

h . #60-2

.

D h : . Hp . D :M e C'R . N e C'S . D . M,N e Nr'P

.

[#152-5-4] D.JtfsmoriV (2)

b. *15VV131. 3 b i.TeRsmorS.'DiMTtf.'D. Me C'R. NeC'S (3)

h.(2).(3). DI-:.Hp.D:r e iismor5.D.rCismor (4)

I- . (1) . (4) . 3 I- . Prop

#16448. h : . Mult ax . D : R, S e Rela excl n Nr'Q . C'ii, C'S € Cl'Nr'P . D .

R smor smor £ . X'R smor 2'fl [*164'47-44'46]



*165. RELATIONS OF RELATIONS OF COUPLES

Summary o/#165.

In the present number, we shall give various propositions concerning the

relation P 1>Q, which has the same uses in relation-arithmetic as al "f3 has
•j u

in cardinal arithmetic. The propositions of this number will be used in the

next number to establish the properties of the arithmetical product of two

relations Q and P, which is denned as %'P 1>Q. Again in connection with

exponentiation the propositions of the present number will be useful, since,

after the product of a relation of relations has been denned (#172), we shall

define exponentiation by means of the definition

PexpQ = Prod'PJ,K> Df- (Cf. #176.)

There will also be occasional uses of the propositions of this number through-

out the theory of series. The relation P ], *Q is important because its structure

is thoroughly known. It is a Rel2 excl which consists of Nr'Q relations, each

like P (#1 65*27); and if P smor P' . Q smor Q', we can construct a double

correlator of PJ, >Q andP'J, >Q' without invoking the multiplicative axiom.

In feet we have

*165"362. \-:R[CtP'ePsmorP'.S[Ct

Q
, eQsmoiQ'.'D.

(R
ji
S) T C'X'P' I JQ' e (P I JQ) slnor slnor (F

J,

">Q')

This proposition should be compared with #113127. In virtue of #164'31,

together with various propositions of #165 and #166, it will appear that

#165*362 includes #113127 as part of what it asserts.

In the present number, we begin with a set of propositions on fields.

We have

#16512. h . C'P i > Q = P i "C'Q

#16513. h . C'P i z = I z"G'P = (C'P) i z
•j ji

whence

#16514. h . C'C'P 1">Q = (C'P) I "C'Q
•j jj

which connects the theory of P 1 yQ with that of al "ft (#113 and #116).
•j jj

Hence

#16516. (- . C't'P i JQ = C'Q x C'P

In #166, we shall define Q x P as 2,'P I '>Q; thus the above will become

\-.C'(QxP) = C'QxC'P.
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We next have a set of propositions concerned with PI as a relation,
•j

and with the circumstances under which we can infer x = y or P = Q from

data as to P I x and Qiy. We have

#16521. H.PJ^QeRePexcl

#165211. \-:RlC'PlxnC'Ply.'D.x = y

#165-22. (- : a ! P . D . P
J,

e 1 -> 1

We then have various propositions concerning A, of which the chief are

#165-241. h:<3 = A.D.PJ,JQ = A

#165242. r-:P = A.a!Q.D.PJ,SQ = Aj,A
•j

We have next four propositions which are constantly used, proving that

P I'Q consists of Nr'Q relations each like P. These propositions are
•j

#165-25. h :&1 P .1 . P l
m

>QsmorQ .{P l)[ C'Qe(P l'>Q)siwr Q

#165-251. (- . P 1 tfsinorP . ( 1 x)\ C'Pe (P I x)Smm P
•j m t

#16526. h.C'P^QCNr'P
•j

#16527. (- : a ! P . D . P j 5Q e Rel2 excl n Nr'Q . O'P
J,
»Q e Cl'Nr'P

From *165 -3 to #165-372, we are concerned with constructing a double

correlator of P l'>Q and P'J, >$ when we are given simple correlators of P
with P' and of Q with Q'. The result (#165'362) has already been given.

Hence we have

#165-37. h : P smorF . Q smor ^ . 3 . P J,
JQ snior smor P'

J,
JQ'

and by #164*48 and #165'27 we have

#165-38. h:.Multax.D:

B e Rel2 excl n Nr'Q . C"£ C Nr'P . D . R smor smorP
J, yQ
•j

Hence propositions concerning a series of /3 series, each containing a terms

(where o and @ are relation-numbers), which in general require the multi-

plicative axiom, can be deduced, assuming that axiom, from propositions (not

requiring the axiom) concerning P I yQ, where Nr'P = a and Nr'Q = fi. Thus

the use of Pi >Q enables us to minimize the use of the multiplicative axiom.

#165-01. \-.Plz=lz'yP [#150-6]

#1651. \-
: R (P I >Q) S . = . {rz, w) . zQw . R = lz>P . S = I w'>P [#150-62]

#16511. b : X (I z'yP) Y . = .(Rx,y) . xPy . X = x I z . Y=y I z [#150-55]

#16512. \- . C'P I 'yQ = P i "C'Q [#15022]
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#16513. I- . C'P I z = I z"C'P = (C'P) i z [#16501 . #15022 . #38-2}

#165131. h . C'P I "£ = (C'P) I "f3 [#16513 . #3811 . #37-68]

#16514. h . C'C'P 4 '>Q = (C'P) I "C'Q [#16512131]

#165-15. h . s'C"C'P l'>Q*=C'Qx C'P [#16514 . #1 131]
•7

#165-16. h . C't'P I '>Q = C'Q x C'P [#165-15 . #162-22]
'j

#165161. \-:M(F'>Pl
m

>Q)N.EE.
'j

(gr, y, z, w) . x, y e C'P . zQw . M = x \,z . N =*y ^w
Dem.

(-.#150*52.3

\-:.M(F>Pl>Q)N. = :(nn,S).M(Py>Q)S.M€C'Il.]VeC'S.

[#1651] ~:(RR,S,z > w).zQw.R=:lz>P.S = liv>P.MeC'R.NeC'S.
[#165-0113] = : (rR, S, z, w) . zQw . R = \ z'yP . S= I w'P

.

Melz"C'P.Nelw"C'P.
[#21-151] = : (fiz, w) .zQw.Mel z"C'P .Nei w"C'P .

[#38131] = : (g#, y, z, w) . zQw .x,ye C'P . M= x lz . N'

— y j, w:. D h .Prop

#165162. h : M(s'C'Pl >Q)N. = . (^x
t yt z) . xPy .zeC'Q.M=xlz.N=y

J,
z

Bern.

h. #16512. #4111. D

h : M (s'C'P i'yQ)N. = . (<&R) .ReP], "C'Q . MRN .

[#3813] ' =.(Kz).zeC'Q'.M(Plz)N.

[#165-01-11] = . (^t
y,z) . xPy . z e C'Q.M=x I z.N~y I *OH .Prop

#16517. I- :. M(Z'Pl >Q)N. = : (<$x,y, Z> w) :

x, y e C'P ,z,we C'Q : zQw . v . z = w . xPy : M-x \z,B =y iw
Dem.

h. #165161162. #16211. D
h : . M (2'P JL

J Q) N . s : (rx, y, z,w).x,ye C'P . zQw.M=x ±z . N = y Iw.v.

(Qx,y,z) . xPy . z eC'Q . M= x I z . N =*y lw :

[#13-195] = : (g#, y, z,w).x,ye C'P . zQw . M= x lz . N= y |«?.v.

(g#, y, z, iv) . xPy . z, w e C'Q . z=w .M=# I z .N—y I w :

[*33-l7.#4-71] = : (^x,y,z,w) . x,y eC'P.z,weC'Q.zQw . M-x^z.N^y I w.v.

('&x
>
y,z,w).x,y€CtP.z

>
weC'Q.xPy.z=sw.M=xlz.N-ylw:

[#11-41 .#4-4] ~ : (g#, y, z,w)ix,ye C'P .z,we C'Q : zQw .v ,z = tu. scPy :

M = xlz.N=-ylw:. 3 h . Prop

#16518. \-.Gnv'Py>Q = Py>Q [#15012]

#165181. b.Cnv'Plz =Plz [#165-01 . #15012]
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#165182. \-.Cnv
m

>Pl'yQ = Pl'>Q [#165181 . #15035]
•y •>

#16519. h . Cnv'CnvJP
J,

'yQ = P I *>Q = Cnv JCnv'P j JQ [#16518182]

#165'2. h.P^el->Cls [#7214]

#165-201. (- . C'(P
J, *)

=» (C'P t i'z^'i'z
•y

Dem. (-.#35103. 1\- :y(C'P^ i'z)z .= .yeC'P:

[#85-51] D h . (OP t i'*Vi'* = 4 ^"C'P

[#165-13] = C'(P I z) . D h . Prop

#165-202. I- . C"C*P | 'yQ = (C'P | C'Q)A"i"Cl

Q [#16514 . #113103]

#165-203. I- . C'C'P I 'yQ e Cls2 excl [#84'55 . #165-202]

#165-204. \-:CtPia;=GtPiy. = .Pix=Piy
•y *y m y m y

Dem.

h. #16513. #55-232. D

h : C'P I x = C'P I y . a ! C'P I x . 3 . x = y .

[#30-37]'

'

O.Plx = Ply (1)

h. #33-241. DJ-:C"P4# = C<P
J,
y. Ctp\x = A.'D.Plx = A.Ply = A (2)

(-.(l).(2).Dh:(7'P
>t

,

a; =CfPly.D.P
>L« = P4v (3)

•y *y v v
(-.(3). #30-37. Dh. Prop

#165-205. \-.C[B'P J,el-»1 [#165204 .#71-58]

#165-206. h : (a) . E ! P
J,

<# : (a) . a C <I'P i [#3812 . #33431]

#165-21. h.PJ,JQ € Rela excl
•y

Dem. K #165-205. #150-203. D h . CfC'PJ, JQ el -»1 (1)

(-
. (1) . #165203 . #163-17 . D h . Prop

#165-211. h : 3 ! C'P ix n C'P
J,
y.1.x = y [#16513 .#55-232]

#165-212. \-:>&lP. = .±lPlx
•y

Dem.

\-.*16o-110l.1\-:KlPlx. = .(RX,Y,x,y).xPy.X = xlz.Y = ylz.
[*1319] = . fax, y).xPy.^V. Prop

#165-22. h:a!P.D.PJ,el-»l
•y

Dem.

(-
. #165-212 . D h :. Hp . D : g ! P^

:

[*3037.#24-57l.#33-24] D : P
J,
x'=P I y . 3 . g ! C'P J, xnC'Ply.

[#165-211]
'

D.# = y
'

(1)

I" (1) . #71-54 . #165-2 . D I- . Prop
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#165 221. h:.a!P.D:a!PI x n P ly .=. P ix = P iy . = ,so = y

Bern.

h . #33'252 . D h : 3 ! P I x n P
J,
y . D . g ! CP J,

xn C'P ±y .

[#165*211] D.^ = y

'

(l)

I- . #165-212 . #25-571 . D I- :. £ ! P . D : a? = y . D . a ! PJ, a; A P I y (2)

I- . (1) . (2) . #165-212 . #30-37 . D h . Prop

#165222. \-:.>g
L
lP.

,

D:<ziC'PlxnC<Ply. = .C'Plx = C'Ply. = .a;=y

[Proof as in #165-221]

#165223. h:.g!P.D:PJ,;g = P >
|,J JR. = .Q = i2

Dem.

(-
. #15131 . #16522 . D (- :. Hp . D : P

J,

m

>Q = P
J,

Ji2 . D . Q = R (1)

I- . #34-29 . #150-1 .

,

D\-:Q = R.O.Py>Q = PyyR (2)

I- . (1) . (2) . D h . Prop

#165-23. \-:Plx=Qly.'D.P=Q
•t m J

Dem.
b . #72184 . #150-153 . D h : I x>P = I x'yQ . D . P = Q (1)

h. (1). #165-01. Dh. Prop

#165-231. h:PJ,#=<3J,a;. = .P=Q [#16523 . #3037]
•j •>

#165-232. b:.±lP.v.'3
i
lQ:

,DiPix = Qly. = .P = Q.x= y
•j m j

Dem.

(-
. #165-23 .

,

D\-:.Plx=Qly.
,D:P=Q: (1)

[#l3-12.Hp(l)]
'

' 3:Plx = Ply.Qlx = Qly:
•j •} » mt

[#165-221] 1:±lP.'D.x = yi'3
i
lQ.'D.x = y (2)

h.(l).(2).Dh:.g[!P.v.3[!Q:D:P^«-Q^y.D.P-Q.«-y (3)

h. (3). #13-12-15. Dh. Prop

#165-233. (- : a ! C<P J,x n C'Q
J, y

. = . a? = y . g ! C<P n C'Q

[#55-232. #165-13]

#165-24. h:P = A.D.PJ,«;= A.PJ,=»i'AtV

Dem.

h . #165212 . Transp .DI-:P = A.D.P,|,a? = A (1)

h . (1) . #38-1

.

Dh:.P = A.3:i2(P^)a;. = .JJ = A.

[#51-15.*24-104] = .£et<A.a:eV.

[#35-103] s.22(i'AtV)* (2)

h - (1) . (2) - D h - Prop



380 RELATION-ARITHMETIC [PART IV

#165241. \-:Q = K.O.Pl'>Q =A [#150-42]

#165-242. \-:P = A.±\Q.3.Pl'>Q =AlA
Dem.

\-.*W5-V24! .5\-:.P = A.3:R(Pl>Q)S. = .('zz,w).zQw.R = k.S = A.

[#10'35] = .>&\Q.R = k.S = A (1)

h. (1). #55-13. 3 h. Prop

#165243. H:a!Q. = .a!P|>Q

Dem.

b.*l65-1.3\-:±lPy>Q. = .(Rx,y,R,S).%Qy-R = P},v.S = Ply.

[#13-19] = . (a^, y).xQy\^V. Prop

#165-244. (-:A e (7
fP4JQ.s.P = A.a!Q. = .P4^ = A

>tA
j *

I- . #165-212-12 . D h : A e CP I ">Q
. D . P =A (1)

(- . #1024 . *33'24 . D h : A e C'P 1">Q . D . a ! P
J,
>Q •

[#165-243] 3.g!<3 (2 )

I- . #165242 . #55-15 . D h : P = A , ft ! Q . D . A e C'P
J,
^Q (3)

h.(l).(2).(3). Dh:Ae(7<P
;
^Q. = .P=A.a!Q (4)

h . #55-15 . 3 h : P I >Q =A J,
A . D . A e C'P

J,
>Q .

[(4)]

'

3.P = A.a!Q (5)

h. (5). #165*242. Dh:P= A.alQ.r=.P
:
t;Q =A4A (6)

h . (4) . (6) . D (- . Prop

#165-245. h:.g[!P.v.(3 = A: = .A<-t(7'P
:

t5Q.s.A-e(C'P)4
;

"af

Q

[#165-244 . Transp . #33*241 . #1 65*14]

#165-25. I- : -j IP. D. P I JQsmorQ. (P1)T C'Qe(P
J,
*>Q)smoiQ

'j *> »
[#165-22-206. #151-231]

#165-251. h.PJ
f
*smorP.(4a?)|k

(7'Pe(PJf
fl?)8mafP

[#72*184. #55-21. #151*22]

#165-26. I- . C'P ^ JQ C Nr'P [#165-251-12 .#152-11]

#165-27. h:a!P.D.PJ,JQe Rela excl n Nr'Q . C'P I ">Q e Cl'Nr'P

[#165-21*25 . #152*11 . #165*26]

The following propositions are concerned in proving that, ifR is a correlator

of P and P', and 8 is a correlator of Q and Q, then JX
||
& (with its converse

domain limited) is a double correlator of P 1 >Q and P**
J,
IQ\ This proposition

is required subsequently in establishing likenesses.
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*165-3. I- : E ! R'y . D .
J,
z'R'y = R \< | z'y

Dem.

h . #341 . #3811 .0\-iu{R\'l z'y) w. = . (gv) . uRv . v (y J, z) w

.

[#55*13] =.uRy.ty = z (j)

h . (1) . #30-4 . D I- : . Hp . D : u {R \' I z'y] w . = .u = R'y .w = z .

[#5513.#38-11] = . u ( I z'R'y) w :. D h . Prop

*165'301. h:i* e l~»Cls.D4*|iS = (i2|)|as)ra<£

Dem.

r.#165'3. Dh:.El JB'y.D:Jf{(J
p *)|5}y. = .if{(i2|)|J

f ^y:.
[#7ri6.#34'36] D h :. Hp . D : J^ {( J,

z)
\
R] y . = .

il/{(ii|)j\t^y.2/ea^:.D(-.Prop

#165-302. h : E !! R"C'P .D.J, ^£;P= iS |>"

J,
*»P

Dem.
\-.*165-3.'D\-:.'Rv.

,D:y€C tP.
,

D.lz<R<y = R\<lz<y (1)

h. (1).*1 50-35-1 3. Dh. Prop

#165 31. h : E !! R"C'P . D . (R'>P) J, z=R\">P I z . (RiP) I >'Q=(# |)+;p I

m

,Q

(- .#165'30201 . D I- : Hp . D . (J2SP)
J,
* = P |J P

J,
z (1)

[#150-1]
'

=-(fi|)fPJj5 (2)

(- . (1) . (2) . #150-35 . D (- . Prop

*165311. r : i* |* C'P e 1 -* Cls . C'P C (Pi* . D .

(EiP)^ = i2|iP^.(Jj;P)
:
t;Q = (i2|)t5P^JQ

[#165*31. #71*571]

*165-32. hES^O.j, (£'*) = (| S)
j J,

z .
J,
(S'z)JP=

|
&

J,
*JP

h . #341 . #43101 . #38101 . D

\-:M{(\S)\Iz}x. = .(kN).M=N\S.N = xIz.

[#13-195] =.M = (xlz)\S (1)

I- . (1) . #55-581 . D

\-:.~Rv.1:M{(\S)\lz}x. = .M=xl(S<z).

[#38101] s.MiK&z)}* (2)

h
. (2) . #21-43 . D h : Hp . D .

J,
(S'z) = (\S) \l z.

[#150-13] D . i (S'z)>P=\& I *»P : D h . Prop

#165-321. r- : E 1 #'* . D . P
J,
(£'*) = 1 2>P

J,
2 [#165*32-01]
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*16533. \-'.T£\lS«CtQ.
,

}.Pl
m

>S
m

>Q-(\S)Y'Pl
m

'Q
»* *>

Bern.

V . #165321 . *38'11 . #150-1 . D

\-:.HV.-D:zeC'Q.'}.Pl'S<z = (\S)-t<Pl'z (1)

t- . (1) . #150-35 . D h . Prop

#165*331. \-iStC'Qel-*C\s.C'QCa'S.
,

}.Py>S
m

>Q=i(\S)Y>Py>Q

[#165-33. #71-571]

#165-34. H : E !! R"C'P . E !! S"C'Q . D . (iZSP) J,
'(S'Q) = (%

II W(i> J, ;Q)

Dem.

(-{.#165-31 .D h : Hp. D . (EJP)^ 5(S JQ) =W)t J-P
J,

>(S'fQ)

[#165-33] = (5|)t''(l W-P.^ ; <3

[#150-13-14.(*43-01)] = (R
jj £)f'GP

J,
SQ)

: 3 I" Prop

#165-341. i-rEr^P^^O'Qel-^Cls.C'PCa^.C'QCa^.D.

(J2 JP) 1 K^ ; <3) = (-B
11 S)Y'P i 'Q [*165-34 . #71-571]

•j •>

#165-35. I- : R \ ClP e Cls -» 1. C'P Ca'E.D.(iJ |)f C'S'PJ^Q e 1~»1

Dew.
(- . #113-118 . #16516 . D h . s'D"C"2'P y>QQC'P (1)

C*2'PJ,;Q,C"P

I- . (1) . #74-751 . D (- . Prop
A., Ot

#165-351. \-:StC'QeC]a-*l.CtQCa tS.1.(\S)tC'2l'Py>Qel-*l

Dem.

I- . #113118 . #16516 Oh. s'CF'C'2'P 1 5Q C C'Q .

j
*74-75|] D h : Hp . D . (j S^C't'Pl '>Qel -» 1 : D h . Prop

#165-352. h : R [ C'P, S f C'Q

e

Cls ~> 1 . OP C CP.R . C'Q CO^.D.

(EJI^rC'S'P^el-*!

Dem.
h. #113118. #16516. D

h : Hp . D . s'D"C'S<P i 5Q C O'P . «<<I"C«2'P 4 JQ C C'Q

.

[#74-773] D . (i2 1| S) [ C'VP I ">Q e 1 -* 1 : D I- . Prop
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*16536. \-
: R[ G'P'eP smor P\D.

(R
I
) T C't'P' l >Q e (P I yQ) smof smof (P'

J,
',Q)

Dem.
h. *151'22. #16535 . 3 h : Hp. D . (iZDTC'S'P'J, *Qel->l (1)

h.*43-3. 3(-.C*2<P'
;

^QCCFi2| '
(2)

I- .#151-22 .#165311 . D h : Hp. D .Pj 5Q = (|| iOt^.i ;Q (3)

I- . (1) . (2) . (3) . #164-18 . D h . Prop

#165-361. r- : S f CfQ' e Q smof Q' . D

.

( |
S) r C'S'P | 'Q' e (P

J;
>Q) smof smof (P ^0)

[#165-351-331]

The proof proceeds as in #16 5 "36.

#165-362. \--.R\- C'P'eP smof P' . S [ C'Q'e

Q

smof # . D

.

(iJ 1 £) T C'2'P J,
JQ'e (P

J,
5Q) smof smof (P

J,

>'£')

[*165-352-341]

The above three propositions are of great utility in relation-arithmetic.

#165-37. (- : P smorP . Q smor Q'
. D . P

J,
»Q smor smor P'

J,
> Q'

[#165-362 . #16411 . #151-12]

#16538. h :. Mult ax . D : R e Rel2 excl n Nr'Q . C'R C Nr'P . D .

R smor smorP | 'Q

h . #164-48 . #165-27 . D h : Hp . g ! P . D . iJ smor smorP j,
'>Q (1)

(-. #153-17 . #165-241 . D

I- : Q - A . E eRel2 excU Nr'Q . D . R =A . P J,
JQ = A

.

[#164-32] D . i2 smor smorP ^>Q (2)

(-.*165'242.DI-:P = A.a!Q.:3.P^<3 = Aj,A (3)

h. #15317. #51-4. #151-32. 3

h:P e Nr'Q.£<ECNr<P.P = A.a!Q.D.C<JR = i'A.

[#56-381] D.^ =A|A (4)

I- . (3) . (4) . #153101 . #164-34 . D

I- : R eNr'Q . 0<£ CNr'P . P = A . g ! Q .D .EsmorsmorP^Q (5)

h.(l).(2).(5).D(-.Prop



#166. THE PRODUCT OF TWO RELATIONS

Summary o/#166.

The product Q x P is defined as 2'P I >Q. This is a relation which has

for its field all the couples that can be formed by choosing the referent in

CiP and the relatum in CQ. These couples are arranged by Q x P on the

following principle: If the relatum of the one couple has the relation Q to

the relatum of the other, we put the one before the other, and if the relata

of the two couples are equal while the referent of the one has the relation P
to the referent of the other, we put the one before the other. Thus in

advancing from any term x I y in the field of Q x P, we first keep y fixed and

alter x into later terms as long as possible; then we alter y into a later term,

move x back to the beginning, and so on. Thus with a given y, we get

a series which is like P, and this series is wholly followed or wholly preceded

by the series with the referent y, where y' follows or precedes y.

The propositions of this number are for the most part immediate conse-

quences of those of #165. The most important of them are:

#16612. h . G\P xQ) = C'P x C'Q

#16613. h.PxQ = A. = :P= A.v.Q = A
Hence it follows that an ordinal product of a finite number of factors

vanishes when, and only when, one of its factors vanishes.

#16616. h . ]?'(P xQ) = B*Px ~B'Q .l?'Cnv'(P x Q) =B (P x ~B'Q

#166 23. h : P smor P' . Q sinor Q .^.QxP smor Q' x P'

This proposition shows that the relation-number of a product Qx P
depends only upon the relation-numbers of its factors.

#16624. h : . Mult ax . D : R e Bel2 excl r. Nr'Q . CR C Nr'P . D .

t<R smorQxP
This proposition connects addition and multiplication (cf. note to #166*24,

below).

#166-42. h . (P x Q) x R smorPx(QxR)
This is the associative law. The distributive law has two forms:

#16644. h . 2' x P>Q - (2'Q) x P
#16645. h . (Q$R) xP = (Qx P)$(R x P)

We do not have in general (cf. note before #166'44, below)

P x (Q4S.J8)- (P x Q)£(P x R).
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We have also a distributive law for the addition of a single term, i.e.

#16653. h:g!Q.:MQ4»y)xP = (<2xP)4^P^)

*166-531. H:a!Q.D.(y4fQ)xP-(P^y)4-(QxJ>

)

Here again the law does not hold in general for P x (Q -f> y) or

Px(y«fQ).

#16601. QxP=t<Pl",Q Df
•>

#1661. h.QxP = S'P4JQ [(*166'01)]
•>

#16611. h :. M (Q x P)N . = :(%x,y,z,w) : x,y eC'P . z,w € C'Q'. zQw .v .

z = w.xPy.M= xlz.N**yllv [#16517 . #1661]

#166111. \-:.M(PxQ)N. = :(ftx,y,z,w):x,yeC'P.z,W€ClQixPy.M.

x*=y. zQw : 2f- z^x. N= w],y [#16517 . #1661]

#166112. h :. (x le) (Q x P)(y
J,
w) . = : x,yeClP .z,weClQizQw . v .

z = w.xPy [*16611.*55202. #13-22]

#166113. \-:ixt yeC'P.z,we C'Q . D :.

(xlz)(QxP)(yiw). = :zQw.v.z = w.xPy [#166112]

#16612. h . C\P x Q) » C'P x C'Q [#16516 . #1661]

#16613. h:.PxQ = A. = :P = A.v.Q = A [#16612 .#1131 14. #33241]

#16614. h:a!PxQ. = .a!P.g[!Q [#16613]

#16615. h . Cnv'(P x Q) = P x Q [#16519 . *162'2]

#16616. h . &(P x Q) = ]?P x ?Q . i?Cnv<(P xQ) = l?Px B*Q

Bern.

h. #166111. #93103. 3

h : . itf e 2?(P x Q) . = : (a#, z):xeC'P .z eC'Q . M = z l®:

[#93103] =i{wc,z).xe~B<P.yel¥Q*M = zlx\

[#113101] ='.Me~B'Px~B i

Q (1)

h . (1) . #16615 . D h .l?'Cnv'(P x Q) = 2?P x 5'Q (2)

h.(l).(2).Dh.Prop

The above proposition is used in the ordinal theory of progressions

(*263-62-65).

#166-2. h : R[ (7'P'ePsmw F . 3 . (E|)r C'(Q x P/)e(Q x P)Smof (QxP')

[#165-36 . #1661 . #16414]

R&W II 25



386 RELATION-ARITHMETIC [PART IV

#166-21. h :S[C'Q' e Qsmor #' . D . (|% C"(Q' x P) e(Q x P)smor (Q' x P)

[*165'361.*166-1.*164'14]

#166 22. h : Ef C'P'ePsmorF .S[C'Q' e Qsmor Q'.D.

(R
||
S) f C'(Q' x P') e(QxP) smor (Q

r

x P')

[#165-362 . #1661 . *16414]

This proposition gives the correlator for the product when correlators are

given for the factors.

#166 23. h : P smor P' . Q smor Q'.O.QxP smor Q' x P'

[#166-22 . #151-12]

This proposition enables us to use Q x P to define the product of the

relation-numbers of Q and P, for it shows that the relation-number of Q x P
is determinate when the relation-numbers of Q and P are given. We shall

therefore (in (Section D of this part) define the product of two relation-

numbers v and fi as the relation-number of Q x P when N r'Q = v and

N r'P = At.

#16624. f- : . Mult ax . D : R e Rel2 excl nNr'Q.C'RC Nr'P . 3 .

*Z'R smor QxP [#165-38 . #164-151 . #166-1]

This proposition exhibits the connection of addition and multiplication.

If we put Nr'P = /i and ~Nr'Q = v, then 2*72 in the above proposition is the

sum of v relations of which each is a /i. In virtue of the above proposition,

it follows that (if the multiplicative axiom is assumed) Nr c
2,

(R = v x /*. In

other words, assuming the multiplicative axiom, the sum of v series (or other

relations), each of which has fi terms, has vx fx terms.

#166-3. h : a ! C'(P xQ)n C'(P' x Q') . = . a ! C'P n C (P' .rIC'Qk ClQ
[#1661 2. #11319]

The analogous proposition

>&\{PxQ)h(P'xQ'). = :

^\{P^P').<K \C'QnC'Q'.y.^\{QhQ').^\C'Pr,C'P'
is only true in general if P G J . P' Q J

#16631. h - s'C'(Q xP) = C'P | C'Q [#113-115 . #166*12]

#166-311. h : a ! Q .0 . s'T)«C'(Q xP) = C(P : g ! P . D . s'(I"C'(Q x P) = C'Q
[#113-116 . #166-12 . #33-24]

#166-312. h . s'D"C'(Q x P) C C'P . s'<I"C'(Q x P) C C'Q

[#113118. #166-12]

The following propositions are lemmas for the associative law (#166'42).

#166-4. h :.M {{P x Q) x R] M . = : fax, y, z, x',
tf, z') :

x,x'eC'P .y,y'e C'Q .z.z'e C'R :

xPx' . v . x — x' . yQy* . v . x = x' . y = y' . zRz :

M=zl(ylx).M' = z'l(y'lx')
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Dem.

V . #116-111 . D V :. M{(P x Q) x R]M . = : (g^, N\ z, z
f

) :

N,N'eC'(PxQ).z,z'eC'R'.N(PxQ)$r .v.N^N'.zRz'z
M=zlN.M' = z'lN':

[*116-12.*113-101] h : faN, N', x, x\ y, y\ z, z)

:

x
t
x'eC<P.y

yy
feC<Q.z,z'eC<R.N=ylx.N'**y' lx':

N(PxQ)N'.v.N=N'.zRz':M=zlN.M'=z']
r
N':

[*13-22.*116'1 13] = : (rx, x'
, y, y\ z, z') :x,x'e C'P .y,y'e C'Q .z^eC'Ri

xPx' . v . x = x . yQy . v . y I x = y' | x' . zRz :

M= zl(ylx).M' = z'l(y'lar>:

[#55-202] = : (%x, x', y, y', z, z') : x, x e C'P .y,y e C'Q .z,z'e C'R

:

xPx' . v . x = x . yQy' . v . x = x . y — y . zRz' :

M=zl(ylx).M' = z'l(y'lx'):.D\-. Prop

#166-401. h : . N {P x (Q x R)} N' . = : (g# , x', y, y', z, z') :

x,x' eC'P .y,y' eC'Q.z,z' eC'R:
xPx' . v . x = x . yQy' . v .x — x'. y — 1/ . zRz' :

N~{zly)lx.Nr

={z'\,y')lx'

[Proof as in #166-4]

#166-41. h : T** MN{(^x, y,z).xeC'P .ye C'Q. zeC'R.M = zl(y 1%).

N^(ziy)ix}.O.Te{(PxQ)xR] Smor {Px(Qx R)}

Dem.

h . #2133 . D h :: Hp . D :. MTN . M'TN . D :

fax, x, y, y\ z,z')i x, x e C'P .y^eC'Q. z, z' e C'R :

M = zl(ylx).M' = z'liy'lx')i

N=(zly)lx.N=(z'ly')lx':
[#55-202] D : (%x, x\ y, y', z, zf) . M = *

J, (y lx) . M' - z | (;/ j a/)

x~x' .y— 1

}/ .z~z
f

\

[#13-22] 0:M= M' (1)

Similarly h : . Hp . D : MTN . MTN' .3 . N » JV (2)

h.(l).(2). DhiHp.D.Tel^l (3)

h . #2133 . #1319 . D h : Hp . D .

a.'T=N{faxi y,z).xeC'P.yeC'Q.zeC'R.N=(zly)lx}
[#113-101] = C'P x (C'Q x C'R)

[#166-12] = C'{P x (Q x R)} (4)

h . #166-401 . D h :: Hp . D :. M{T>(P x(Qx R))\ M'. = i (^x'^y'^z'^N') :

x
>
x'eC'P.y,y

,

6C'Q.z
) z'eC'R.N=(zly)lx.N' = (z'ly')lx'.

M=zl(ylx).M' = z'l(y>lx'):

xPx . v . x — x' . yQi/ . v . x = x . y = y' . zRz' z

[*13-19.#166'4] = : M {(P x Q) x R} M' (5)

h . (3) . (4) . (5) . #151-11 . D h . Prop

25—2
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#166-42. h . (P x Q) x R smorPx(QxR) [#166-41]

This is the associative law for the kind of multiplication concerned in this

number.

#166'421. PxQxR = (PxQ)xR Df

This definition serves merely for the avoidance of brackets.

The two following propositions give the distributive law. In relation-

arithmetic, this is in general only true in one of its two forms, i.e. we have

(Q$R)xP = (QxP)$(RxP),
but not P x (Q4.B) = (P x Q)$(P x R).

The latter is true for finite series, but not for infinite series or (except in

exceptional cases) for relations which are not serial.

#16644. r . 2* x PJQ = (Z'Q) x P
Dem,

h . #166-1 . #38-11 . #1501 . D I- . S' x P'>Q = t'X'>(P l)f>Q

[#162-34-35] =VPl>2'Q

[#166-1] . =(2'Q)xP.Dr-.Prop

#166-45. h . (Q4-R) xP=(Qx P)$(R x P)

Dem.
h . #166-1 . D h . (Q x P)$(R x P) = VPl '>Q$2'P

J,
">R

[#162-31] = 2'(P i JQ4-P 4 5i2)

[#162-36] =2'Pp(Q$R)'

[#166-1] = (Q4J2)xP.I>r.Prop

The following propositions (#166'46—*472) exhibit the failure of the

distributive law in the form P x(Q$-R)*=(P x Q)$(P x R), and give certain

results for special cases. They are not referred to except in this number.

#16646. Y.(PvQ)lz^PlzvQ\z [#165-01 .#150-3]
*t •> •>

#166-461. h . s'C<(P vQ)l'>R = s'C'P l'>Rv s'C'Q I '>R
•t •} V

[#41-6. #165-12. #166-46]

#166-462. h . F'>(P v Q) J,
>R = F~>P y>Rv F'>Q I >R vMN {fax, y, zy w)

:

zRw :xeC'P.yeC'Q.v.xeC'Q.yeC'P:M= xlz.N=ylw}
Bern.

r- . #165-161 . D h . F'>(P \s Q)
J,

JR

= MN {fax, y, z,w).x,ye ClP vC'Q. zRw .M = x ],z.N-y \,w)

[#22-34] = MN {fax, y,z,w)'.x,yeC'P . v .x,yeC'Q.v .

xeC<P.y € ClQ.v.xeClQ.yeC<P:zRw.M=xlz.N=:ylw}
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[*11-41.*165'161] = F'>P y,R v F)Q I )R vMN {(gas, y, z, w) :

xeC'P.yeC'Q'.v.xeC'Q.yeC'P:

zRw ,M =xlz.N= ylw}.Dh. Prop

166463. h : C'P C C'Q . D . F>P i
m

>R G PJQ

|

>R [*165-161]

166 464. r- : O'P C <7'Q . D . PJ(P u Q) | *P = P'Q | >P = P^P i^P vFiQ \ \R
•r •> •} *J

Dem.
V . *166'463 . D h : Hp . D . F'>P

J,
>R G P>Q J,

~>R (1)

h. 33-262. Dh:Hp. 3. C'(Pc/Q) = C'Q.

[166'463] D . Jf!(P w Q) I '>R - P'Q
J,
JP (2)

I- . (1) . (2) . D h . Prop

16647. r- . P x (P <y Q) = (R x P) c; (P x Q) c; l/# {(ga;, y, z, w)

:

xeC'P.yeC'Q.v.xeC'Q.yeC'P: zRw .M=x ^z . N=y
J,
w}

[*166-461-462'1. #162-1]

166471. h : C'PC C'Q . . R x (Pu Q) = (R x P) c; (P x Q)

[*166-461-464]

166 472. h . P x (P £ Q) = (P x P) c; (P x Q) c; P x {C'P j Cf

Q)

Pe»i.

I-. #166-471. #35-85.3

V :.a ! Q. D : P x (P 4. Q) = (R x P)c/P x [Qc/(C'Pt C'Q)} :

[*166-471.*35-86]

D : a ! P . D . P x (P 4 Q) = (P x P) c; (P x Q) <y R x (C'P f C'Q) (1)

h.*16021. #166-13.3

r:Q = A.3.P4Q =P.PxQ = A.Px(C<PTC'Q) = A.
[25-24] 3 . P x (P 4 Q) = (P x P) c; (P x Q) a P x (C'P

J,
C'Q) (2)

Similarly

r:P =A.3.Px(P4Q) = (PxP)c/(PxQ)c/Px (C'P f C'Q) (3)

h . (1) . (2) . (3) . 3 h . Prop

The following propositions are concerned with the distributive law for the

addition of a single term to a relation. This law, in the form in which it holds,

is given in *166-53'531 (remembering Nr'P 1 y = Nr'P). #166'54'541 exhibit

the failure of the other form.

1665. h.(QvyP)xP = (QxP)c/(PxP)

Dem.

V . #1661 . D h . (Q c; P) x P = S'P 4 KQ w P)

[#16227] = 2'P
J
JQ o 2'P

J,
>R

[166-1] = (Q x P) o (P x P). 3 h . Prop
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*16651. h . (Q -f> y) x P = (Q x P) o (C'Q | *'y) * p [*166*5 . #161-1]

#166-511. h . (y «f Q) x P-(t'y t C'P) x P c; (Q x P)

#166-52. l-.P^(Q4*;y)«Pj,JQ-i*PJ,y [#1614. #165-2]

#166-521. h.P|i(y4f Q) = Piy4fP|JQ

#166-53. h:alQ.^.(Q^y)xP = (QxP)4i(P4y)

Item,

h. #162*43. #165-243. D h : Hp. D . 2<(P
J,
JQ4»PJ,y) = 2<P| JQ^PJ,*,

.

[#166-52] 3 -VP
fi(Q-t*y)

= X'P ^>Q$ P^ '

(1)

h. (1).*1 66-1. Dh. Prop

#166-531. h : a ! Q . D . (y^ Q) x P = (P |y) 4. (Q x P)

#166-54. h . Q x (P +> a) » (Q x P) vy Q x (C'P | t'#)

Dem.

h . #1 61 -1 . D h . Q x (P -f> «) = Q x {P c; (C'P | *'«)}

[#35-85.*166-471] = (Q x P) c; Q x (C'P f i'a>) Oh. Prop

#166-541. h.Qx(#«fP) = Qx (t'a; t C'P) v(QxP)



SECTION C

THE PRINCIPLE OF FIRST DIFFERENCES, AND THE
MULTIPLICATION AND EXPONENTIATION OF RELATIONS

Summary of Section C.

In the present section, we have to consider various forms of a principle

which is of the utmost utility in relation-arithmetic. This principle may be
called "the principle of first differences." It has been explained and used

by Hausdorff in brilliant articles*. The results there obtained by its use

give some measure of its importance in relation-arithmetic. It has, however,

other uses besides those that are concerned with the multiplication and

exponentiation of relation-numbers, as, for example, in the ordering of

segments and stretches in a series, or of any other set of classes which are

contained in the field of a given relation. In the present section, after the

first two numbers, we shall be concerned with its arithmetical uses, but other

uses will occur later.

The principle of first differences has various forms which, though analogous,

cannot, in the general case, be reduced to one common genus. The simplest

of these is the relation Pd , by which the sub-classes of C'P are ordered.

This is defined as follows. If a and ft are both contained in C'P, we say that

otPc\ft if there are terms belonging to a but not to ft such that no terms

belonging to ft and not to a precede them; i.e. if, after taking away the terms

(if any) which are common to a and
ft, there are terms left in a which do not

come after any of the terms left in ft, i.e. if g ! a — ft
— P"{ft — a). Thus the

definition is

P
cl
= Sift {a, ft e CVC'P . a I a - ft

- P"(ft - a)} Df.

It will be seen that this relation holds if ft C a. ft^ a. Thus it holds between

any existent member of CI*C'P and A, and between C'P and any member of

CI'C'P other than C'P itself. When P is a serial relation (which is the

important case for all the relations in this section), P& is transitive (P*ci G Pcl)

and asymmetrical (Pcl
f\ Pcl

= A), but not necessarily connected, i.e. there may

be two members of its field of which neither has the relation Pcl to the other.

This happens whenever P is not well-ordered ; but when P is well-ordered,

P
ci is connected, and therefore generates a series.

* " Untersnchnngen iiber Ordnungstypen," Berichte der mathematitch-physitchen Klasse der

Koniglich Sachsischen Gesellschaft der Wissenschaften zu Leipzig, Feb. 1906 and Feb. 1907. CL
also his "Grundziige einer Theorie der geordneten Mengen," Math. Annalen, 65 (1908).
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To illustrate the order generated by Pcl in a simple case, consider a series

of three terms, x, y, z. Let us for the moment write (x ^ y 4, z) for the

relation

xlywxlzKtylz, ie.(x ly)+>z t

and similarly we will write (x ^ y I z
J,
w) for x

J, y \ z -f» w, and so on. Then

assuming x^y .x^z .y^z,

(
x i y 14s (*'« u ^ u l

'z
) i (*'* u *'y)

I (i'w \j i'z) I i'x I (i'y v t'z) I i'y I i'z \ A.

In this series, a class containing x is always earlier than one not containing x;

and of two classes of which both or neither contain x, one containing y is

earlier than one not containing y\ and of two classes of which both or neither

contain xy and both or neither contain y, one containing z is earlier than one

not containing z. Thus our relation may be generated as follows: Begin with

(i'z) I A, which is (z
J, *)cl

. Add before these terms what results from adding

t'y to each; then we have (y ^z\\, which is

(i
l

y u i'z) i i'y i i
(z I A.

Now add at the beginning what results from adding i'x to each of the above

four classes, and we have (x^y \ z)ci* Thus generally, if x^eC'P,

(^P)cl =(i
f^);pc4?c,

Thus by adding one term to P, we double the number of terms in P0l ,

Again, if P and Q are two relations which have no common terms in their

fields, we shall have

aPcl/3 .y,8e Cl'C'Q . . (« u 7) (P 4. Q)cl (0 v 8)

and a e Cl'C'P . yQcl 8 . D . (a v y) (P * Q)cl (a u 8),

while conversely

«,/3 e Cl'C'P . y, S e Cl'C'Q . (a u 7) (P 4. Q)cl (^S).D:
aPcl/3.v.a = /3.y&iS.

Hence (a u y) (P £ Q)cl (/? u 8) . = . (y I a) (Pcl x Qcl) (8 J, £)

= ^«u 7)^Ci(Pcl xQcl)}(/eu8),

so that Nr'(P £ Q)cl
- Nr'P

0l
x Nr'Qcl .

These propositions illustrate the connection of P
cl with multiplication.

Besides P
cl , we often require (though not in this Part) the relation which

is the converse of (P)ol . This relation we call Ple , so that

P]c -Cnv'(P)cl Df.

This begins with A, and ends with GlP.
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Thus we shall have, for example,

(# 1 V i *)ic= A I t'x I i'y I (t'at u i
(

y)

I i'z I (t'x \j i'z) I (l
l

y yj i'z) I (l'x «-> i'y u i'z).

Here, if we start from A
J,

t'x, which is {x lx)lQt the series grows by adding

terms at the end : we add i
f
y to each member of A I i

l
x, and put the resulting

terms t'y, l'x u i
l

y after A and i
lx\ we then add i'z to each of the four terms

we already have, and add the resulting terms at the end; and so we can

proceed indefinitely.

The relation P
lc with its field limited arranges the segments of P in

ascending order of magnitude; if the class of segments is tr, P
lc £ o- generates

what may be called the natural order among the segments (c£ #212).

A variant of P
cl is afforded by the relation Pdf (#171), which is to hold

between two members a, # of C\ lClP when the first term of either which does

not belong to both belongs to «, i.e. the " first difference " belongs to a. This

relation implies PclJ and coincides with it if P is well-ordered; but when P is

not well-ordered, Pcl may hold between two classes which have no first point of

difference, e.g. (if P is "less than" among rationals) if a consists of rationals

between and 1 (both excluded) and /3 of rationals between 1 and 2 (both

excluded). The definition of Pdf is

Pu~&&{a,&eQV&P\faz).zea-pJp tzrsa-i tz = 'p tzrsp) Df.

The relation Pdf has the interesting property that its relation-number is

found by raising 2r to the power Nr'P (cf. #177). As the field of P^ is

Cl'C'P, this theorem is the ordinal analogue of Nc'Cl'a = 2Nc'° (#116'72).

A somewhat more complicated form of the relation of first differences

arises when we have a series of series. Let us suppose, to begin with, that

P is a serial relation whose field consists of mutually exclusive serial relations.

Thus in the accompanying figure, each j—

,

^

row represents a series, the generating

relations of these series being Q, ... R, ....

But the series themselves form a series,

which may be regarded as generated by

a relation P whose field consists of the re-
'—•*

lations Q, ... R, ... . (It might be thought

more natural to take (7'Q, C'R,.., as • © • • • LJ *

the field of P; but this would lead to confusion in the case when two or more

of the series have the same field.) Suppose we now wish to find a relation

which will order the multiplicative class of the fields of Q, R, ..., i.e. the class

Prod'(7"C"P. In the case illustrated in the figure, in which P generates a

well-ordered series, and all the members of ClP are serial, and P e Rela excl,

we might use ($'P)cl ; this relation, with its field limited to Prod'C"(7'P,

will then give us what we want. This relation will, in the case supposed, put
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a selected class /a before another selected class v if, where they first differ,

/t chooses an earlier term than v. But if the series P is not well-ordered—if

it is (say) of the type Cnv"<u (cf. #263)—there may be no first member of

the field of P where jm and v differ. This will happen, for example, if /i

consists of all the first terms, and v of all the second terms. Our ordering

relation can be so defined as to put /t before v in this case also, but if it is so

defined, the associative law of multiplication only holds if P is well-ordered.

For this reason, we define our ordering relation so that, in such a case, fi

comes neither before nor after v. Again, if P is not a Rel2 excl, a member of

a selected class may occur twice, once as the representative of C'Q, and once

as that of C'R, if C'Q and C'R have terms in common. We wish to distinguish

these two occurrences. Hence we proceed as follows: If /t and v are two

selected classes of C'C'P, let there be one or more members of C'P in which

the /^-representative precedes the ^-representative, and which are such that,

among all earlier* members of C'P, the /(.-representative is identical with the

^-representative.

But a further modification is desirable in order to meet the case in which

two or more of the members of C'P have the same field. Suppose, for example,

we had to deal with a series consisting of all the series that can be formed out

of a given set of terms: in this case, we should have to distinguish occurrences

of any given term not by the field, but by the generating relation. This re-

quires that we should make an .F-selection from C'P, not an e-selection from

C'C'P. Hence we take two members of Fa'C'P, sayM and N, and we arrange

them or their domains on the following principle: We put M before JV (or

D'M before D'N) if there is a relation Q in the field of P such that the

if-representative of Q, i.e. M'Q, has the relation Q to the iV-representative of

Q, and such that, if R is any earlier member of C'P, then M'R is identical

with N'R. That is, M precedes N if

(aQ) • (
M'Q) QWQ) RPQ .R^Q.iii.M'R- n<r.

The relation between M and N so defined has the properties required of

an arithmetical product; hence we put

n *P =MN [M, NeFSC'P:.

(aQ) = (WQ) QWQ) RPQ .R*Q-3r -M'R= x<r} bi

This relation is the ordinal analogue of €&'*. The ordinal analogue of

Prod'* is the corresponding relation of the domains ofM and N, i.e. D'lI'P;

hence we put

Yrod'P = I)'>Il'P Df.

In case P is a Rel2 excl, we have Nr'Prod'P = Nr'n*P. But when P is

not a Rel2 excl, Prod'P and II'P are in general not ordinally similar. We
can, however, always make a Rel2 excl by replacing the members x, y, etc. of

* Here Q is said to be earlier than B if Q has the relation P to R and is not identical with R.
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C'Q (where Q e C'P) by x I Q, y \,Q, etc. In this way, if x occurs twice in
(7'2'P, once as a member of C'Q, and once as a member of C'R, the two
occurrences are made to correspond to x I Q and x \, R respectively, and thus
we get a new relation which is a Rel2 excl.

If every member of C'P has a first term, JB f C'P will be the first term of
II 'P, and B"C'P will be the first term of Prod'P. If further there is a last

member of C'P, i.e. if E ! B'P, and if this last member has a second term, the
second member of II'P is obtained by taking this second term as the repre-

sentative of B'P, and leaving all the other representatives unchanged. In

any case, if B'P exists, the earliest successors of any member of II'P are

those obtained by only varying the representative in B'P. Thus, if B'P
exists, those members of II'P which have a given set of representatives in all

members of D'P form a consecutive stretch of the series, and this stretch is

like B'P. If B'P has an immediate predecessor, the stretches obtained by
varying only the representative in this predecessor are again consecutive, and

form a series like the said predecessor; and so on. This makes it plain why
II'P has the properties of a product.

As in the case of cardinals, the definition of exponentiation is derived from

that of multiplication. We put

P exp = Prod'P i JQ Df.
V

We put also P« = f>(P exp Q) Df.

This is an important relation, which deserves consideration apart from the

fact that it is useful in connection with exponentiation. It will be found

that

P« = MN {M
yN e {C'P t C'QyC'Q :.

(3^) : V e C'Q . (M'y) P (N'y) : xQy . x * y . D, .M'x - N'x).

This is a form of the principle of first differences which is appropriate

when two relations are concerned, instead of only one as in P0l . The principle,

in this case, is as follows: Let M, N be any two one-many relations which

relate part (or the whole) of C'P to the whole of C'Q. That is, each of the

two relations assigns a representative in C'P to every term of C'Q, but

different terms of C'Q may have the same representative. Then in travelling

along the series Q, there is to be, sooner or later, a term y whose if-repre-

sentative is earlier than its iV-representative, and terms which come earlier

than y in Q are all to have their Jlf-representatives identical with their

^-representatives.

The relation PQ may be subjected to various restrictions which give

important results. This subject has been treated by Hausdorff. For
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example, if P = x^y (where x^y), and Q is of the ordinal type which

Cantor calls a>, i.e. the type of progressions (generated by transitive rela-

tions), then if z is any member of C'Q, M'z is always either x or y. If we

impose the condition that M'z is to be x except for a finite number of values

of z, the resulting series is of the type of the rationals in order of magnitude,

i.e. the type called rj. Ifwe impose the condition that there are to be an infinite

number of values of z for which M'z = y t the resulting series is a continuum,

i,e. it is of the ordinal type called 6\ in this case, the contained "rational"

series consists of those M's for which there are only a finite number of z'&

having M*z~x. If we impose no limitation, Pc is of the type presented by

the real nimbers when decimals ending in 9 recurring are counted separately

from the terminating decimals having the same value.

We may generalize P°, instead of restricting it. To begin with, we may
allow our M and N to have only part of C'Q for their converse domain, and

remove the assumption that there is a first member of C'Q for which M'y
and N'y differ; this leads to the relation

&fr {M
,
jV~« (1 -> Cls) n m'(C'P t C'Q) :.

(ay) : (M'y)P (N'y) -.xQy.xe d'N . Ox . ( M'x) (P v I) (N'x)}.

Further, we may drop the restriction to one-many relations. It will be

observed that if (M'y)P (N'y), we have y (M\ P\N)y. Thus we may consider

the relation

MN [M,N e m'(G'P f C'Q) :

.

(<3.y):y(M\P\N)y:xQy.0x .x{M\(PuI)\N\x].

This relation has for its field all relations contained in C'P f C'Q. We may,

if we like, drop even this restriction, and consider

M[(ny)iyeC'Q.y(M\P\N)yixQy.Ox .x[M\(Pul\C'P)\N\xl

This represents the most general form of the principle of first differences

as applied to a couple of relations P and Q. In ordinal arithmetic, however,

PQ is sufficiently general for the uses we wish to make of it.

The formal laws, as far as they are true, can be proved without excessive

difficulty. We have

r : P =f Q . D . Nr'II<(P
J, Q) = Nr'(P x Q),

wThich connects the two kinds of multiplication;

h : P smor smor Q . D . Nr'II'P = Nr< TI'Q,

h : P € Rel2 excl .PGJ.O. Nr'WIUP = Nr'II'2'P,

which is one form of the associative law, of which another form is

r : P4= Q . . Nr'(II fP x WQ) = ~Nr'W(P$Q).
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Also

r : P, %'P e Rel2 excl .PC/.D .NrTrod'Prod*P= Nr'Prod'S'P = Nr'II'S'P,

which is the associative law for "Prod." We have

h : G'Q n C'R = A . D . Nr'(P° x P*) = Nr'P«**,

r-.Nr'(P<2)* = Nr'(P* x
«).

But we do not have in general

Nr'(P* x Q«) = Nr'(P x Q)
R

,

which obviously would require the commutative law for multiplication, and
therefore does not hold in general in spite of the fact that its cardinal

analogue does always hold.

As regards the connection with cardinals, we have

h : P € Rel 2 excl . D . C'Prod'P = Prod'C'C'P,

r : a ! Q . D . C<(P exp Q) = (C'P) exp (&Q),

and we have already had

\-.C'(PxQ) = C<PxC<Q.

Moreover the correlators by which similarity is established in cardinals

generally suffice to establish likeness in the analogous cases in relation-

arithmetic. Thus we have

f- : S e P smof Q .D . & f Gl'G'Q ePcl smof Qcl ,

h : P, Qe Rel3 excl . S[ C't'Q e

P

smof smof Q . D .

8€ T (7'Prod'Q e (Prod'P) smof (Prod'Q),

I- : 8 T
0'F eP smof P7

. T [ C'Q' e Q smof Q' . D

.

(5 1| ?) f C'iP' exp Q') € (P exp Q) smof (P' exp Q),

which are all closely analogous to propositions which were proved in cardinals.

The applications of the propositions of this section are almost wholly to

series, and it is convenient to imagine our relations to be serial. But the

hypothesis that they are serial is not necessary to the truth of any of the

propositions of the present section, and it is a remarkable fact that so many
of the formal laws of ordinal arithmetic hold for relations in general.

It should be observed that Tl'P is not always a series when P is a series

and all the relations in the field of P are series. A series (cf. *204) is a

relation P which is (1) contained in diversity, (2) transitive, (3) connected,

i.e. such that every term of the field of P has the relation P or the relation P
to every other term of the field. It is the third condition which may fail for

H'P, and which in fact does fail whenever P is not well-ordered. Thus

suppose, for the sake of simplicity, that P is of the type Cnv"<u, which

we will call a regression, i.e. the converse of a progression (cf. #263); and

suppose that the field of P consists entirely of couples. Take a selection M
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which chooses the first term of every odd couple, and the second term of

every even couple; and take another selection N which chooses the second

term of erery odd couple, and the first term of every even couple. Neither of

these two selections has the relation H fP to the other, for whatever term Q
of G'P we choose, if M is the selection which chooses the first term of Q,

there is an earlier term of C'P (namely the immediate predecessor of Q) in

which N chooses the first term while M chooses the second. Hence there is

no such Q as is required for M(XI tP)K; and a similar argument holds

against J?T(II'jP)i/. In such a case, II'P generates a number of different

series, and by suitable restrictions of the field, one of these series can be

extracted. Exactly similar remarks apply to P*.



*170. ON THE RELATION OF FIRST DIFFERENCES AMONG
THE SUB-CLASSES OF A GIVEN CLASS

Summary q/"#170.

The definition to be given in this number of the relation of first differences

among the sub-classes of a given class is by no means the only one possible,

in fact a different definition will be considered in #171. In the present

number, the definition we choose is this: a is said to precede ft according to

this definition when a has at least one member which neither belongs to ft

nor follows any term belonging to ft and not to a (a and ft being both sub-

classes of C'P). In other words, if we consider the two classes a — ft and

ft — a, there are members of a — ft which are not preceded by any members of

ft — a. Pictorially, we may conceive the relation as follows (P being supposed

serial): a and ft each pick out terms from C'P, and these terms have an
order conferred by P ; we suppose that the earlier terms selected by a and ft

are perhaps the same, but sooner or later, if a^ft, we must come to terms

which belong to one but not to the other. We assume that the earliest

terms of this sort belong to a, not to ft; in this case, a has to ft the relation

Pcl . That is, where a and ft begin to differ, it is terms of a that we come to,

not terms of ft. We do not assume that there is a first term which belongs

to « and not to ft, since this would introduce undesirable restrictions in case

P is not well-ordered.

A few of the propositions of the present number will be used in the next

number, which deals with a slightly different form of the relation of first

differences, but with this exception the propositions of this number will not

be referred to again until we come to series. Their chief use occurs in the

section on compact series, rational series, and continuous series (Part V,

Section F), especially in #274 and #276, which respectively establish the

existence of rational series (assuming the axiom of infinity) and the fact that

the cardinal number of terms in a continuous series is the same as the number

of classes contained in the field of a progression, i.e. 2No. The definitions and

a few of the simpler propositions are also used in connection with the series

of segments of a series, since, as explained above, the segments of a series P
are arranged in the series generated by Pl0 .

The propositions of this number which will be used in dealing with series

are the following:

#1701. h : aPclft . = .a,fte Cl'C'P . a ! a - ft - P"(ft - a)

#170101. h.P
lc = Cnv'(P)cl

#170102. h : aPloft . = .«,#€ Cl'C'P . a ! ft - a - P"(a - ft)

(These propositions merely embody the definitions.)
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#17011. I- : . «Pcl£ . = : a, /3 e Cl'OP : (gy) .yea-y8.Pfyn£Ca

This form is often more convenient than #1701.

*17016. r:aCOP./3Ca./34=a.D.«Pcl /3

I.e. every sub-class of C'P has the relation Pcl to every proper part of itself.

*17017. h.Pcl G/.Plc GJ

*1702. t-i.a
t @eC\ tClP'.fay).yea-0.1?<yna = P<yf\l3'.

,D.aP<A&

This proposition deals with the case where there is a definite first term y
which belongs to a and not to /S, and whose predecessors all belong to both

or neither.

#170*23. h :. a C OP . y e a - 0- P"(/9- a) . D :

—

»

—

>

y minp(a — /3) . = . P'y n a — P'y r\ $
This proposition is useful in case P is well-ordered, since then a — & must

have a minimum if it exists (a and being supposed sub-classes of C'P).

*170-31. h : £ C C'P . £ 4= C'P . = . (OP) Pcl /3

This follows from #17016, as does the following proposition:

*170-32. h : « C OP . a ! « . = . «P
clA

*170'35. h.Ad = A

#170*38. I- : 3 ! P . Z> . P'Pcl
= (7

fP . £<Cnv'Pcl
= A

*170'6. h : APlc# . = . £ C OP . a ! £
Besides the above, the following propositions should be noted

:

#17036. h . D'P
cl
= CI ex'OP . CPP0l

= Cl'OP - i'C'P

#170 37. h : a ! P . D . OPd = Cl'OP

#170 44. h : P smorQ . D . P
cl
smor Qcl

#17064. I- : a~ e OP . D . (* 4f P)d = (t'a* u)>Pcl £ Pcl

This proposition shows that every term added to P doubles the number

of terms in Pcl ; hence it is not surprising that Pcl (when P is well-ordered)

has a power of % for its relation-number (cf. #177).

#170-67. F:a!P.a!Q.OPnOQ = A.D.(P^Q)cl
= ^0(Pcl x(3cl )

whence

*170-69. r:a!P.a!Q.OPnOQ = A.D.(P4i(3)01 smor(Pcl xOol)

#170-01. Pcl
= a/3 {a, f3 e Cl'OP . 3 ! a -£ - P"(£ - a)} Df

*17002. Plc
= Cnv'(P)cl

Df
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*1701. r- : aPcl ft . = . a, ft e Cl'C'P . g ! a - ft - P"(/3 - a) [(*170«01)]

#170101. l-.P
lc
= Cnv'(P)

cl
[(*170-02)]

#170102. h : aPle£. s. a, /SeCl'^'P. a !j8- a- P"(a-£) [#170-1101]

Thus aP
lc ft means, roughly speaking, that ft — a goes on longer than

a -ft, just as aP
cl ft means that a-/? begins sooner. Thus if P is the

relation of earlier and later in time, and a and ft are the times when A and

B respectively are out of bed, "aPclft" will mean that A gets up earlier than

B, and "aP
lo ft" will mean that B goes to bed later than A.

*170103. H : y~e P"(/9 -a). = .P'ynftCa

Dern.

h . #37105 . D h :. y~eP"(ft - a) .
=

[#10-51] =

[#32-18] =

~(g«).a;e^-a.a!P^:

* e /3 . #Py . >,. . <r e a :

P'yn/3Ca:.DKProp

#17011. l-:.aP
cl/3.

= :a,/3eCl'C''P:(g?/).t/ea-/3.P'3fn/3Ca

[#170-1-103]

#170-12. r : aPcl /3 . = . a, ft e Cl'C'P .
ft

! « - (a n ft)
- P"{ft -(an ft))

[#170-1. #22-93]

#170-121. h:.aPcl ft.
= .a,fteC\'C<P.Rl(auft)-ft-P"{(a>Jft)-a}

[#1701. #22-9]

*170'13. r- : . aPcl ft . = : fap, a, y).p,a,y€ Cl'C'P .

pr\y= A .& n, <y = A . p r\ a = A .a = y v p . ft — yv a f Rip — Ptf
cr

Bern.

V . #24-24 . #2269 . Dh:
/
9no- = A.a = 7»J

/
3.£ = 7vo-.D.an/9=7 (1)

t-.#24'4. DI-:.a = 7up.D:/3n7 = A.= .a-7 = p (2)

l-.*24"4. Dl-:.y8 = 7uo-.D:o-n7= A. = .^-7 = o- (3>

h . (1) . (2) . (3) . Dl-:.pnirniA.«= 7W/>.i8 = 7U«r.3:

p ny = A. cr n 7 = A . = . a — (an ft) — p. ft
— (an ft) = cr .

[#22-93] ==.a-ft=p>ft-a = cr (4)

1-
. (1) . (4) . D h : (g^o, <r, y).p,a,ye Cl'C'P .pr\y=A.ar\y — A.pncr = A.

a = y\Jp.ft = y\Ja.^lp — P"cr . = .

(H/^j o". 7) P> °"> 7 e Cl'C'P .pr\(T = A.a. = y\Jp.ft = yyJ<T.

anft = y.a-ft = p.ft-a~o-.<&lp — P"cr

.

[#13-22] = .a-/3,/3-a,an/3eCl'C'P.g!a-/3-P"(/3-a).

[*60-43.#24-41] = .a,^e Cl'C'P . g ! a - £ - P"(ft - a)

.

[#170-1] = . aPcl ft : D 1- . Prop

R&WII 26
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#17014. h:.a,£eCl'C'PO:a-Pcl /3.
= .a-/3CP%S-a)

[#1701. #2455]

#170141. r- :. a./gcCl'C'P . 3 : a±Pl0 /3 . = .^-«CP"(a-^)
[#17014101]

#17015. r : «Pcl£. D . £ n 2>«P"(a - £) C a

Dem.

1- . #4012 .Dh:y € a-yS.D. £><P"(a - £) C P'y .

[*22'48] D . £ n jo'P* '(a - £) C £ n P'y

:

[#2244] D r : y e a - /3 . £ n P'y C a . D . /3 n p'P"(a - £) C a :

[*1011-23]D t- : (ay) .yea-j8.j8ftP«yCtt.D. /3np'P"(a-fi) C a (1)

K (1). #1701l.DK Prop

#17016. r:aC<7'P./3Ca./3 + «.3- aPcl /3

Pew.
h.*24-6.Dh:Hp.D.a!a-^ (1)

1- . #24-3 .Dh:Hp.D./3-a = A.

[#37-29] D.P"(/3-a) = A.

[#24101-26] D.a-/3-P"(/3-a) = a-£ (2)

l-.(l).(2).*l701.Dl-.Prop

#170161. h:«CC"P./3Ca./34=a.D. £Plc a

Pewt.

r . #170-16 . D h : Hp . D . a(P)ci/3.

[#170101] D . #Plc a : D h . Prop

#17017. \-.Pcl
QJ.Plc

dJ

Dem.
V . #170-1 . D r : aPcl£ . D . 3 ! a - £ .

[*24-55.*22-42] Z>.a±/3.

[#50-11] D . a J/3 : D K Prop

In order that Pcl
should be serial, we need further that it should be transitive

and connected. Pcl
is transitive if P is transitive and connected. But P

cl may
still not be connected : there may be many distinct families in its field, though

all of them must begin with C'P and end with A. For example, if P is a

regression, the class which takes every odd member does not have either of

the relations P
cl , Pol to the class which takes every even member. In order

that Pcl should be serial, we require that P should be not only serial, but

well-ordered, i.e. that every existent sub-class of C'P should have a first term.

When P is serial but not well-ordered, Poi will, however, generate various

series contained in it by imposing suitable limitations on the field.
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*170'2. h :. a, £eCl'C'P : (ay) .yea- ft. P'y n« = ?'y n /3 : D . aPcl /3

[*1701 1. #22-43]

#170-21. h : . a C C'P . D : y minP (a - £) . = . y e a - ft . P'y n a C /3

h.*93-110h:.HpO:yminP (a-/3). = .yea-£-P"(a-£).

[#170103] = . y e a - /9 .P'y n a C £ :. D h . Prop

*17022. h :. a C <7'P . y minP (a -£) . D : P'yn £C a . = . P'y n a =~P'ynft

Dew.

I* . *170'21 . #473 . D I- :. Hp . D : P'y n /3 C a . = . P'y n a C £ . P'y n £ C « .

[#2274] =. P'y n a =P'yn /3:.Dh. Prop

#17023. h :. a C (7'P .yea~ft~P"(ft - a) . D :

— —

»

y minp (a - /?) . = . P'y n«= P'y n ft

Pern.

h.#l70103'21.Dh:.HpD:

y minP (a- ft) . = .y €a- ft . P'y nj3C«. P'y n a C £

.

[*22-74.*4'73] = . y e a - £ . P'y n /3 C a . P'y n « = P'y n £ .

[#170103] = .yea-ft-P"(ft~a).P'yna = P'ynft (1)

h . (1) . *5-32 . D h . Prop

*170'3. h : a e Cl'C'P .jSCa-gla-yS-D. «Pcl /3 [#170-16]

#170-31. h : /3 C C"P . ft * C'P . = . (OP) Pcl /9 [*170'16]

*17032. I- : a C C'P . a ! a . = . aPclA [*170'3]

#17033. h : 3 ! P . = . (C'P)PclA

Dem.
h . #33-24 . *170'32 . D I- : 3 ! P . D . (C'P)PclA (1)

h . #170-1

.

D (- : (C"P)PclA . D . 3 ! (C'P)- A

.

[#33-24] 3.3!^ (2)

h . (1) . (2) . D h . Prop

#17034. h:a!P. = .3!P0l

Dem.
I- . #170-33 . D I- : 3 ! P . D - 3 ! P0l (1)

K*l701. Dh:3!P
cl .D.(aa !

/9).a,/3eCl'C"P. a !a-
/
S.

[#24-561] D . (a«) . a € Cl'C'P . 3 ! a

.

[#60-361] D.g!(7'P.

[#33-24] 3-3 !P (2)

t- . (1) . (2) . D t- . Prop

26—2
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#17035. I- . A cl
= A [#1 70-34 . Transp]

*17036. b . D'P
cl
= CI ex<C'P . d'Pcl

= CVC'P - i'C'P

Bern.

h . *170"32 . D h . CI ex'C'P C D'Pcl (1)

h . #1 70-31 . D h . CVC'P - i'C'P C d'Pcl (2)

K#170'l. D\-:a € 'D'Pcl .D.(^/3).a>
/3eCVC'P.^\a-/3.

[#24'561] D.aeCVC'P.^la (3)

K #170-1. D H:ae(I<Pcl . 3.(3/3). a,/3eCl'C'P. a !/?-«•

[#60*2] D.cte CVC'P . 3 ! C'P - a .

[*24-6] D.aeCVC'P-i'C'P (4)

h.(l).(2).(3).(4).DKProp

#17037. I- : 3 ! P . D . C'Pcl
= CVC'P [*l70-36]

#170371. h . C'Pel C CVC'P [#17037-35 . #33-241]

#170 38. b:%\P.D. B'Pcl = C'P . B'Cnv'Pci
= A [#17036]

The following propositions lead up to *170'44.

#170 4. f- : S e 1 - 1 . C'Q = d'S . I) . (S'>Q)el
= Se

'>Q
cl

Dem.

V . #1701 . *150-4 . #3711 . D h : a (&> Qcl)/3 . = .

(w> 8). % 86CVC'Q.« = S"r/ ./3 = S''8.Rlv-S-Q"(S-r/) (1)

K(l).Z>h:.Hp.3:

a (SJQ*)0 • = - (37, 5) . 7, & e CVd'S . a = S"y . j3 = S"8 .

Ziy-8-Q"(8-y).
[*37-43] = . (37, 8).y,8e CVd'S . a = S"y . /3 = S"8 .

^\S"{y-8-Q"(8~y)}.

[#71-381] = . (a7 , 8) . 7 , 8 € CVd'S . a = S"y . = S"8

.

R\S"v-S"8-S"Q"(8- y).

[#72-51 1.#71-38]= . (37, 8) . y, 8 e CVd'S . a = S"y . /? = S"8

.

3 ! S"y - #"S - S"Q"S"(/3 - a) .

[#13-193.#37'33]= . (fty,8) .y, Be CVd'S. a = S"y./3 = S"8 .

[#71-48.#37-23] == . a, /3 e CVD'S . a ! a - £ - (S'>Q)"(I3 - a)

.

[#150-23] = . a, £ e Cl'C'(SSQ) . 3 ! a - £ - (S>Q)"(/3 - a)

.

[*150-12.#170-1]= . a (S'>Q)cl/3 i.Dh. Prop
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#1 70-41. h.(S[ C'Qy>Q
cl
= &5Q cl [*1 50-95 . *170'371]

#170*42. h : 8 [ C'Q e 1 -> I . C'Q C d*S . D . (<S?Q)0l = &J&!

1-
. #150-82 . D b . (S>Q)cl

= {(#r C
f Q)JQ]

cI (1)

b
. (1) . *170-4 . D b : Hp . D . (SiQ)cl

= (8 f C'Q)e
'>Q

cl

[*170'41] =&?&,: Db. Prop

#170-43. b:*Sf[
k
(7^ e Psmbr$.D.^(k

C'
fQcl

eP
cl
^nor$

cl

b . #151*22 . #170-42 . 3b:Hp.D..Pcl = &K>ci (1)

b . #74-131 . #170-371 . D b : Hp . D .& [ C'Qcl e 1 -»

1

(2)

b . #37-231

.

3 b . C'Qcl C <P& (3)

b . (1) . (2) . (3) . #151-22 . D b . Prop

#170-44. b -.PsmorQ.D. Pernor Qcl [*1 70*43 . *151'2312]

#170-5. h .(%l x)
ol
= ( i <x) I A

Dew.
b . #170*36 . #55-15 .3b. D'O J, #)cl

= CI ex'i'x

[#60-37] = i-Va (1)

b . #170-36 . #55-15 Ob. <J<0 4 s)cl
= CI'l'x - iVa;

[#60-362] = i'A (2)

b. (1). (2). #55-16. Db. Prop

#17051. h:x^y. D .(x ly)cl
=(i (xv i'y) ^t'x w(i'x u i

i

y)]f i
tyK)(i ix w t'y) 4 A

vy l'x I i'y v i'x lAw i'y I A
Dem.

b . #55-13 . D b : Hp . D . x I y'x = A . x
J, y'y = i

(x (1)

b . #170-11 . #55-15 . D b :: Hp . D :. a (x I y)cl ft . = :

a, ft e C1'(V# u i'y) : (gsr) .zeoi- ft .x ly'zr\ ftQct

[#60
-

39] = : ct = l'x u i'y . v . a = l'x . v . a = t'y : ft C l'x v i'y

:

>

(gar) . s e a _ p . # | y'z r\ ft C a (2)
>

b . #51-235 . D b :: a = l'x u i'y ^ : - (H*) -sea-^.ar^y^n^Ca.^:
>• »

a? e a — /3 . x I y'x nftCa.v.yea — ft . x \, y
(
y r\ ft C a

:

[(1)] = :xect — ft.v.yect — ft.L'xr\ftCa:

[Hp.#22-43'58] =:xea- ft .v.yect-ft:

[*5r232.#4-73] = :tf~e/3.v.2/~e/3 (3)

b .#54-4.3 b::Hp.D z.ftCi'xvi'y.x^eft. = :ft = i'y.v.ft = A (4)

b . #54-4 . D b :: Hp . D :. £ C l'x u t'i/ . y~ € ft . = : ft = l'x . v . ft = A (5)
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K(2).(3).(4).(5).D

I- :: a = i'x w 1'y . D :. a (x j y)cl . s : 0= i'x . v . = i'y . v . /3 = A (6)

1- . (1) . (2) . D b ::. Hp . D :: a = i'x . D :. a (xly)0l . = : C t'x vL'y*x~e0.

[(4)] ss^^.v.M (7)

h.(l).(2).DH::Hp.D:.a«t'y.D:a(fl?ly)d /8.s.

0Ci'xv t'y ,yr>J€(3 . i'x r\ 0Ca .

[#51-211] = .0Ci'xvi'y.y~ € 0.x~e0.
[#54-4] =e./3 = A (8)

K(2).(6).(7).(8).DKProp

#170-52. 1- : as + y 3 (a? I y)ci = (i'x w i
l

y) I i'x £ fy I A
Dm.

h . #5515 .Db. C'{(i'x u i
l

y) [ t'x) f C
f{t^ j A) =

{(.*(£*# u t'y) u I't'x) f [t'l'y w i'A}

[#55*52] = (i'xv t'y)li'yv (t'xv i'y)l t'Avy i'x I t'yw i'x I A (1)

1- . (1) . #170-51 . #160-1 . D b . Prop

#170'6. b : APlc .
~ . C C'P . a ! £ [*170'32-101]

#170-601. H : «Plc (C'P) . = .aCC'P .a^G'JP [#170-31-101]

#170-61. bi.x^eC'P.&lP.xeanP.O:
a (* 4f P)

cl
. = . a {(I'* u)iPcl ) £.= .(«- t'fl?) Pcl (/3 - i<«)

This and the following propositions are lemmas for

x~e C'P . D . (x <f P)cl
= (i'x v)>Pcl 4- Pcl (#170-64).

Dem.

H . #161-111 . D b :: Hp . D :. y e . y (a? <f P) * . 3y . y e a : = :

y €0 . yPz .Dy .yea
m.ye0.y*=x.z€ C'P .Dy.yea:

[#13-191.#33-17] = :ye0-i'x.yPz.Dy .yea-L'xixe0.zeC'P.D.xea:
[Hp] = :y€0—i'x.yPz.Dv .yea — l'x (1)

b . #51-34 . D b : Hp . D . - /3 = - i
(x n - /3

.

[#22-481] D.a-0 = a-i'x-0
[#24-21] =a-i'#n<Va;u-/3)

[#22-86] = a- i'x -(0- i'x) (2)

h . #170-11 .#161-101-14 . D b :: Hp . D :. a (ar«f P)cl /9 . = :

ct,0eCY(C'Pvi'x): (35) : zect- :y€ .y(x+\- P)z .3z .yea:

[(1).(2)] =:«,
/
8eCl'(C'Pui'a?):(a5):«««-4'ar-()9-t'aj):ye/9-i'a!.yP<s.D

tf
.

yea— i'x

:

[#24-43] = : a - t<#, £ - i'# e Cl'C'P : (a«) . zea-i'x-(0- i'x)

.

—

>

P's n(/3- t'x) Ccl-i'x:
[#170-11] = : (a - i'x) Pcl (0 - t'at) :

[#51-221] = : a {(i'x u)SP
0l} # :0 K Prop
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*170'62. h:.x~eC'P m fclP mX ea-0.Di

a(x <f P) cl 0. s . a C t'x u C'P . C C'P
Bern.

V . #161-13 . D h :. Hp . D : #~ e (I<(#<f P) :

[#10-53] D:y€/3.y(x<±P)x.Dy
.yea:

[Hp] 1'.xeu-P\yeP.y($*\-P)x.'5y.yea.'.

[#170-11] 3 : «,£eCl'C"0c«f P) - 3 . a (a «f P) cl £ :

[#1 61-14.Hp.#24-49] D : a C i'a u C'P . C C'P . D . a (» «f P)cl £ (1)

b. #17011. #16114.3

h :. Hp . D :a(^P)CIi8. D . ct,/3 eCl'(i'x u C'P)

.

[#24-49.Hp] D.flCi^uC'P.^CC'P (2)

K(l).(2).3h.Prop

#170-63. h :. x^e(a u j3) .D : a(xM- P)ci /3 . = .aPci/3

Dem.

h. #24-49. #16114. Db:.Hp.D:a,/3eCl'C'(tf<f P). = .a,/3eCl'C'P (1)

h. #13-14. Dh::Hp.3:.
2/e /

S.3:y=)=a;:

[#161111] D:y(j;4fP) Jer. = .yP^ (2)

f- . #170-11 . D I- :: Hp . D :. a (x <f P)cl /3 . = :

a, £ e C\'(x <f P) : (a*) : z e a - /3 : y e£ . y (x <f P) z .Dy . y e a

:

[(1).(2)] = : «>i8eCl'CP:(a*):*ea-/8;y6/8.yP*.3I
,.yea:

[#170-11] = : aPcl £ :: D h . Prop

#170-64. V\x~eC'P. 3.(<B«f P)cl = (t'aru);Pcl^Pc i

Dem.

h.#l7061-62-63-37.D

h::Hp.a!P.D:.«(^<fP)cl/8. = :

xear\@.ci {(l'x w)'Pci; P.v.xea-fi.ae C'(l'oc u)'>Pcl . /3 e (7
fPcl . v .

^e (au/9). aPd/9 (1)

h. #150-4. Dh:a{(i'xvy>P}/3.D.xean/3 (2)

h. #150-22. #170-37. I) b :. Hp . D : aeC'(V# u);P
cl ./3eC'Pcl

. 3.xea-0 (3)

h. #170-1. D h :. Hp. D:aP
cl /3. D. #~e(an/3) (4)

h.(l).(2).(3).(4).Dh::Hp.a!PO:.
a (a «f P)cl /3 . = : a {(i'a? u)JPcl } £ . v . a e G\i {x u)JP

cl . £ e C'Pcl . v . aPcl /3 :

[#160-11] =:«{( t^u);Pcl
4iP

cl}^ (5)

h . #161-201 .Dt-:P = A.D.*<fP = A.
[#170-35] D . (ar «f P)cl

= A (6)

I- . #150-42 . #160-22 . #170'35 . D h : P = A . D . (t<# v)5Pcl 41 Pd = A (7)

h.(6).(7).DH:P = A.D.(^<f P)cl
= (t^u>'Pcl

4iP
cl (8)

b . (5) . (8) . D I- . Prop
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The following propositions are lemmas for #170*67, i.e.

a ! P a I Q . CP n (7'Q = A . D . (P$Q)d = sWKP* x Qd),

which itself leads to #170*69, t.e.

^ IP. a !^. CPn C"Q= A. D.(P4i(2)
cl smor(Pcl

x Qcl).

*170"65. h:.p(P$Q)
el <T. = :(Ra > l3 ) v,8):a,/3€Cl'C'P.%8eCl'C<Q.

>

p = au 7 . cr = /3 u 8: (ay) . y e (a W 7) — (/3 u 8) . P$. Q'y n (£ v S) C a u 7

Dew.

I- . #13-193 . D I- :. (aa,&7, S) : «, £ e Cl'C'P . 7, 8 e Cl'C'Q ,^ = Q u7.<r=/9y3:

(ay).2/e(a^7)-(^ u S).P^^n(^uS)Cau 7 :

= :(aa,/9,7,S):a,/8eCl^P. 7j S e Cl fC'^. /[
> = au7.(r = ^uS:

>

(32/) .yep-a.P$Q tyr\aCp^

[*60'45] =sp,creCl'((7'PuOQ):(ay).ye/o-«r.P4iQ'yn«rC/9:

[#16014] = r^eCl'C^P $Q) :(ny).y€p-<r.P$Q<yno-Q P :

[#170-11] =: p (P 41 Q)d ir :0 h . Prop

#170-651. I- :. (7'P n C'Q = A . a, £ e Cl'C'P . 7, 8 e Cl'C'Q . y e a . 3 :

y e (a u 7) - (/3 u S) . P 41 Q'y n (j8 w 5) C a w 7 . = . y e a - /3 . P'y n Q C a

i)em.

H . #24-402-313 , 3 h : Hp . D . (a u 7) - (£ u S) = (a - /3) u (7 - 8) (1)

h. #160-11. 3 HHp. 3. P£Q'y= P'y (2)

h. #24-402. Dh:.Hp.D:y~e7:

[(1)] _^
D:y € (au7)-(^ u S). = .yea-^ (3)

H . #33*15-161 . D r* .P'y C C'P .

[#24-402] I) r : Hp. I). P'y n£= A.

[(2)] D.P$Q<yn(/3v8) = P'yn/3. (4)

[#24-402] D . P£ Q'y n (/3 u S) n 7 = A (5)

I- . (4) . (5) . #24-49 . D I- :. Hp . D : P^Q'y n(/SvS)Cau 7 . = .

~P'yr\/3Ca (6)

K(3).(6).DI-.Prop

#170-652. r-:.CPn(7'Q = A.a
J
/8eCl'C?'P.7,SeCl'C f'Q.y€7.3:

ye(au7)-(/3uS).P£~Q'yn(/3vS)CaU7. = .

—
£ C a . y e 7 — 8. Q'y n S C 7

H . #24-402-313 . D h : Hp . D . (a u 7) - (0 u S) = (a - £) w (7 - 8) (1)

h. #24-402. Dr:Hp.D.y~ea (2)
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K(l).(2). Dh:.Hp.D:ye(«u 7)-(£vjfi).=s.ye 7 -$ (3)

h . #160-11 . D h : Hp . D . P~$Q<y = C'P ^Q'y .

[#22-621 .#24-402] D . P$Q<y n(^«) =^ (Q'y n S) (4)

H. #24-49. Z>h:.Hp.3:/3Cau 7 .=E./3Ca:

Q'yn8Cavy. = .Q (yn8C 7 (5)
h.(4).(5). Dh;.Hp.D:

P£Q'y n (£ y S) C a u 7 . = . /3 C a . Q'y n 8 C 7 (6)
h.(S).(6). I) K Prop

*170653. hr.C'PnC<Q = A.a,/3e CI*C'P .y,8e Cl'C'Q . D :.

Dem.

h . #170'11 . D H :: Hp . D :. (a u 7 ) (P$Q)* (£ u 8) . = :

(ay).ye(au 7)_^C8"S)--P?Q'y«(/8w«)c«w7:

[*170-651"652] = : (gy) .yea-/3.P'yn/3Ca:v:

c a

:

(ay) -yey-S-Q'ynBCpi
[#17011] ss : «Pcl fi.v.pCa. yQcl « :

[#17016] =:aPcl/e.v.aPcl ^. 7Qcl
S.v.« = ^. 7Qcl 5:

[*4'44] = : aPcl £ . v . a = /3 . 7Qcl S : : D b . Prop

#17066. H.a'.P.glQ. C'PnC'Q = A.D:

p(P$Q)o-.~.(na> /3,rf,8).(7 l a)(Pcl
xQ

c{)(8l&).p = avy.<r = f3u8

Dem.

h . #170-65-11 . D
1- : p (P.$Q)cl a.~. (a«, & 7, S) . a, /3 e Ci'C'P . 7 , 8 e Cl'C'Q .

p ==au 7 .<r==/3uS.(au 7)(P4:Q)cl
(/3v8) (1)

f-.(l).*170"653.Dh::Hp.D:.

p(P$QXi<r.^:(na,/3,y,8):cL,/3eC\<C<P.y,8eCl<C'Q.p = avy.cr = f3v8:

aPcl /3.v.a = £. 7Qcl S:

[#170-37] =:(aa
3^ 7) S):a )

^6(7'PCI
. 7,Se(7'Qcl .^ = aw 7 . (r = ^ W 5:

aPcl/8.v.a = ^. 7QCI
S:

[#166-112] = : (a«,^ 7,S).(7 |«)(Pcl xai)(U^)-P = au 7^ = ^ uS "

3 h . Prop

#17067. h-.%l P. r\Q. C'P nC'Q = A. D.(P$Q)a = s'>CKPcixQa)

Dem.

h . #17066 . #13*22 . D h :: Hp . D :. p (P£Q) ir . = :

(a*, /3,y,8,R,S).R = ylct.S=8lp.p = avv.<T = pv8.
R(Pcl xQcl)Sz
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[*5515.*53-11] = : (g«, 0, 7, 8, R, S) . R = 7 J,
a . 8 = S

J, /3

.

p - s<C'E . a- = s'C'S . R (PcI x Qcl) 5 :

[#166-111] = : (rR, S). P = s'C'R . <r = s'C'S . R (P
cl x Qcl

) S :

[#150-4] = : p {s'> C>(Pcl
xy<r::Dh. Prop

#17068. hg!P.a!Q.afPnC(Q-A.D.
(*| 0)f C'(Pcl x Qcl

)e(P4iQ)
cl
slnor (Pcl

x &i)
Z)em.

h . #55*15 . #5311 . D

h:. R = vl a.S= 8 1 /3 .s'C'R = s<C'S .D . a u 7 = £v,8 (1)

h . (1) . #24-48 . D

b::H.v.D:.a t
/3€C\<CtP.v,8eG\ tC<Q.R=ryl«.S=8l/3.s<C<R = s<C'S.D.

a=s/S-7 = S .

[#55-202] D.R = S (2)

1- . (2) . #16612 . #170-37 . D

h :. Hp . D : R,SeC'(Pcl x &,) . s<C'R = s<C'S .D.R = S (3)

h . (3) . #151-24 . #170-67 . D h . Prop

#170-69. h:a!P.a!^.C"PnC"Q = A.D.(P4iQ)cl
smor(Pcl

xQ
cl)

[#170-68]



#171. THE PRINCIPLE OF FIRST DIFFERENCES {continued)

Summary of #1 7 1

.

In this number, we shall consider a more restricted form of the principle

of first differences, which is applicable when there is a definite first member
of one class not belonging to the other class. In this case, if z is the first

differing member, the part of a which precedes z is to be the same as the

part of /3 which precedes z. If z belongs to a and not to /3, we put a before #

;

in the converse case, we put /3 before a. In case zPz, z itself is not to be

counted among its own predecessors; thus the predecessors of z are to be

P'z—i'z. Hence the relation in question will hold between two sub-classes

(a and ft) of C'P when there is a z such that
—

>

—

>

zea-$. P lz ~l'zr\a = P'z - t'z n 0,

or, what comes to the same thing (owing to z^> e/3),
— —

>

z e a - /3 . P'z n « - i'z = P'z n /3.

This relation between a and /3 we denote by "Pdf
/' where "df" stands for

"difference."

Thus our definition is

-Pdf =^ (a, /3 e Gl'C'P : (rz) .zea-pJP'zna-t'z^'zrxP} Df.

On the analogy of Plc , we put also

Pfd = Cnv<(P)df .

When P is well-ordered, Pdf and Pfd coincide respectively with P
cl
and

PIc . Their properties are closely analogous to those of Pcl and P
lc

. Thus

e.g. the following propositions remain true when Pdf is substituted for Pcl :

*170-17-35'36*37'38-44-5'51-52-64-67-68-69.

The only new propositions to be noted in this number are

#1712. b-.PdJ.D.

Pdr
= 0/S{a

J
/SeCL'CtfP:(a«). J8fe«-

j

9.P^no«P^n
i8}

#171-21. r.Pdf GPcl

and the following formulae suggesting an inductive identification of Pel
and

Pdf in cases to which such induction is applicable

:

*171'7. r : Pdf =Pcl , a~ e C'P . D . {x «f P)df = (x «f P)cl

#17171. H : C'Pn C<Q = A. Pdf = PCI . Qdf = Qcl . D .(P£Q)df = (P^^)ci

These propositions are however superseded (at a later stage) by the proof

that Pcl and Pdf coincide if P is well-ordered (#251*37).

The chief property of Pdf is that its relation-number is 2r to the power
Nr'P. This will be proved in #177 and #186'4.
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#17101. Pdf = aJ3 {a, /3e GVC lP : (gar) .Z€a- .~P'zn a- t'z = P lz ft 0} Df

#171-02. Pfd = Cnv'(P)df Df

#1711. b:.aPdt /3. = :a,/3eG\'C'P:(Rz).zeci-/3.~P<zncL-i'z = P'zn/3

[(#171-01)]

#171-101. h . Pfd = Cnv'(P)df [(#171-02)]

#171102. Yi.*PnP. = i<x,PeQ\ tCiPi{'&z).z€$-oi.
4

p iznp-i <z =
i!

P<znaL

[#171T101]

#17111. I- ::. aPdt 0. = :: a, /3eG\'C'P ::

(qz) :. zea — fil. yPz .y^z . Dy : yea. = . y e@ [#171
-

1]

#17112. h : . «Pdf .
= : a, e Cl'C'P

:

(gf) .zea-P.P'zna-i'z^P'znp-i'e [#171-1 . #51-222]

#17113. KC"Pdf C Cl'C'P [#171-1]

#17114. h : a C C'P . * e a . 3 . aPdf (a - i<z)

Dem.

K#51'21.DI-:Hp.D.se«-(a-i'.s).

[#13-15] D . * « a - (a - i's) . P'2 na-i^= P'z n(a - t'z) .

[#17112] D . aPdf (a - t'z) : D b . Prop

#17115. b :0CC<P.zeC<P-0. 1.(0 v t'z)

P

df

h. #51*16. Db:H.j>.D.ze(0vi,<z)-0 (1)

h . #51-21 1-22 . D H : Hp . 3 . (£ u t's) - t'* = .

[#22-481] O.P tzr\{0\jt tz)-i te^P ten0 (2)

h . (1) . (2) . #171-1 . D b . Prop

#171-16. h . D'Pdf = CI ex'

C

fP . d'Pdr = Cl'C'P - t'C'P

K #171-14. D b: a eCl ex'C'P. D. aeV'Pv (1)

h. #171-1. D 1- : a eD'Pdf .I>. a e CI ex'C'P (2)

b . (1) . (2) . 31-. D'Pdf
= CI ex'tf'P (3)

K#17115.3K:/3eCL'C'P. a !C'P-/S.:>./3e(I<Pdf :

[#24-6] 3l-:/3eCl'C'P-i'C'P.D./3e(rPdf (4)

h . #171-1 . D H : £ e d'Pdf , D . £ e Cl'C'P . a ! C'P - /3 .

[#24-6] D./3e Cl'C'P -t'C'P (5)

H . (4) . (5) . Db. d'Pdf = Cl'C'P - t'C'P (6)

K(3).(6). DKProp
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*17117. I- : a ! P . D . C'PAf
= CVC'P

Bern.

b . #171-16 . D b : aeCl'C'P . a + A . D . a eD'PdI (i)

h . #17116 .31-: a eCVC'P .a+C'P.D. a e<PPdf (2)

K(l).(2). Dh: a eCl^P.~(a = A.a-C"P).3.« e CtPdf :

[#13171] D b i a € CVC'P .C'P^A.D. aeC'PdI (3)

I- . (3) . #33-24 . D b . Prop

#17118. b : g ! P . D . 5<Pdf
= (7<P . B'Cnv'PdI = A

Dem.

1-
. #17116 . D b .ll'PdI = CI ex'(7'P - {CVC'P - l'C'P)

[#24-3] = CI ex'C'P n i'C'P (l)

I- . (1) . #60-35 . D h : g ! P . D .^Pdf = l'C'P (2)

t- . #17116 . D 1- . 5<Cnv<Pdf = CVC'P - l'C'P - CI ex'C'P

[#60-24] = t'A - t'C'P (3)

h . (3) . #33-24 . D I- : g ! P . D . i?'Cnv<Pdf = i'A (4)

K (2). (4). 3 K Prop

#17119. h:P = A.D.Pdf = A
Dem.

b . #60-33 . #171-16 . D 1- : Hp . D . D'Pdf = A .

[#33-241] D . Pdf = A : D h . Prop

#171-2. b:PGJ.D.Pdi= &tf{«,/3€CVC'P:(Rz).z€a-/3.P'z n cL = P'zn{3}

Dem.

b . #50*11 . #3219 . D b : Hp . D . ~P'z C - t'z .

[#22-621] D.~P'zna- t'z ^P'z n a (1)

1- . (1) . #171-1 .Db. Prop

#171-21. b.Pdf dPcl

Dem.
b. #1711. #22-43. D

f- :. aPdf /3 . D : «,£ e Cl'C'P : (&z) .

z

ea- /3 .*P's n /3 C a

:

[#17011] Z>:aP
cl
/3:.I>l-.Prop

#171-22. b.Pdf GJ [#17017 . #171-21]

#171-4. 1- : S e 1 - 1 . C'Q = <J<£ . D . (S'>Q)&f = Se'>Qdf [Proof as in *1704]

#171-41. 1- :(S[C'Qy>Qdf = S/>Qd[ [Proof as in *170'41]

#171-42. h : 8 T C'Q e 1- 1 . C'Q C d'S . D . (S'>Q)df = &
m

,Qdf [#171-4-41]

#171-43. b : S[ C'Q e P slnor Q.D.S^ C'Qdt e Pdf sHor Qdf

[Proof as in #170-43]
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*17144. h : P smor Q . D . Pdf smor Qdr [#171*43]

#171-5. h . (x I x)dt = (i'x) i A = (x I x)cl

, Bern.

(-.#171-1. #55-15. 3

h :. a (x I x)Ai . = :a,0e Cl't'd? : (g*) . z e a -0 . a? J, a?'* n a - fc'2 = x I x'z n /3 :

[#171-16] = : a e CI exV# . e C1*V# - fcV#

:

(32) . # e a — . # 4 xfz r\ a — t'z = x \, x'z n :

y

[*60'362'37] = : a = i'x . =A
:
(gs) m zei tx.xlnotzr\a-i tz~a!liD lzr\0:

[#13*195] =: a = i'x.0 = A. i'x n a — i'x= i'x n :

[#24-21-23] = :a=fc«>./3 = A.A = A:
[*13-15.*55-13] = : a {(t'x) | A} (1)

h. (1). #170-5. Dh. Prop

#171-51. h . (a? I y)d{ = (a? ! y)ol

Dem.

h . #171-1 . D h :. a (*4 y)df /3 . = : a,0 e C\<(i'x w i'y) :

>

(32) . z e a — y8 . x l y
fz n a — l'z = x ^ y'z n $ :

[#171-16] = : a e CI ex'(l'x v i'y) . e Cl'ty'a: v i'y) - t'^x v i'y) :

>

(qz) .zea — ,x I y'z r\ a — i'z = x I y'z r\ :

[#60'39] = :a=i'xui'y .v .a=i'x.v .a = i'y:0=i'x.v .0 = i'y.v.0= A:

(32) .zea — .x I y'z n a— l'z = x\
t
y'z n (1)

> >

h. #55-13 . Dh:.a? + y . D \x\y'y-i'x.x\
f
y'x = A: (2)

[#51-222] D:a = i'xvi'y.0 = i'x.D.

y e a ~ . x ], y
l
y r\ a - i'y = i'x — x I y

fy n .

[(1)1 O-aPdf

'

(3)

I- . (2) . D I- : x 4= y . a = i'x u i'y . = i'y . D .——

>

——>
a? e a — . x I y'x r\a~l'x= A~x ^ y'x n .

[(1)] 3.aPdf /3 (4)

h . (2) . D h : x 4=2/ . a- t'# w t'y . /3 = A . D .

> >

od e a — . x I y'x n a - l'x= A = x I y'x n .

[(1)] O.aPAf (5)

h . (2) . D (- : . a? 4= y . a = i'x : /3 = A . v . = i'y : D .

> ——

>

a? e a — . x ^ y'x r\a. — l'x — K = x]
f
y'x r\ .

l'«Pat0 (6)

h . (2) . #24-23 .D\-;x$y.a = i'y.0 = A.3.

y e a — . x ^ 2/*# n a — t';; = A = a; 4, #'3/ « /S (7)

H.(3).(4).(5).(6).(7).*l70-51.DI-:a+ y.D.(i4y)el G(ariy)df .

[#171-21] 3-(*|y)df-(*4y)oi (8)

h . (8) . #171-5 . D h . Prop
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*171'52. *-
: x*y -0 .(x ly)df

= (i<xv i'y) l(l'x)$(l'y)l A
[#171-51. #170-52]

#17164 I- : x~ e C'P . D . (w 4f P)df = (i<x v)iPdf£Pdf

The proof proceeds by the same stages as the proof of #170 -

64.

#171-67. r : a ! P . a ! Q . C'P n C'Q = A . D . (P$QU = «?Wdf x Qdf)

[Proof as in #170-67]

#171-68. r : a ! P . a I Q . C'P n C'Q = A . D

.

« I C r (Pdf x Qdf) e (P* QXif s"^or (Pdf x Qdf)

[Proof as in #170-68]

#171-69. h : a ! P . a ! Q . C'P n C'Q = A . D . (P£Q)df smor (Pdf x Qdf)

[#171-68]

#171-7. r :Pdf = Pcl .#~e C'P. D,(#4f P)df = 0<f P)cl

[#17 1-64. #170-64]

#171-71. I- : C'P nC<Q = A. Pdf = Pcl . Qdf = Qcl .D. (P$QU = (P$Q)«
[#170-67 . #171-67 . #160-21-22]



*172. THE PRODUCT OF THE RELATIONS OF A FIELD

Summary o/*172.

In this number we have to consider the form of product which is applicable

to any relation of relations, whether mutually exclusive or not. If our relation

were a Rel2 excl, we could take C'C'P, and order selected classes from C'C'P
by first differences. This would give us a relation whose field would be

Prod'C"C"P. But if any two fields overlap, this method fails. We might

substitute 6*'C"C'P for Prod'O'C'P, and order the members of eA'C"C'P

by first differences; but this method will not give what we want if two or

more members of GfP have the same field. In order to avoid any confusion

due to repetition, we must, if Q e C'P and x e C'Q, consider x in connection

with Q, not merely with C'Q. That is, the relations in the field of the

product of P must be such as concern, themselves with the ordered couple

x 4 Q, not merely with x. The simplest way of effecting this is to consider

F^'C'P. A member of Fa'C'P, say M, is a relation which picks out a

representative of Q from the field of every Q which is a member of C'P;

that is, whenever QeC'P, M'QeC'Q. Since we have M'Q, not M'C'Q, two

relations may have the same field and yet we can distinguish the occurrence

of a given term as the representative of the one from its occurrence as the

representative of the other. Thus no degree of overlapping will cause

confusion.

The relations which compose F&'C'P are to be ordered by first differences,

but in order to distinguish different occurrences of a given term, we must

give a slightly different form to the principle of first differences from that

employed in #170 or #171. The new form of the principle is as follows:

Consider two relations M and N which are members of F^'CP. Let Q be

a member of C'P in which M chooses a representative which precedes that

of N, i.e. in which {M'Q)Q{N'Q)\ and let all earlier relations than Q, i.e. all

relations R such that RPQ and R^Q, have M'R = N'R. Then we say that

M precedes N. This principle may also be stated as follows: We may
divide the members of C'P into four classes, not in general mutually exclusive,

namely

:

(1) those in which (M'Q)Q(JSr
'Q), i.e. in which the if-representative

precedes the -^-representative;

(2) those in which (tf'Q) Q (M'Q),

(3) those in which M'Q = N'Q,

(4) those in which no one of the above three relations of M'Q and N'Q
occurs.

Then we shall say that M precedes N if there is a member of class (1) whose

predecessors all belong to class (3).
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In case all the members of C'P are serial, the fourth of the above classes

is null, and the other three are mutually exclusive. If, further, P is well-

ordered, any two different members of JVO'P must be such that one precedes

the other in the above-defined order. Thus in this case the product of a series

of series is a series (cf. #251).

The definition of the product II'P is

n (P = MN {M,N e FSC'P :

.

OQ) WO) Q (N'Q) : RPQ .n*Q.1R .M<R = N'R] Df.

Owing to the complication of this definition, the proofs of propositions of the

present number are apt to be long.

Various other definitions might be adopted for IPP, but we have found

the above definition on the whole the best.

We might, for example, drop the condition R^Q in the definition; we
could then write our definition in the simpler form:

n<P =M {M,NeFSC'P : (aQ) . (WQ) Q(N'Q) . MtP<Q = N[P<Ql
which, with our definition, is only available when P QJ. But if we adopt

this simplification, we no longer have

W(PIP) = PIP (#172-2),

which is a very useful proposition, required in the proofs of #18313, #185*21

and other important propositions.

On the other hand, we might frame our definition on the analogy of Pcl

rather than, as above, on the analogy of Pdf . The definition would then be:

WP = MN{M,NeFSCtPi.

(aQ) = (M'Q) Q (WQ) : RPQ . 3B . (M'R) (R u /) (N'R)}.

This definition does not assume that there is a first relation Q for which

the ^/-representative precedes the ^-representative. Thus it might be

thought that it would give better results in cases where P is not well-ordered.

But in fact this is not the case. If P is not well-ordered, it may happen that

every Q for which (M'Q) Q (N'Q) is preceded by one for which (N'Q) Q (M'Q),

and vice versa; in this case, we shall have neither M (II'P) JV nor N(Xl'P) M.

Thus our suggested new definition does not secure that II *P shall be a series

whenever P and all the members of C'P are series, and therefore has no

substantial advantage over the simpler definition which we have adopted, and

has the disadvantage of greater complication.

In the present number, we first prove that II 'A = A (#17213) and that

AeC'P. D.I1'P = A (#17214), so that a product is null if any one of its

factors is null. We then proceed to propositions about CII'P, B'U'P, etc.

We have

#172162. h : a ! P . D . ~B'II<P = B^C'P .~B'Cnv<WP = j?A'Cnv"<7'P

r&w n 27
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#17217. h : a ! P . D . C'WP =FA'0'P
Hence we derive propositions as to the existence of II

fP. We have

#172181. f- :. Mult ax . D : A ~ € C*P . g ! P . = . a ! WP
Thus assuming the multiplicative axiom, a product which has factors none

of which are null is not null.

We then consider II<(P I P), and II<(P I Q) where P 4= Q. We have

#1722. b.Il<(P],P) =PlP
which is a useful proposition, and

#17223. h : P =j= Q . D . U'(P I Q) smorPxQ
which connects the two definitions of multiplication, showing that they lead

to equivalent results for any finite number of factors, i.e. whenever the

definition of #166 is applicable.

We next consider W(P-frZ) and W(P^-Q), proving

#172-32. h :Z~eC'P. D. W(P-fr Z) smorWP xZ
with a similar proposition for Z*± P(#172'321), and

#172-35. h : a ! P . a ! Q . C'P « C'Q = A . D . W(P$Q) smorWP x II'Q

which is a form of the associative law using both kinds of multiplication.

The kind which uses only II will be proved in #174.

We have next the proof (with its immediate consequences) that if

P and Q have double likeness, 11'PsmorII'Q. We prove

#172-43. h : T[ C'2'Q e Psmor smor Q . D .

(T\\Cnv'Ti)fClWQe(WP)sm-ai(WQ)

This proposition should be compared with #114-51, which is its cardinal

analogue. It will be seen that the correlator only differs by the substitution

of Tf for Tt . From #172*43 we obtain

#172-44. I- : P smor smor Q . D . II'P smor II <Q

whence

#172-45. h :. Mult ax . D : p, Q e Rel2 excl . a ! P smor Q n Rl'smor . D

.

II'Psmorll'Q
Other propositions about II'P will be given in #174.

#17201. WP =MN {M
y NeFSC'P :.

(aQ) = WQ) Q (N'Q) : RPQ .R$Q.DR .M<R = JV'R\ Df

#1721. \-::M(WP)N.~:.M,NeFA<CfPi.

(aQ) s (M'Q) Q (N'Q) : &pq .R*Q.0r.m<r = N'R
[(#172-01)]
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#17211. \- " M {Tl'P)N . = -.. M,N eFt'CP -..

(aQ) '• QeC'P. (M'Q) Q (N'Q) : RPQ . R 4= Q • Da - M'R = JST'R
Dem.

(- . #14*21 . D h : (M'Q)Q{N'Q) . D . E ! Jf'Q

.

[*3343] D.Qed'M (l)

h . (1) . #8014 . D I- :.MeFA'C'P . D : (M'Q)Q(N'Q) .O.QeC'P:
[#4-73] D:(Jf'Q)Q(tf'Q). = .QeC"P.(Jf*Q)G(tf<Q) (2)

h. (2). #1721. Df-. Prop

#17212. I- . C'Tl'P C ^a
fC"jP

Bern.

b . #1721 . D h : M (II'P) N.1.M,Ne Fa'C'P (1)

h . (1) . #33-352 . D h . Prop

#172*13. h.II'A = A

r . #172-11 . D h : ilf (II'P) i^ . D . a ! C'P

.

[#33-24] D . g ! P (1)

I- . (1) . Transp . D h : P = A . D . (if, A') . - {M(Tl<P)N\ : D (- . Prop

#17214. h : A e C'P . D . Xl'P = A
-Dem.

h. #33-24-5. Dh.]J*A = A.
[#33-41] Dr.A~e<P^.
[#80-21] D h : A e C'P . D . *VC"P =A .

[#17212.#33-24] D . II'P = A : D h . Prop

#172141. h :. a ! II'P . D : Q e C'P . DQ . a ! # [#17214 . Transp]
—>

The following propositions are concerned with C'H'P, B'Tl'P, etc.

*172-15-151-16-161 are lemmas for #172-162-17.

#17215. \-:MeFA tC'P.QeC tP.(M'Q)Qy.O.M(Il tF)iMt-i tQ'aylQ\

Bern.

h . #80-41 . D h : Hp . D . M [ - i'Q v y I Q e F^'C'P (1)

h . #35101 . #5513 . D

\~:.z{Mt-L'QvylQ}R. = :R^Q.zMR.v.R=*Q.2 = y (2)

h . (2) . #80-3 . D

\-:.Kip.D:R = Q.D.{Mt-i'QvylQ}<R = y:

R € C'P.R^Q.O.{Mf~i'Q^yiQ}'R = M'R:
[Hp] D : (M'Q) Q {if r - e'Q o y 4 Q)'Q

:

iJeC'P.i^Q.D.{i/r-t<Qoy|#}'i<: = If'lJ:

[#3317p : (M'Q) Q {M f - i'Q a y I Q)'Q

:

RPQ.R$Q.Ds .M'R = {Mt-i'QvylQ}'R:
[#1721.(1)] D : M (II'P) {M[ - i'Q a y J, Q] :. D r ..Prop

27—2
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#172151. hiNc FSC'P .QeC'P.yQ (N'Q) . D

.

{Wf-i<QvylQ}(Il<P)F [Proof as in #172-15]

*17216. I- -.MeFSC'P . ± ! M-B.D . Med'Il'P

Bern.

r . #72-93 . #80-14 . D (- : : Hp . D :.M G B . = : Q e C'P . DQ . (M'Q) BQ :.

faQ).QeCtP.~{(M*Q)BQ}:
(^.QeC'P.M'Qed'Q:
('S.Q,y).QeC<P.yQ(M<Q):

l/eCra'PiOKProp

[Transp] D :. g ! ilf^5 . =

[#93-1.#80-3] D

[#33-131] D
[#172-151] D

#172161. I" : MeFSG'P . a ! if-P| Cnv . D . if e D'lI'P

h . #7293 . #80*14 . D h :: Hp . D :.

M G 5| Cnv . = : Qe C'P . DQ . (i/'Q)(5| Cnv) Q :

[#71-7] 5:QjC»P.Dg.(Jf'Q)JBQ:.

D:.a!ilf-^£|Cnv.= (aQ).QeCP.~KJf'Q)j9Q}:
<aQ).QeCP.Jf<QeD<Q:
(V.Q.y).Q*CtP'(M<Q)Qyz
M eV'WPi'.Oh. Prop

[Transp]

[#93-1.#80-3]

[#33-13]

[#172-15]

The following proposition is important. It shows that, if GlP consists of

series, if any member of C'P has no first term, IPP has no first term, but if

every member of C'P has a first term, the selection of all these first terms is

the first term of II 'P.

#172162. r : a ! P . D . Ib'U'P = B^C'P

.

^Cny'II-P = B*<Cnv"C<P

Dem.

r . #93103 . #1721216 . Transp . D h .~B'T\'P C F^'C'P n Kl'B (1)

b . #72-93 . D
V:.MeFSC<P.MQB.QeC'P.'}i{M<Q)BQ:
[#931] D:(if'Q)eD'Q:

[*33'13] 3:(ay).(Jf'Q)Qy:
[#172-15] DiMeWWP (2)

r . (2) . #1011-23-35 . D h :. a ! P . D : M e *VC'P n Rl<5 . D . M e D'H'P (3)

h. #172-11.

[#93-1]

[#72-93]

Transp . -^

r.(l).(3).(4).

[#80-17]

Similarly

h . (5) . (6) . D h . Prop

D r : TV € d'WP . D . (a Q, M) . Q e C'P . (M'Q) Q (1S
T<Q)

.

D.(>&Q).QeC<P.~{(N<Q)BQ}.
D.~(NGB):

DhiMGB.O.M^ed'Il'P

D r : Hp. D . ifol'P = FSC'Pn Rl'B

^BSC'P

h : Hp. D ."5'Cnv'II'P = 54<Cnv"C<P

(4)

(5)

(6)
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The following proposition is much used.

#17217. h : a ! P . D . C'U'P = FSC'P
Bern.

h. #17216162. D

I- :.Hp . M e FSC'P .1 :r\ M-^B ,0 . Med'WP : M G B .D . M e~B<n<P -.

[#9311.*2555] D : M e C'U'P (1)

h. (1). #17212. Dh. Prop

#172171. \-:±lP.D.WWP = FA'C'P - £A'Cnv"C'P

.

a<n<P = P4<C"P-5A<C*P [#17216217]

#17218. h :. a ! P . D : a ! II'P . s . a ! .ft'C'P [#17217]

#172181. h :. Mult ax . D : A ~ e C'P . a ! P . = . a ! n fP

h . #88361 . #17218 . D (- :: Hp . D :. a ! P 3 : 3! n<P.= . C'P C (TP.

[#33-41 -5] 5 . C'P C §(a I C'Q)

.

[#33-241] s.A~eC'P (1)

i-. #17213. Dh.-ain'P.D.a^ (2)

h.(l).(2).Dh.Prop

#172182. r :: Mult ax . D :. A e C'P . v . P= A : = . IFP= A
[#172-181 . Transp]

#17219. h:a!n<P.D.s<<7'n<P = PrC'P [#172-17 . #80-42]

Note that we cannot proceed to 2'II'P, because PJII'Pis meaningless,

owing to the fact that the field of II {P consists of non-homogeneous relations.

#172191. I- . s'C'IFP G F\ C'P

Bern.

h . #172-19 . #2342 . D h : a I n'P . D . s'&TI'P GF[C<P (1)

(-.#41-21. Dh:II<P = A.D.WII<P = A.
[#2512] 0.i tOtTl iPC.F[CtP (2)

h . (1) . (2) . D h . Prop

#172-192. b . a'(F[l3) = j3-i'A

Bern.

V . #35-101 . D h : Qe<I<(F$/3) . = . (a«) .xFQ.Qep*
[#33-5] =.a!0'Q.Qe/3.
[#33*24] s.glQ.Qe/SOh.Prop

The following proposition is sometimes useful. (It is used in #173*22 .

#182-2 . #185-21.)
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*172'2. \-.W(PlP)~PiP
Bern.

(-.#17211. #5515.3
I- :: M {\V(P lP)]N.= u M.JSfeF^i'P :.

faQ)iQei'P.(MtQ)Q(NtQ)iR**P.R*Q.D lt .M<R-NtRi.

[#13195191] s :. M,NeF*<i'P :. (M'P)P(NtP) :.

[#85-51.#33-5] = :. M,Ne | P"<7'P . (M'P) P (N'P) :.

[#38*131] = u(weyy).x,yeG'P.M=x\,P.N=ylP.(M'P)P(N'P)i.
[#5513] ^:.(aa?,y).a?^eCfP.-¥=^ >tP.iV=y4P. ;rPy:.

[#150'11] s-.ifXiPiP)^!.
[#150-6] =:.M(P^P)N::Db .'Prop

The following propositions are concerned with the nature of the connection

between H f(P \, Q) and P x Q. The connection is such as might be desired,

except when P*=Q, in which case, as shown above, IF(P \ P) is like P, and

is therefore not like P x P.

#172-21. \-:P^Q.O.PxQ = f(QlPy>Tl<(PlQ)

Bern.

h. #17211. #5515.3
h::.Jf{n'(P4Q)}JV

r .s::M
I ^eJ?

,

4 '(t-Put-Q):.

faR) '.Rei'Pv i<Q . (M'R)R(N'R) :S(P IQ)R.S^R.0S . M'S^N'S::

[#51-235] = :: M,NeF*'(i'P u i'Q) ::

(if'P)P(^P):^(P4Q)P.5={=P.D5 .if'*Sf = iVf/S:.v:.

(M<Q)Q(N'Q) :S(PIQ)Q.S*Q.DS .M'S = N'S (1)

K(l).*5513.Dh::Hp.D:.

if [Xl'(Pl Q)}N. = : M,N<-FS{i (P v t'Q)

:

(M'P) P (N'P) . v . (M'Q) Q (N'Q) . M'P « #<P

:

[#80-9-91] = : (ga?,< y, y') : a;, a?' € C'P .y,y' e C'Q .

M= xlPvy\,Q*N=x' IPvy' IQi
xPx' . v . x = x . yQy' (2)

h . *150-72 .D \- : M = x I P u y X Q .2 . M'> (Q I P) = y I x

.

[#1501] D.-f(QlP) (M = yix (3)

1- . #150-4 . D h : R {f(Qi P)> W(P \ Q)}S. = .

(^M,N).M{W(PiQ)}N.R = f(QiP)'M.S = -f(QiPyN (4)

h.(2).(3).(4).Dr::Hp.D:.

* WQ i P)- n'(P 4 Q)J flr . s : (aJf, tf, «, rf, y, -/)

^a?'6C"P.y>2/'6C"Q.ilf = ^4Pa2/4Q.iV=^4Pc»y'4Q:
P^y^^-^— y'i^7

'

1 ^P^' . v . a?= a?'
. yQy'

:

[*i3i9] s:(a*,^ 2
y,^-«y«^'P-y.y'«^Q-^ = y4*-'Sf a-"y'4^:

a?Pa?' . v . a? = a;' . yQy'

:

[#166-111] = : R (P x Q) 8 :: D h . Prop
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*17222. \- : P^Q .D . {f(Q I P)}\- F*'(i'P v t'Q)€(P x Q)8mor W(P IQ)
Dem,

h. #80-9. #150-71. Dh-.Hp.D:

M eF*<(i'P v t'Q) .3 . M'>(Q IP) = (M'Q) l(M'P) (1)

I- . (1) . #1501 . D h :. Hp . D :

M,N e F*<(i<PvL'Q).-f(QlPyM=i(QlPyN.D.

(M'Q) i (M'P) = {N'Q) i (N'P) .

[#55202] D . M'P= N'P . M'Q = N'Q

.

[#80-91] D.if=xV (2)

h . (2) . #151-241 . #172-21-17 . D h . Prop

#172-23. I- : P + Q . D . IT-(P 4 Q) smor PxQ [#172*22]

The following propositions are lemmas for #172*32.

#172-3. h :. a ! P . Z^eG'P.O : M {I1-(P -&Z)}N. = .

(rS,T,u,v) .(u I S)(TL'P x Z)(v I T) . M = S v u I Z . N = Tvv I Z
Dem.

h . #80-66-44 . #161-14 . D h :. Hp . D : M e F^C\P -&Z). = .

(KS,u).S<:F*'C'P.ueC<Z.M = SuulZ (1)

1- . *55'13 . #33-14 . #4-73 .Dh::tf = £uu4£.D:.
xMQ.= :xSQ.Qe(I<S.v.x = u.Q=:Z (2)

h . (2) . #80-14 . D h :: Hp . Hp(2) .SeF*<C'P .ueC'Z.D :.

#ifQ. = :#£Q.QeC-P.v. # = «.$ = £:.

[#24-37] D:.QeC'P.D:xMQ. = .xSQ:.Q = Z.O:a;MQ. = . x = ux.

[*30-341.*80-3.*30-3] 3 z.QeC'P .0 . M'Q = S'Q:Q = Z.D . M'Q = u (3)

I- . (1) . #172-11 . #161-14 . #172*17 . D

h : :. Hp . D : : if {n-(P -b ^)} i^ . = :

.

(g£, r, u
t
v) :. £, Te FSC'P. it, v eC'Z. i¥= Sc» u\ Z. iV= 2*o u I Z\.

(RQ):Q€C lPuL'Z.(M'Q)Q(N-'Q):R(P-t>Z)Q.R$Q.OR .M'R=*N
(R:.

[#51-239.(3).#161-11]

= :.(RS)
T,u

)
v):.Si T€FSC<P.ui v6C tZ.M=SvulZ.tf=TvvlZ:.

(RQ):QeC'P.(S'Q)Q(T<Q):RPQ.R^Q.OB .S<R = T'R:vi

uZv :ReC'P.3B . 8<R = T'R :.

[#172-ll-l7.*71-35.*80-14]

= :.(RS,T)
u,v):.S

>
T€C'Tl'P.ut veC'Z.M= SvulZ.N = TvvlZ'.

S(Tl<P)T.v.S = T.uZv:.

[#166-112] = :. (g& T,u, v):(ul S)(WP xZ)(v],T).

M= Svu I Z.N=*TvvlZ::.3h. Prop
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#17231. h:KlP.Z~ € C<P.

W=MR{(<£S,u).SeFSC'P.u6C<Z.R = ulS,M = SvulZ}.D.
Wen<(P+>Z)£moi(II<PxZ)

Bern,

V . #172-3 . D r : Hp . D . n ((P -J* Z) = W> (WP x Z) (1)

h . #21-3:3 . D r :. Hp . D : MWR .M'WR.= .

(rS,S',u,u').S> S'6Fa<C'P.u,u'€C<Z.R = uIS=u XS\
M = SvulZ.M' = S'vu IZ.

[*55'202] D . (gS, S', w, it') . S, £' e*WP . u, u' e 0<# . 8 = S' . u = u' .

if = S w w 4 £ . M' = & vu i Z.

[#13-22-172] 3.M = M' (2)

h . #21*33 . D h :. Hp . D : MWR . MWR' . = .

(RS^'^^^.S^'eFSC'P.Utu'eC'Z.R^ulS.R'^u'lS'.
M = SuulZ.M~S'vu'lZ.

[#80-45-661] D . (g£, ST, «, u) . R = u I 8 . R' = u' | 8'

.

S =M[C tP.ulZ = M[i lZ.8' = M[C tP.u'XZ=M[C tP.

[#13172] D . (gS, 5', w, «') . # = u
J,

-S .
#' = tt' 1 5'

. 8 = 8'
. u | Z = u | Z

.

[#55-202] D.R = R' (3)

h.(2).(3).Dr:Hp.D. TFel->l (4)

h . #16612 . #113101 . #17217 . D h : Hp . Z> . a fW = C\WP x Z) (5)

h . (1) . (4) . (5) . #15111 . D K Prop

#172-32. h : Z~ e C'P . D . n ((P -+> Z) smor n<P x £

Pern.

h. #172-31. DhrHp.alP.D.n^P-^^smorn^PxZ (1)

h. #172-13. #161-2. Dh:~a!P.D.n f(P+>Z) = A (2)

h. #172*13. #166-13. Dh:~g!P.D.nTxZ=A (3)

h . (2) . (3) . #153-101 . h :~g ! P . D . IT(P -b#)smor IFP x £ (4)

r.(l).(4).Di-.Prop

#172 321. h : Z~e <7<P . D . IT(Z «f C rP) smor Z x WP
[Proof by similar stages to those in proof of #172*32]

The following proposition is a lemma for #172'34, which is required in

proving #172*35 (as well as #176*4).

#17233. r :: £ ! P . 3 ! Q . C'P n C'Q = A . D :.

M {W(P$ Q)}N. = : (%S, T, S', T') :S,8'€ FSC'P .T,T'e F^C'Q :

8 (Il'P) S'.v.8 = S'. T(WQ) T':M=8vT.M' =S'vT
Dem.

r . #80-66 . D r :. Hp . D :MeF*'(C<P w C'Q) . s

.

(nS,T).S6FSC'P.TeFA<C<Q.M = SvT (1)
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h . #80-661 . *35-7 . D h :. Hp .SeFA'G'P . TeFSC'Q .M = SvT.3:
Re C'P. 3. M'R ^S'R-.ReC'Q.I. M'R = T'R (2)

h . (1) . #172-11-17 . #160-14 . D b ::. Hp . D :: M {W(P$Q)} N . « :.

(g^T,^, T') :. $£' eF^'C'P . T, T'eFSC'Q .M=SuT.N=S'v T ;.

(rR)-.R€C<PvC<Q.{M<R)R(NcR):R'(P$Q)R.R*R'.'}b: .M<R'= ]ST<R'...

i(2).*160-ll] s :. (gS, T, S', T) :. S, S' e F^'C'P .T,T'e FSC'Q .

M = SvT.N=S'vT:.
(%R) : Re C'P. (S'R) R (S'<R) : RPR .R*R.3R> . S'R = S''R:v;

(#R) :ReC'Q. {T'R)R (T'R) : R'QR .R*R.1R,. T'R' = T"R :

ReC'P.DR .S'R = S"R:.

[#10-35] = :. (RS,T,S',T
f):.S,S'eFA<C<P.T,T'6FSC<Q.M=SvT.N=S'Kir:.

(rR) : Re C'P. (S'R) R (S"R) : R'PR .R$R.3R'. S'R' = S '

'R' ; v :

ReC'P^R .S'R = S''R:

(%R) :ReC'Q.{T'R)R{T"R) : R'QR .R^R.OR'. T'R = T'R i.

[*172-11.*71'35.*80-14]

= u(RSJ
T> S',r):.S>

S'6FL'C'P.T
) reFJC'Q.M = SvT,M' = S> or:.

S(WP) # . v . fif- # . T(WQ) T' ::. D b . Prop

#17234. h : a ! P
.
a ! Q . C'P r, C<£ = A . D .

(s|<7) e {n'(P^Q)} slSor {n<P x H'Q}

h. #172-33. #55-15. #53-13. D

h :: Hp . D :. M{W(P$Q)} N. = : (gS, T
s
£T, T', i^, R) :

S,S' e Fa'C'P . T,T e FSC'Q .R = TIS . R= T' IS' . M = s'C'R .N ^S'C'R

:

S(n'P)S'.v.S = S\T(U'Q)T':
[*1«6-11.*172'173 = : (a#> R) • R (H'P x Yl'Q] R.M = s'C'R . N^s'G'R :

[#150-4] =iM{s'>C
m>(WPxWQ)}N (1)

b . #113-153 . #17219 . #166-12 . D h : Hp. D

.

(s\C) fC"(n<P x U'Q)e 1 ->1 (2)

h. (1). (2). #1 51-231. Db. Prop

#172 35. h : a ! P. a ! Q • C'P n C'Q = A . D . n r(P4i0sraor n (P x U'Q

[#172-34]

The above proposition is important, being a form of the associative law.

The following propositions are extensions of #172'23. It is obvious that

they may be extended to any finite number of factors.

#172-36. b-.X^Y.X^Z.Y^Z.D. U'{(X ± Y) -+> Z) smorX x YxZ
Bern.

h. #172-32. Dh:Hp.D.n f ((Z
J,
F) -f» Z} smor n<(X

J,
Y)xZ (1)

I- . #172-23 . #166-23 . D h : Hp . D . W(X I Y) x'Z smorXxYxZ (2)

b . (1) . (2) . Z> h . Prop
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#172-361. V:X^Y.X^Z. Y^Z .0 .W\X <±(Y XZ)}amoYX x YxZ
[Proof as in #1 723 6]

*172'37. h -.X^Y.X^Z.X^ W. Y^Z. F+ W. Z$ W. D .

n<{(XJ, Y)$(ZX W)}smorXxYxZxW
Dem.

h. #17235

h : Hp . D . U'{(X | F)£(# X W)] amor n<(X | F) x U'{Z |F) (1)

h. #172-23. #166-23

h:Hp0.n<(Z4, F)xII<(#4 TF)smor(JT x F)x(^x>F) (2)

h . (1) . (2) . #166-42 Oh. Prop

The following propositions are concerned with the construction of a corre-

lator of H'P with U'Q when we are given a double correlator of P with Q.

If the double correlator is T or TfC'Z'Q, the correlator of WP with WQ is

{TWCnv'TttfCWQ.

*172'4. h : T e

P

smor smor QO . {T|| Cnv'Tf} T C*n<Q <• 1 - 1

Dew.

h. #164-15. D

h : HpO . Tf C'2'Q, ^f TC^ e 1 -> ! • Cr^ = <±'T*C'Q C d^f (1)

h . #41-43 . D h . s'D' (C"n<Q = D'i'C'Xl'Q .

[#172-191] D h . s'B"C'U'Q C D'(j<7 C'Q)

[*37401.#162-23] CC'Z'Q (2)

h . #41-44 . D h . ^a/'C'irQ= d's'C'Il'Q .

[#i72-i9i] d h . s<a«c'n<Q c a'(^r <?'£)

[#35-64] CC'Q (3)

h
. (1) . (2) . (3) . #74-773 % T\

t C't'Q, C'Q, C'WQ
_ ^ h _

#172-401. h : Te Psmor §raor # . NeFSC'Q .SeC'Q.D.

{(T\\ Cuv"rfyN}'T'>S= T'N'S
Dem.

h . #43-112 . #150-1 . D h . {(r|| Cnv'Tt)'tf} rr;#= (7| iV| Cnv'^'ZyS. (1)

I-. (1). #35-7 -48. #80-14. D
r : Hp . D . {(T|| Cnv-TtWM = {^i # I

Onv^I^f C"Q)}'(rtf C"Q)'S

[#34-41 .#72-601.#164-13] = (T\N)'S

[#34-41] = T'iraOh. Prop

#172*402. h : TePsmor §mof Q . tf, iTe Fa'C'Q .tie C'Q.M={T\\C™'T\) lN.
J»f ' = (T

|1
Cnv'TfyiV' . i? =MO :

N'S = N"S . = . M'R = if"# : (N'S) S (N''S) . = . (M'R) R {M''R)

Dem.

h . #172-401 O h : HpO . M'R = T'N'S . M"R = T'N"S (1)
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h . #162-22 . #4013 . D h : Hp . D . C'S C C'Z'Q .

[#164-1] D.C'tfCCFT (2)

h . #80-31 . #335 . D I- :.Hp . D : JV'S, tf'<£ € C'S :

[(2)] 3<.N<S,N"Se<I<T:

[#71-56] D : N<S=N"S . = . 2*iMSf =* Z*tf''#.

[(1)] =.M^ = if' t
i2 (3)

h . (1) . D h :. Hp . D : (if'i2) # (W'R) . = . (Z\ZWS) (M) (T'N"'S) .

[#150-41] = . (N'S)(r>T'>S)(N"S) .

[#151-252.(2)] =.(N'$)S(N'<S) (4)

h.(3).(4).Dh.Prop

#172403. f- : T € P mot smof Q . D . (T|| Cnv'Z^'iWQ

C

F^'C'P

Dem.

b . #80-14 . #35-48 . D
h :. Hp . D : NeF^'C'Q . D . T| JV| Cnv'Tf = T| N\ Gnv\Tf [ C'Q) .

[*80'14.*164\L3] D.(T|iV|Cnv'^t)el^Cl8 (1)

V . #37-32 . D h :. Hp . D iNeF^CQ . D . d'(T\N\ Cnv'Tf) = ^"^"a'T
[*37-27l.*164-l.#80-33.*162-23] - TY'WN
[#8014] = Tf'C'Q
[*164-1.#] 50-22] = C'P (2)

l-^SO'H.Dhi.Hp.Dr^ei^^Q.^Cri^lCnv^t)^.^.
{Sy^.xTy.yFS.R^m.StC'Q*

[*33'51.#371] D . (3S) . as e T"C'S . R=T'>S . SeC'Q

.

[*150-22.*164-1] D . x e C"#

:

[#33-51] Di^e^'C^.D.ri^iCnv^G.F (3)

h.(l).(2).(3).#80'14.D

I- : . Hp . D : N e FSC'Q .D.(T\N\ Cnv'Tf) e *VC"P (4>

K(4).*43'112.DKProp

#172-404. h :. Te Psmof smor Q . D : NeF±'C'Q .M=T\N\ Cnv'Tf . = •

M e i?VC"P . tf= T
|
if

j
Onv'F[

H . *1641 . #162-23 . #8033 . D h :. Hp . D : NeF^'C'Q . . V'NCd'T.

[#71'191.*50-63] O.T\T\N=N:

[#34-28] D : NeFSC'Q .M=T\ JV| Cnv'Tf . D . f
|
if- JV

|
Cnv'Tf

[#34-27] 3.T\M\Cnv'Tf = N\Cnv'TJr\Cnv<T-\- 0)
h. #80-14. Db'.NeFt'C'Q.SeQ'N.I.SeC'Q.
[#40-13] D . C'S C s'C'C'Q (2)

H . (2) . #1641 . D I- :. Hp . D : NeFSC'Q .SeWN. D . C'SCd'T (3)



428 RELATION-AKITHMETIC [PART IV

\-.(l).*150-1.3h:.UV .NeFA<C'Q.M = T\lSr \Cnv<Tf.3:

y(T\M\ Cnv'?f) Y . = .

(

a£, R) . yNS .R~T'>S .Y=T'>R.
[(3).*151-25] = . (a#, R) . yNS .R = T'>S.Y=S.

[#13-19-195] = .yNS (4)

h . (4) . #172-403 . D h :. Hp . D -.NeFSCQ .M= T \N\ Cnv'Tf . D .

MeF*<C<P.N=T\M\Cns tT\ (5>

h. (5)^-? . #164-21 . D h :. Hp . D : MeFSC'P . N= ?
|
if

|
Cnv'ff • 3

iV€jF4'C<^Jtf-T|tf|Cnv<rt (6)

h . (5) . (6) . D h . Prop

*17241. I- : T € P smor smor Q . D . ^'C'P = (T
||
Cnv (rt)"P4<C"£

h . #172-404 . #43112 . D h :. Hp . D : M e F^C'P . D .

? | M
|
Cnv'Tf e FSC'Q .M = {T\\ Cnv<Tf)'(T\ M

|
Cnv'Tj-) •

[*37-6] 3.M e (T\\Cnv'Tf)«FSC<Q (1)

h.(l). #172403. Dh. Prop

The following proposition is important, since it gives the required

correlator of II 'P with U (
Q.

*17242. h : TePsmorsmor Q.O. (T\\ Cnv'Tf^CWQe^WP) smof (WQ)

Dem.

r . #1641 . #15022 . D h :. Hp . D : C'P = Tf'C'Q :

[*37-6.*1501] D : R e C'P . = . (gS) .SeC<Q.R = r>S (1)

h . #164-1 . D h :. Hp . D : R'PR . = .

(

a£\ F) . U' = M' .R=r>Y. S'QY (2)

h. #151-31. #164-1. Dh::Hp.D:.5
)
F«(7'<2.JS«r»iS./2=2

,;r.D.fif=r:. (3)

fclS-lSPi.SeO'Q.i^M.DiFeO'Q.i^^F.EE.S^F (4)

h. (2). (4). #3317. D
h :. Hp . S € C'Q . R =*M . D : E'PE . = . (gS', F) . R' = M' . S = Y . S'Q Y

.

[#13-195] =.faS').R' = T>S'.S'QS (5)

h . #150-4 . #17211 . D h ::. Hp . D :: M {(T\\ Cnv'T+Y'WQ} M'. = :.

(a^, ^') =• ^ = (T\\ Cnv'Tf)<N. M' - <5T
|j
Cnv'Tf)^' . if, i¥" e FA'C'Q :.

[#172-41-402] = :. if,JT e

P

4'C"P :. (&S
tR) : SeC<Q.R=T'>S.(M<R)R(M"R):

S'QS .R'=r>S.S'$S. Dfl.,^ . if<#' = if'E' :

.

[*10*23.(3).(5)]= : . M,M' €Fa'C'P :^
£' 4 R . R'PR . D* . ikf'JR' = if"#' :

.

[(1).#172-11] =:.M(n<P)M' (6)

h . (6) . #43-302 . #172-4 . *15122 . D b . Prop
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The following proposition is a lemma for #172'43.

*172'421. h:8 = T[C t% tQ.8eP&m5rfmoTQ.^.
(S

||
Cnv'fff-) r FSC'Q = (T

||
Cnv'Ff) f FSC'Q

Dem.

r . #80-33 . #164-18 . #1 62-23 . D h :. Hp . NeFSC'Q . D . D'JV C C'2'Q

.

[#35-481] 1.T\N= S\N (1)

h. #80-14. Dh:. Hp. NeF^C'Q. Yed'N.O: YeC'Q:

[#150-33.#16222] D : X = T*Y . = . X = &Y

.

[#150-1] D : 7(Cnv (rt)X . = . Y(Cnv<8f)

X

(2)

h . (2) . #3314 . D h :. Hp .NeFSC'Q . D :

[#34-1] D : JV| Cnv'Tf = N\ Cnv'Sf (3)

h . (1) . (3) . D r :. Hp . D : N e FSC'Q ,D.T\N\ Cnv'Tf = S\N\ Cnv'Sf :

[#43-112.#3571] D : (T
||
Cnv'T-f) [ FSC'Q = (S

||
Cnv'Sf) |* FSC'Q :. D r . Prop

#172-43. hzTftf'S'QePslnOTslnorQ.D.
(T|! CnvTf) f C'n'Q e (IVP) smor (n<Q)

[#172-42-421]

#172-44. h : P smor smor Q . D . n<P smor n<Q [#17242]

#172-45. h : . Mult ax . D : P, Q e Rel2 excl . g ! P smor Q r» III'smor . D

.

n'Psmorll'Q
[#164-44 . #172-44]

The following proposition shows that if two relations have the same field,

and if the parts of them that are contained in diversity are the same, they

have the same product. Thus e.g. LT'Pp^ n rP^, in virtue of #91-541.

#172-5. h : C'P = C'Q . P A J= Q A J . . Yl'P = U <Q

Dem.
\-.*5011.3\-:.H.p.D:RPS.R$S^.RQS.R$S (1)

l-.(l). #172-11. Dh. Prop

The following proposition is used in #182-42.

#172-51. h . n (P = n'(P vy I [ C'P) [#172-5]

#172-52. h :.Qe<I<P.3Q . (<&R) . RPQ.R $Q:D. I1<P~X1<(P n J)

Dem.
h. #50-11. Dh:Hp.D.a (PCa f(PnJ) (1)

h . #33-14 . #93101 . Transp . D h : QPQ . D . Q~ e B'P :

[Transp.*33-13] D h : Q eB'P . D . (<&R) . QPR .R±Q.
[#50-11] D.Q € C«(PAJ) (2)

I- . (1) . (2) . #93103

.

D h : Hp . D . <7<P C C'{P A J")

.

[#33-265] D.C'P = C'(PnJ) (3)

h . (3) . #172-5 . D h . Prop

Thus we shall always have II'P= n*(P n J) unless there are members of

Q'P which have no referent except themselves.



#173. THE PRODUCT OF THE RELATIONS
OF A FIELD (continued)

Summary o/#173.

In this number, we shall consider the relation between the domains of

relations related by H'P, i.e. we shall consider Din 'P. This relation bears

to JJ'P a relation analogous to that which Prod'/e bears to e^'tc. We shall

denote it by " Prod'P." When P e Rel2 excl, Prod'P is like n fP, and is often

more convenient than n rP. When Pe Rel2 excl, Prod'P arranges the multi-

plicative class of C i(CiP by first differences, taking first differences to mean

that the earliest member Q of C'P for which finC'Q^v nC'Q has the

/i-member earlier than the v-member in the Q-series.

The properties of Prod'P all result immediately from those of n'P, and

offer no difficulty of any kind. The most important of them are:

#17314. h:a!P.CT<7<Pel->l.D. C'Prod'P= Prod'C'CP

I.e. if P is not null, and no two members of C'P have the same field,

then the field of Prod'P is the product of the fields of C'P. Observe that

C f C'P e 1 -> 1 if P e Rel2 excl.

#173*16. k- :Pe Rel2 excl. D.

Prod'P smor n'P . D [ CII'P e (Prod'P) smor (n'P)

#1732. r.Prod'A = A
*173'22. r- . Prod'(P | P) = t?P

*173-23. h : P 4= Q . D . Prod'(P | Q) = C>(P x Q)

*1733. h : T [ C'L'QeP smor smor Q.D.
T£ [ C'Fvod'Q e (Prod'P) slSoT (Prod'Q)

*173'31. h i P smor smor Q . Z> . Prod'P smor Prod'Q

#178-01. Prod'P = DJn'P Df

#173-1. r- . Prod'P = DJn (P [(#1 75'01)]

#173-11. h : ii (Prod'P) v . = . (<&M, N) . M (WP)N . /x = V'M . v = B'N
[*173'1 . #150-51]

#173-12. h . C'Prod'P C D"i<VC"P [#17212 . #150202]

#173121. f- . C'Prod'P = D"C"n'P [#1731 . #15022]

#173-13. h : a ! P . D . C'Prod'P = D'^'CP [#17217 . #173*121]
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#173*14. h : a I P . G [ C'P e 1 - 1 . D . O'Prod'P = Prod<C"C'P

Dem.
b . #8512 . #33*5 . D h : Hp . D . D"iWP = D"VC"C(P .

[*17313.*1151] D .0 <Prod <P = Prod <C"C <P:Dh.Prop

#17315. h : D T*WP e 1 - 1 . D . D f O'WP e (Prod'P) sSbT (WP)
[#178-1. #17212. #151*231]

#173151. b z D [ FSC'P e 1 -* 1 . D . Prod'P smor II<P [#17315]

#17316. h-PeRePexcl.D.

Prod'P sraor 11'P . D [ C'WP e (Prod'P) slSor (IFP)

h . #16312 . D H Hp . D . PfCPe Cis-> 1

.

[#81-21] D.Dfi?VC"Pel-*l (1)

h . (1) . #17315115 . D I- . Prop

#173161. b : P e Rel2 excl . g ! P . D . O'Prod'P = Prod (0"C"P
[#17314. #163143

#17317. h : a ! Prod'P . D . s'tf'Prod'P = C'S'P

b . #17313 . D b : Hp . D . s'O'Prod'P = s'D"iWP
[#41-43.#80-42] = D'Ff C'P
[#37*401.#16223] = C'VP Oh. Prop

*173'2. h . Prod'A = A [#17213 . #15042]

#173-21. h : g ! Prod'P . = . g ! II 'P [#1731 . #150*24 . #3312]

#173-22. b . Prod'(P 4 P) = OP
Dem.

b . #1 72-2 . D h . Prod'(P 4 P) = D^ PJP
[#150-4] = ££{(g#, y).xPy.tL = D'(* 4 P).*=D'(y 4 P))

[#55*16] = £ |(ga;} y) . xPy .
ti = i

ix.v^ l'y]

[#150-4] = i',p . D J- . Prop

#173*23. b : P 4= Q . D . Prod'(P 4 #) = CJ(P x Q)

Dem.

b . #172-21

.

D r : Hp . D . C>(P x Q) = CSftQ 4 P)SII'(P 4 Q) (1)

h . #8014 . #150*23 . D h : M e FSC'{Q 4 P) . D . C'M'>(Q 4 P) = D'tf

:

[*5515.*1501] D r : MeF*'C'(P 4 Q) . D . C"f(Q4 P)'M= D'itf

:

[#172-12] D h : if € O fn ((P 4 Q) . D . C'ftQ 4 P)'Af= D'Jif

:

[#150-35] D h . <7>'t(Q 4 P)'"n ((P 4Q) = D?n'(P 4 Q) (2)

h.(l). (2). #1731.31-. Prop
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#17324. I- : G'P n C'Q = A . D . G [ 0<(P x Q) e {Prod((P I Q)} slnor (P x Q)

.

Prod f(P4Q)sraorPxQ

f- . #166-12 . D I- . T <7'(P x Q) - G [ (G'P x <7<Q) (1)

h . (1) . #113148 . D f- : Hp . D . G f G'(P xQ)el^l (2)

K (2) . #173-23 . D h . Prop

#173-25. h:P e Rel2 excl . Z~eG'P . G'Z * C'S'P = A . D .

Prod f(P +> Z) amor (Prod'P x Z) , Prod'(#«f P) smor (Z x Prod'P)

Dent.

V . #163*451 . D h : Hp . D . P+ # e Rel2 excl

.

[#173-16] D . Prod'(P 4> £) smor II
f(P -+> £) .

[#172-32] D . Prod r(P +> Z)smor II'P x #.

[*173-16.#166-23] . Prod'(P +> Z) smor Prod'P x # (1)

Similarly h : Hp . D . Prod<(# «f P) smor # x Prod'P (2)

h.(l).(2).DH.Prop

#173-26. hiP^eReVexcl.RlP.RlQ.O'PnC'Q^A.C'Z'PryC'X'Q^A.D.

Prod ((P£Q) smor Prod'P x Prod'Q

Bern.

V . #163-441 . #173-16 . D r : Hp . D . Prod'(P£Q)smor W(P^Q) .

[#172-35] D. Prod f(P£Q)smorn fP x WQ.
[*173-16.#166-23] D . Prod'(P$Q) smor ProdT x Prod<Q : D h. Prop

#173-27. h:C<PnC<Q~A.C<PnG<R=*A.C<Qr>C'R = A.3.
Prod'{(P | Q) 4r» 22} smor PxQxR

Dem.

V. #173-25 . D h : Hp . 22 * P . 22 + Q . D .

Prod'{(P 1 £) -r> 22} smor {Prod<(P4 Q)} x 22

.

[*1 73-24] D . Prod({(P | Q) 4> 22| smor PxQxR (1

)

h . #33-241 .Dh:Hp.22 = P.D.22=A.P = A,

[*172-14.#166-13] Z> . n*{(P |Q)4»22} = A.PxQx22 = A.
[*173-l.#150-42] D . Prod( j(P 4,Q)-f*22} = A.PxQx22 = A.
[#153-101] D. Prod'{(P 4 Q)+>» R\ smor (P x Q x R) (2)

Similarly h : Hp. 22 = Q. D . Prod'{(PJ, Q)-r>22} smor(P x Q x 22) (3)

K(l).(2).(3).Dr.Prop

The following proposition gives a correlator of Prod'P and Prod'Q when
we are given a double correlator of P and Q.
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*173'3. r : T[ C"£ fQ e

P

smor smor Q . .

Te [ O'Prod'Q € (Prod'P) smor (Prod'Q)

Dem.

K #17311. #172-43. D

h :. Hp . D : /x (Prod'P) // . = . faN, N') .N(WQ)N' ,p = T>'(T
|
N

| Cnv'Tf)

.

tt=B'(T\N'\Cnv'T\) m

[#37-32-321] = . faN, N') . N (U (
Q) N'.fi= T"I><N . y! = T«T><N' .

[#173-11] = . (a*, v) .

v

(Prod'Q) v'.fi = T"v
.
ft' = T"v .

[#37101] = . ^(ZV'Prod'Q)/*' (1)

I- . #17317 . D h . s'O'Prod'Q C O'2'Q (2)

[#111-12] D h
.
(T^C'S^ep C"Prod'Q= Te \C'¥vo&

lQ (3)

h . (2) .(3) . #72-451 . D h : Hp . D . Te \ OTrod'Q € 1 -* 1 (4)

K (1) . (4) . #151-231 . D h . Prop

#173-31. b : P smor smor Q . D . Prod'P smor Prod'Q [*1 73'3]

*173'32. h si^T C'&Q e 1- 1 . C'2'Q C d'tf .
D . Prod<i2t ;Q = iWProd'Q

Dem.

b . #164-18 . D h : Hp . D . # f Ct'Q e (TJfSQ) smof smof Q .

[#173-3] D . i?e T C'Prod'Q € (Prod'lfrf-iQ) m™* (Prod'Q)

.

[#151-22] . Frod<Rf>Q = i^Prod'Q Oh. Prop

#173-33. b : D f C'S'Q e 1 -* 1 . D . Prod'Df^ = DJProd'Q #17332 -1

The above proposition is used in proving the associative law for " Prod
"

(#174-401).

R&w II 28



*174. THE ASSOCIATIVE LAW OF RELATIONAL
MULTIPLICATION

Summary o/*174.

In the present number, we have to prove the associative law for II and

for Prod, i.e. we have to prove (with a suitable hypothesis)

iraJPsmorll'S'P

and Prod'ProdJP smor Prod'2'P.

The first of these requires P e Rel2 excl and either P G J or

QPQ.DQ .C'QeOul;

the second requires not only this, but also %'P e Rel2 excl. When both P
and S'P are relations of mutually exclusive relations, we call P an arith-

metical relation, which we denote by " Rel3 arithm." Arithmetical relations

serve exactly analogous purposes to those served by arithmetical classes in

cardinal arithmetic.

The proof of the associative law for II consists in showing that, under

a suitable hypothesis, s|D (with its converse domain limited) is a correlator

of II'2'P and II<n>P(*l 74221 23). To prove this, we first prove

*17417. r : P e Rel2 excl . D . s"D"C"II'WP = C'II'2'P

and

*17419. r : Pe Rel2 excl . D . (s|D) [C'WWPe 1 -> 1

This gives what we may call the cardinal part of the proof, i.e. it shows that

(i|D)rCII'II»P is a cardinal correlator of the fields of II'2'P and ll'WP.
We then prove that ifM and N belong to the field of U'U'jP, they have the

relation fl'II'P when the relational sums of their domains have the relation

Xl'X'P. Here, in addition to the hypothesis Pe Rel2 excl, we require that if

any relation Q has the relation P to itself, then C'Q is not to have more than

one term. Thus we have

*174-215. r :. P e Rel2 excl : QPQ . De . C'Q e u 1 : D :

m (n<n;p)iv\ =
. m,NeFswcp . (s'D'i)(n'S'P)(s'D'jf)

The hypothesis QPQ . Q . C'Q eO u 1 is verified if P G J" (#174*21 6); thus

for most purposes it is more convenient to substitute the simpler hypothesis

PdJ for QPQ . Oq. C'QeO u 1. We shall, however, have occasion to use

the hypothesis QPQ . D . C'Q i>0 u 1 in *182-4243-431, where our P is a

relation whose field consists entirely of relations of the form Q \, Q, whose

fields are always unit classes, so that our P satisfies the above hypothesis even

if P is not contained in J.
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The proof of *1 74-215 (above) is effected by first proving

#174*2. I- : PeRela excl . Q eC'P .MeC'U'WP .S.M'WQ^s'D'MWQ

From *174*1719*215 we deduce

#174*221. I- :. P e Rel2 excl : QPQ . De . C'Q e u 1 : D .

ii<£<p = #D»n*n;p . (* |
d) rcwn;p e (ii'S'P) smor (n*ii;p)

whence we obtain the more convenient proposition

#17423. h: PeRel9 excl.PGJ.D.
II'S'P = vVm'W'P . (s

|
D) f C'll'WP e (II'2'P) smor (II'IUP)

Thus if the hypothesis of #174 -221 or of #174'23 holds, the associative law

holds forin (#174*241*25).

To prove the associative law for Prod, i.e.

P e Bel' arithm .PGJ.3. Prod'S'P smor Prod'ProdJP,

we observe that, since Il'Z'P = i'B'WU'fP (#174*23)

= siProd'II»P, by the definition of Prod,

we have (#174*41) Prod'S'P-^^Prod'IUP
= sJDeJProd'IIJP, by #4133,

= s>'Prod<I>Y>n'>P)
by #17333,

= siProd'ProdJP, by the definition of Prod.

Also s f O'Prod'ProdJP e 1 —>1, by #115*46. Hence the associative law

follows (#174-43). It will be observed that in this case the correlator is

simply s with its converse domain limited (#1 74*42).

As in the case of II,
UPQJ" is a stronger hypothesis than we really

need : what we need is QPQ . Dq . C'Q e u 1.

#17401.. Bel8 arithm = P(P,%'Pe Bel8 excl) Df

#174 12. I- : C \ C'P e 1 -» 1 . D . IIIP e Bel2 excl

Dem.

h . #150202 . D

t-:M,NeC'WP.KlC'MKC'N.-D.M,NeII"C<P.<z\C'Mr>C'y.
[#37-6] D . (aQ, E) . Q, R e C'P . M= II 'Q . N = Yi'R . a ! CM n CN

.

[#17212] D . (aQ, R) . Q,R « C'P . M= II'Q . N= Il'R . a IiWQ r. ^'C'JJ

.

[*80-82.Transp] D . (aQ, R) .Q,ReC'P .M=WQ . N =WR . C'Q = O'i? (1)

h. (1). #71-59. Dh:.Hp.D:
M

>
NeC'n>P.RlC'MnC<N.'D.('&Q,R).Q = R.M = n'Q.N=Il'R.

[*13-195-172] 3.M=N (2)

h. (2). #163-1l.Dh. Prop

#174-13. h : Pe Rel2 excl. D.IUPe Rel2 excl [#17412 . #163*14]

28—2
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#17416. h : a ! PO . C'Ii'Il'>P= FSll"C'P

Dem.
h . *150'25O h : HpO . a ! WP .

[#17217] D . C"n<n;P= FSC'WP
[#150-22] = FSW'C'P Oh. Prop

#174161. h : a ! P . P e Rel2 excl . D .

C'Prod'lUP = D"C"n*n;P = ProdWC"C"P
Pern.

h. #173121. Dh.C"Prod in^P = D"C"Il in;p (1)

h . #178161

.

D h : HpO . C'Prod<WP= Pro&'CC'WP
[#150 22] =¥rod'C"Il"C<P (2)

h. #17217. 0\-:A~€C'P.O.C"II"C'P = F±"C"C'P (3)

h . #172-14 . #173-21 . D h : A e C'P . D . C'ProdTI5P = A (4)

h . #80-26 . #83-1 1 . D h : A e C'P . D . ?rod'F*"C"C'P = A (5)

h . (2) . (3)O h : Hp . A~e C'P . D . C'Prod'IUP- Vro&'FS'C'C'P (6)

h . (4) . (5)O h : Hp . A e C'P . D . C'Prod'IUP = Prod'*V'<7"C"P (7)

h.(l).(6).(7)Oh.Prop

#174162. h : a ! P . P e Rel2 excl . D . s"D"C"n jn;P = CII'S'P = F±'C'2'P

Dem.

h .#174-161 .#115-1 Oh: Hp0.s"D"C 4n'nJP = s"D"eA^"C"C"P
[#85-27.#163'16] =F*'s'C"C'P

[#162-22] =FA tC i%'P (1)

h . (1) . #17217 O h : Hp . a ! 2<PO . s"T>"C'Il'WP = C'U'VP (2)

h . #16245 . D h : Hp . X'P = AO . P = A J, A .

[#172-13.*150-71] D . WP = A i A

.

[#i72i4] D.n*n;p=A.
[#33 241] D.s"D"C"II<nJP = A (3)

h .#17213 . #33*241 O h : 2<P = AO . C tW%'P=A (4)

h . (3) . (4) Oh : Hp . 2<P = A O . *"D"G'n*n5P= C'U'X'P (5)

h . (1) . (2) . (5)O h . Prop

#17417. h : P e Rel2 excl . D . s'WC'II'WP = C'Wl'P
Dem.

h . #150-42 . #17213O h : P = AO . s"D"C"n'inP = A (1)

h. #162 4. #172-13. Dh:P = AO.C"n'2'P = A (2)

h.(l). (2). #174-162 Oh. Prop

#17418. h : P e Rel2 exclO . D f C'll'WP e 1 -> 1

Dem.

h . #17412 . #163-1412 O h : HpO . F[C'WP e Cls -* 1

.

[#81'21] D-DfiWIUPel-frl.
[#17212] D . D |* C'WWPe !- 1 Oh. Prop
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*17419. t- : P e Rela excl . D . (s
|
D) f C

lU 'll>P e 1 -> 1

Dem.

(-.#1631. #3514. Dhr.Hp.D:
Q,ReC'P.QJF R.OQ>R .F[C'QnF[C'R = A.

[#172-191] DQ , R . s'C'WQ n s'C'U'M = A (1)

h . (1) . #33-5 . #85-31 ' ^ r . D
P, a

H :. Hp . D : M, N e F^'W'C'P . s'D'if = s'D'i^ . D . M = iV

:

[*172-12.*150'22] D : ikf^e C'n'nJP . s'D'if= s'D'tf . D . if= JV:. D I-
. Prop

#174-191. h : P e Rel 2 excl . D . s f C"Prod'n»P e 1- 1

f- . #17419 . D h :. Hp . D : M, N e Cn 'II ">P . s'T>'M = s'T>'N . . if= JV

.

[*30-37] D.D'Jlf«D'JV:

[#37-63] D : ^, y € D"C"n<n;P . i^ = s'v . D . /* = v

:

[#173-121] D : /a, i; e C"Prod'Il»P . s'/j, = s'u . . /* = v :. D h . Prop

#1742. t- : PeRel2 excl .QeC'P. MeC'U<WP . D . M'WQ = (i'D'f) f C'Q

Dem.

f- . #17212 . *150'22 . D h : Hp . D . M e Fs'WC'P .

[#80-31.*33-5] D . if'n'Q e CII'Q

.

[#17212] . M'WQ e F^C'Q

.

[#80-14] D.d'if<n'Q = C"Q

K(l). #80*3 .#41-13 . D r : Hp . D . M'WQ Gs'D'if

f . #17417 . D h : Hp . D . s'D'if e C<n<£'P

.

[#17212.#8014] D.s'B'M el->Cls
h

.
(3) . (4) . #72-92 . D I- : Hp . D . M'WQ = (s'D'M) f (I'M'WQ

[(2)] = (s'D'if) fC

Q

: D h . Prop

#174-21. b :: PeRel2 excl .QeC'P. M,NeC'WWP . :.

M'WQ = N'WQ. = :ReC'Q.OR . (s'B'MyR = (s'D<tf)<U

Dem.

^ . #71-35 . #8014 . #17212 . D h :: Hp . D :.

(1)

(2)

(3)

(4)

M'WQ = N'WQ.==
[#174-2] =

[#35-7] =

:ReC'Q.0R . (M'WQ)'R = (N'WQ)'R :

:ReC<Q.3B . {(s'D'M) [ C'Q)'R = {(s'D'JV) f
<7'Q}'-R :

:ReC'Q.OR . (s'D'M)'R = (s'D'if)'^ :: D h . Prop

#174-211. t- ::.PeRel2 excl.D::ilf(n'n;P)iV. = :.

if, NeFs'W'C'P :. (g& S):QeC'P.SeC'Q. {(M'WQ) (S} S {(N'WQ)'S} :

rQ£ , ^4= 5 . Dy . (ifn rQ)T= (N'WQyT -.

RPQ.R^Q.TeC'R.OR<T .(M'U'RyT = (N'U'R)'T

Dem.

f . #172-11 . #150-22 . D h :: if (n'nJP) IT . = :.

if,^ e ^'n"C"P :. (gQ) : QeC'P. (M'tt'Q) (WQ) (N'WQ) :

RPQ.WR^Il'Q.DR .M'Il'R = N'U'R (1)
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h . #8031 . D h :. M eFs'U"C'P. D : QeC'P. 3Q .M'WQeCWQ. (2)

[*33-24] DQ .a!n*Q. (3)

[172-19] De.s'C'n'Q^i^^C'Q (4>

h . (3) . (4) . D h : Jf e i?VII"C<P . Q, E e C'P . n 'Q = II'JJ . D .

Ffcq= Pfcr . a i wq . a t wr .

[#172-141-192] 1.C'Q = C'R (5)

h . (5) . 16314 . 3 I- : : Hp . D :. M e F^'WC'P .Q,ReC'P.O:
U tQ = n tR.O.Q = R:

[30-37.Transp] D : WQ^WR. = . Q^R (6)

h . *71'35 . (2) . #172-12 . 8014 . D
h :: M, Ne Fa'W'C'P .ReC'P.O:.

M'U tR = N'U tR. = :TeC'R.OT .(M'n'RyT=(N'WRyT (7>

h .#17211 . D h ::(lf<n<Q)(n<Q)(j\r<n'Q) . = •..M'U'Q,N'U'QeFik'C
tQ :.

(HiSf) xSeC'Q. {(M'WQyS} S {(N'WQ)'S} :

TQ^Sf . T^ S . T . (MtWQ)'T= {N'WQ)'T (8)

h.(l).(2).(6).(7).(8).Dh.Prop

#174-212. I- ::. PeRel2 excl . D :: M(U {WP) N. = :.

M, N e F^W'C'P :. (ag, S):QeC'P . SeC'Q . {(s'D'MyS} S {(s'D'NyS] :

PPQ .R^Q.TeC'R. 3RiT .(s'D'M)'T= (s'~D'N)'T

[#174-2-21 1. #35-7]

#174-213. h :. i2PQ .SeC'Q. TeC'R .S^T. Oq,r, s,t- R$Q m
> PeRel'excl O:

RPQ.SeC'Q.TeC'R.R^Q. = '.RPQ. SeC'Q. TeC'R. S^-T
Dem.

K #163-1. Dh :.B.V .0:RPQ.R^Q. SeC'Q. TeC'R. O.S^T (1>

K#iri. 0\-:.Kp.D:RPQ. SeC'Q. TeC'R. S^T.O.R^Q (2)

I- . (1) . (2) . D t- . Prop

#174-214. hr.Pe Rel 2 excl : QPQ . Q . C'Q e u 1 : D :.

h . #52-41 . D I- :. Hp . D : S, Te C'Q . S$ T. ?.~(QPQ)

:

[13-12.Transp] D : RPQ .S eC'Q .TeC'R. S^T.O .Q^R (1>

K (1). #174-213. D

l-nHp.^^.RPQ.^eC'Q.TeC'P.P + Q.^.PPQ.^eC^.TeC^.^T7
:.

[*4-37.#ll-341]D:.

(aQ). QeC'P. TQS.T^S.v.(nQ,R).RPQ.SeC'Q.TeC'R.R$Qi = :

(•&Q).QeC'P.TQS.T$S.}/.(nQ,R). RPQ. SeC'Q. TeC'R. T^S:
[#16213] = :T(X'P)S.T$S (2)

K (2). #33-17. Dh. Prop
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#174215. h :. P e Rel2 excl : QPQ . DQ . C'Q

e

u 1 : D :

M (n*n»P) F. = .M,Ne FJW'C'P . (s'V'M) (Il'X'P) (s'D'N)
Dem.

h . *174-212214 . D h ::. Hp . D :: M(U'WP)N . = :.

M, Ne F^W'C'P :. (aQ, S):Q€C'P . SeC'Q . {(s'D'if)<£} 5 {(i1)'tf)'£}

:

T(X'P)S. r+/S.Dr .(s'D'J/)'r=*(i'D'J\T)'r (1)

h . #17213 . *152'42 . D h i M (II'IUP) N.D.rIP.
[*172-162] 0.s'D'M,i'D'NeF^C'2'P (2)

h.*lG2-22.Dhi(RQ).QeC'P.SeC'Q.= .SeC'%'P (3)

b . (1) . (2) . (3) . #172*11 . D h . Prop

#174-216. h :. P G J . D : QPQ . D . C'Q e u 1

Dem.
b .#50-24 . D I- :. Hp . D : (Q) .-(QPQ)

:

[#1053] D : QPQ . De . C'Q e u 1 :. D h . Prop

#174 22. I- :. P e Rel 2 excl. PG./.D:
jit(n<n;p) n . = . m -

,^ e *vn"c<p . (s<D<if) (n'2'P) (s'D'N)

[#174-215-216]

#174-221. h :. P e Rel2 excl : QPQ . Q . C'Q e u 1 : D

.

n*2<p = s»D;n'n;p . (a
|
D) f cn'n;? e (n<2'P) smor (wwp)

Dem.

I-. #174-215. #150-41. D

h:Hp.T=(s|D)|k c in tn;p.D.n tnJP=?Jn^p (i)

h. #174-19. Dh:Hp(l).D.rel->l (2)

K #174-17. Dt-:Hp(l).D.DT=C"n fS'P (3)

I- . (1) . (2) . (3) . #15111 . D h : Hp (1) . D . ? € (ri'IUP) smor (U'S'P) .

1*151-131] O.TeQI'X'P) smor (WW'P) (4)

h . (4) . #151-22 . D (- . Prop

#174-23. b : PeRel2 excl. PC J". D . n'S'P^DJn'IUP.
(s|D)tc"n <n;p€(n (S'P)smor(n <nJP) [#174-221-216]

#174-231. h :. P e Rel2 excl : QPQ . De . C'Q e u 1 O

.

£ f C"Prod<n>'P £ (ITS'P) smor (Prod'nJP)
Pem.

I- . #174-221 . #173 1 . D h : Hp . D . n'S'P = ^Prod'nJP (1)

h . (1) . #174-191 . #151-231 . D b . Prop

#17424. l-:PeRel2 excl.PGJ'.D.

i [ C'Prod^nJP e (II'2'P) amof (Prod'nJP) [*1 74-231-216]

#174-241. b:.Pe Rel2 excl : QPQ . De . CQ e w 1 : D .

II'VP smor n'niP . n'2'P smor Prod'nJP [*174-221'231]

#174-25. h : P e Rel2 excl .PGJ.3.
Il'X'P smorWWP. Wt'P smor Yrod'WP [#174-2324]
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This proposition gives the associative law for II. It remains to prove the

associative law for Prod.

The following propositions are concerned with various properties of

"arithmetical" relations, down to #174-4, where the proof of the associative

law for Prod begins.

#174 3. h : P e Rel3 arithm . = . P, %'P e Eel 2 excl [(#1 74*01)]

*174'31. h:.PeRels a,rithm. = :Q,Q'eCP.Q$Q'.DQjQ>.CQnCQ' = A:
R, R'eCZ'P.R^R' . RtR, . C'R n CR' = A [#174-3 .#1631]

#174-311. Vi.Pe Rel3 arithm . = : Q, Q' e C'P . 3 ! C'Q n C'Q' .0Q>Q'.Q = Q'z

R, R' e C'l'P .RlC'Rn C'R' .0RfR'.R = R' [#1743 . #16311]

#174-32. h : P e Rel3 arithm . = .F[ C'P, F[CVP e Cls -» 1

[#1743 . #16312]

#174*321. I- : Pe Rel3 arithm . D .CtC'P,CtC i2'Pel-+l [#1743 . *163'14]

#174-322. h:Pe Rel8 arithm . Q, Qf e C'P . a ! C'C'Q n C'C'Q' .O.Q = Q'

Dem,
b.*3lQ.Oh:Kv.l.(KR,R').ReC<Q.R'eC<Q'.C'R = C'R'.

[#174321] D .

(

ai2, R).Re C'Q . R' e C'Q' .R = R'

.

[#13195] 3.<R]C'QnC'Q'.

[#174-311] D.Q = Q':0h. Prop

#174 33. h : P e Rel* arithm . D . Cil'C"C'P e Cls3 arithm

Dem.

V . #174-322 . D

h:.Hp. : Q, Q' eCP. R\C"CQn C'C'Q'. DQtQ>. C'C'Q = C'C'Q':

[#37-63] D : 7 , 8 eC'C'CP . 3 ! y n 8 . Dy>

a

. 7 = 8 :

[#8411] D: C'C'CP e Cls2 excl (1)

I- . #174-3 . #163-16 . #162-22 . D h : Hp . D . C's'C'CP e Cls2 excl

.

[#40-38] D . s'C'CCP e Cls2 excl (2)

h. (1). (2). #115-2. Dh. Prop

#174-34. h:Pe Rel3 arithm . = .

C'C'CP e Cls3 arithm . C [ C'P, C f C'S'P e 1 - 1

Pew.

K #174-321-33.3

r- :Pe Rel3 arithm. 0, C'C'CP e Cls3 arithm. C[ C'P, CfC'S'Pe 1->1 (1)

r- . #1 1 5-2 . D r : C'C'CP e Cls3 arithm . C f C'S'P e 1 - 1 . D .

s'C'C'C'P e Cls2 excl . C f C'S'P e 1 - 1 .

[#4038.*1 62-22] D . C'C'VP e Cls2 excl . C f C'S'P e 1 -> 1 .

[#163-17] D.S'Pe Rel 2 excl (2)

r . #37-62 . D I- : Q, Q' e C'P . R e C'Q n C'Q' . D . C'i? e C'C'Q n C'C'Q' (3)

r.(3).*115-2.*84-ll.D
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r : C'"C"C'P e Cls3 arithm .Q,Q'e C'P . tf I C'Q r. C'Q' . D .

C'C'Q = C'C'Q' (4)
K (4) . #72481 . #37421 . D

I- : C l"CliC lP e Cls3 arithm . C \ CZ'P e 1 -» 1 .

Q, Q e C'P . a ! CQ n C^' . 3 . C'Q = C'Q' (5)

h. (5). #71-59. D

f- :. C"'C"C<P e Cls3 arithm . C f C'S'P e 1- 1 . C |* C'P e 1 - 1 . D :

Q,Q' € C'P.a!C'QnC'Q'.De , e,.Q = Q':

[#163-11] D : P e Eel2 excl (6)

h. (2). (6). #174-3. D
h:C" iC"CfPeCls3 arithm.CpC'S tPel->l.C[^C'Pel-^l.D.

Pe Rel3 arithm (7)

r . (1) . (7) . D h . Prop

*174'35. h:Pe Rel8 arithm . Q, Q' e C'P . Q =f
Q' . . C'VQ n Ct'Q' = A

Dem.

r . #1743 . #1631 . 0h:.H<p.0:ReC'Q.R'eC'Q'.3R)R..R^R' (1)

h . #16222 . D I- :. Hp . D : R e C'Q . R' e C'Q\DR , R,.R,R
f6C$'P (2)

r . (1) . (2) . #17431 . D t- :. Hp . D : R eC'Q . R'eC'Q' . DAB.. CRnCR'=A :

[#40-27] D : s'C'C'Q r. s'C'C'Q' = A :

[#162-22] D : C'VQnC'VQ = A :. D r- . Prop

#174-36. h : P e Rel3 arithm . D . X>P e Rel2 excl

Pern.

h . #174-35 . #37-63 . #150 22 . D

h :. Hp . D : R, R'eCVP.R^R' .O.C'Rn C'R' = A (1)

h. (1). #163-1. Dh. Prop

#174-361. h : P e Rel3 arithm . D . C'P C Rel2 excl

Dem.

h. #162-1. 3 h:Qe C'P. D.QGS'P (1)

h . #174-3 . D h : Hp . D . 2'P e Rel* excl (2)

K (1). (2). #163-43. Dh. Prop

#174-362. r : P e Rel3 arithm . Q, Q' e C'P . C'C'Q = C'C'Q' . D . Q - Q'

Dem.

r .#174-322 . D h : Hp . a ! C'C'Q . . Q= Q' (1)

h .#37-45 . D h : C"CQ = A . D . C'Q = A .

[#33-241] Z>.Q =A (2)

h . (2) . #13-172 . D h : Hp . C'C'Q =A . D . Q - Q' (3>

h.(l).(3).Dt-.Prop
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#174*363. hiPe Rel3 arithm . D . ProcUP e Rel 2 excl

Dem.
h . #173-161 . #174-361 . *l73'2 . Transp .

h :. Hp . D : Q, Q' eC'P.R I C'Vrod'Q n CProd'Q' . D .

3 ! Vrod'C'C'Q a ?rod'C"C<Q' .

[#115-23.*174-33] D . C«C'Q = C"C'Q'

.

[#174-362] 3.Q=Q'.

[#3037] D Prod'Q = Prod'Q' (1)

h . (1) . #163-11 . #150-22 . D h . Prop

#174-4. h:PeRel2 excl.PGJ\D.
Prod'2'P=D;i;prod'n;p=$;De;Prod*n;p

Bern,

h. #1731. Dh.-Prod'Z'P = D'>n'2'P (1)

K (1) . #174-24 . D I- : P e Rel2 exnl .PGJ.3. Prod'S'P = D^ProdTUP
[#41-43] = sJD^Prod'nSP : D (-

. Prop

#174-401. h : P e Rel3 arithm . D . Prod'Prod>P = De'TrodTUP

I- . #80-33 . #162-23 .Dh-.Re F*'C'Q . D . WR C C't'Q (1)

h .(1). D h : ReF^C'Q . K eF^C'Q . a ! T>'R r. D'i2' . D .

a'.C'S'QnC'S'Q' (2>

t-.(2).#174'35.Dh:. Hp.D:
Q, Q'eC'P.Re Fs'C'Q . R'e F*'C'Q' . J)'R = V'R' . a ! T>'R . D

.

Q = Q'.

[#81-21.#174-361.#163-12] O.R = R' (3)

1- . (3) . #33-241 . D
hi.Hv.0:Q,Q'eC'P.ReF*'C'Q.R'6Ft tC'Q\D'R = T>

tR'.0.R = R':

[#17212.#150-22] D : D f s'C"Il"C'P e 1 -> 1 :

[#16222] D : D f C'S'WP e 1 -> 1

:

[#173 33] 3 : DeJProd'nJP = Prod'DfJrPP

[#1731] = Prod'ProdJP :. D I- . Prop

#174-41. r : P e Rel3 arithm . P G J . D . Prod'S'P = sJProd'Prod»P
[#174-4-401]

#174-42. h : P e Rel8 arithm . P G J . 3 .

s [ (C'Prod'ProdJP) e (Prod'2'P) smor (Prod'Prod^P)

Dem. h . #173161-2 . #174 363 . D
t- : Hp . D . C'Prod'ProdJP C Prod'C'CProd^P

[#150-22] C Prod'C"Prod"C"P

[*173161.#174-361] C Prod*Prod"C'C'C'P (1)

K(l). #17433. #11546. DhiHp.D.sfC'Prod'ProdJPel-*! (2)

I- . (2) . #174*41 . #151-231 . D h . Prop

#174-43. h:Pe Rel3 arithm . P G /. I) . Prod'S'P smor Prod'Prod^P
[#174-42]

This is the associative law for Prod.
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*17444. h :PeRel 3 arithm. D . Prod'ProcUP = De^ri'niP
[#174-401. #1731]

#174 45. h : P e Rel 3 arithm . D .

(De |
D) fCWWP e (Prod'Prod>"P) smor (Ti'WP)

Dem.

h . #17418 . D h : Hp . D . D^'n'nJP e 1 -> 1 (1)
K *80'33.#1 62-23. D
r : R e FSCQ .R e F^CQ' .RlD'Rn T>'R . D . a ! C'2'Q n C'VQ' (2)
h. (2). #174-35.3

h :. Hp . D : Q t
Q' eC'P .R eF*'C'Q . ReF^CQ' . g ! 1><R . D'R = D'R. D .

[*81-21.*174-361.*16312] ^.R =R (3)
I- . (3) . #33'241 . D
h :.Hp .D ; Q,Q' e C'P . R e F**C'Q . R' e F^CQ' .T)'R = D'R .D . E =R :

[#17212] D : Q,Q' eC'P . ReC'WQ . R' eC'II'Q' .D'R = T)<R' .D . R = R' (4)

h . #173-161 . #37-6 . #173-2 . Transp . D
h :: Hp . /J,, v e C'Prod'WP . D"fi = D'V . D :.

Refi.3:(<zQ):Q€C'P.ReC'Il'Q*.

('KQ', R') • Q' e C'P . R' e C'WQ' .R'ev.T><R = D'R'

:

[(4)] D:(ftR).R'ev.R = R'i

[#13-195] D: R ev (5)

Similarly 1- :. Hp(5) . D : R e v . D . Rep (6)

h . (5) . (6) . D h :. Hp . D s /*, v e C'Prod'IUP . D"fi = D"y . D . /a = v :

[*7lo5] D : T>e[ C'Prod'nJP e 1 -> 1 :

[#150-22.*1731] D : De f D"G'n'n»P e 1 -» 1 (7)

K (1). (7). #35-481. Dh:Hp.D. (De
|

T>)tC<n'W>P el-+l (8)

I- . (8) . #174-44 . D h . Prop

#174-46. h : P e ReParifchm . 3 . Prod'ProdJP smor n'lUP [*174'45]

#174-461. h : P e Rel3 arithm . P G /. I) . Prod'ProdJP smor II'S'P

[#174-46-25]

#174462. h : P e Rel3 arithm . D . II 'Prod^P smor Prod'Prod'P

[#174-363. #17316]

The two following propositions merely sum up previous results.

#17447. !-:PeRel3 arithm.PGJ.3.
Prod'X'P^s'Prod'ProdJP = sJDe5D;n'nJP = DJsSProd'niP

.

s

[

C'Prod'ProdJP, * |

D

e | D

f

C'WWP, D\s[ C'Prod'IUP e 1 -> 1

[#174-42-45-24. #41 -43]

#174-48. h : P e Rel 3 arithm .PGJ.3.
Nr'Prod'ProdJP = Nr'Prod'2'P = Nr'II'S'P = Nr'OTPP

= Nr'Prod'IT>"P = Nr'II'ProdJP

[#174-43-46-25462 . *152'321]



*176. EXPONENTIATION

Summary o/#176.

The definition of exponentiation is framed on the analogy of the definition

in cardinals, i.e. we put

PexpQ = ProdtPj
r
;Q Df.

We put also, what is often a more convenient form,

P <2 = iJ(PexpQ) Df.

The relation PQ has for its field (unless Q = A) the class of Cantor's

"Belegungen," i.e. the class (ClP t C l
Q)^

lC l
Q. It arranges these by a form

of the principle of first differences, namely as follows: Suppose M and N
are two members of (C'P f C'QDa'C'Q, and suppose there is in CQ a term y
for which the M-representative (M'y) precedes the .^-representative (N(

y),

i.e. for which (Ml

y) P (Nl
y), and suppose further that all terms in C'Q which

are earlier than y, i.e. for which zQy .z^y, have their .ftf-representative and

their iV-representative identical; in this case we say that M has to iV the

relation PQ
. This may be stated as follows, provided we assume that P and Q

are series: Let M and N be two one-valued functions whose possible arguments

are all the members ofCQ, while their values are some or all of the members

of C'P. Then we say that M has to N the relation PQ if the first argument

for which the two functions do not have the same value gives an earlier value

to M than to N. Thus for example let P be the „1 Ctj 1*2 "8 **4 tts

series a1} a^, ,a3 , a4 , a5 , and let Q be the series . . • • • —>p
h>'h, h, bt . Then M and N are to be such that

M'b or N lb is defined when, and only when, 6 is* • • • —> Q

bx
or 69 or 63 or bit and the value of M'b or N'b is

&1 &a &s &4

di or a3 or a3 or at or aa . Then if M'by — a^ and iV
rf61 4=«i, -^ precedes N\ if

ilf'61 = iV*61 «a1 , and if'

&

2 = Oi •ZVf
62 4=a1 , M precedes JV"; and so on. Thus

in this case the first term of the series generated by PQ is the one for which

Mtb = a1 when 6 has any of the values blt b2 , bs , b4 . Thus the first term of

the series is i% f C'Q, i.e. i'B'P t C'Q. The next term will be

£«. i'B'P f D'Q u 2P I B'Q.

The next is i
lB'P f D'Q a 3P | 5<Q,

and so on. This makes it evident that our series has the structure required

of a series which is to represent the Qth power of P.

The two relations P exp Q and PQ are ordinally similar, since s is one-one

when its field is limited to C'(P exp Q). This follows from *1 16*131, together

with

3 ! Q . D . C'(P exp Q) = (C'P) exp (C'Q).
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If 8 is a correlator of P and P\ and T is a correlator of Q and Q', then

(fif
|| 2*)e and (S\\T), with their converse domains limited, are respectively

correlators of (P exp Q) with (P' exp Q') and of PQ with P' «'. This shows that

the relation-number of (PexpQ) depends only upon those of P and Q, which

is of course essential if (P exp Q) is to afford a definition of exponentiation.

If the multiplicative axiom is assumed, then if R is a relation which is

like Q, and whose field consists of relations which are like P, and R e Rela excl,

the product of R is like (P exp Q). That is, if we put /* = Nr'P . v = Nr'Q,

so that R consists of v terms each of which has p terms, the product of R has

fi" terms. This gives the connection of multiplication with exponentiation.

There are two formal laws of exponentiation which hold for relation-

numbers, namely

P^xP^smorPO**
and (Pe)*smorP*x

<2.

They both need a hypothesis : the first needs

RlQ.RlR.C'QnC'R^A,
while the second needs RG.J

because it is proved by means of the associative law (#174'43).

The first of the above formal laws can be generalized, by putting £'$ in

place of Q^-R, and taking the product of the various powers

PexpQ, PexpQ',...,

where Q, Q', . . . e C'S, and the products are taken in the order determined by

8. The resulting generalization is

8 e Rel2 excl .SGJ.O. {Prod'(P exp)5,S} smor {P exp (£'£)}.

The proof of this proposition results immediately from #17443 and

#162-35.

The proof of the second of the formal laws is more difficult. We observe,

to begin with, that

P exp (RxQ) = Prod'P
J,
'>1'Q

J,
ii?.

Assuming suitable hypotheses, this, by #162-35,

= Prod't'(P I )f>Q
J,

'>R,

which is like Prod'Prod^P 1 )f>Q 1 '>R, by *174'43.

But (P exp Q) exp R = Prod'{Prod'P
J,

'>Q}
J,

'>R.

Thus our result will follow if we can prove

{ProdJ(P 1 )f>Q I >R) smor smor {(Prod'P 1 5Q) | '>R\.

Now one member of the field of Prod!(P 4 )f'fQ I >R will be

Prod'P 1 '>Q I z, where z e ClR.
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This is like Prod'P
J,
fQ, because Q 4 z smor Q. Hence Prod?(P 4 )f>Q 4 >R

is a series of terms each of which is like Prod'P 4
%

>Q, and the whole series of

such terms is like R. If we assumed the multiplicative axiom, this would

suffice to prove the result. But it is possible to obtain our result without

assuming the multiplicative axiom.

For this purpose, we proceed as follows. The correlator of

Prod'P 1 ">Q 1 z and Prod'P I 50

is
{ |

(Cnv' I z%, by #165-361 and #1723. Call this M'z. Then

M e 1 -> 1 : z e C'R . D* . (M'e) e (Prod'P 4 '>Q 4 z) smor (Prod'P 4 >Q) :

z, w e C'R . a ! D'ilP* n Tf'M'w .Z>2iW .z = w.

This, by the help of two or three lemmas, suffices to prove that

(ProdHP 4 yf'*Q I >R] smor smor {(Prod'P 4 5Q) 4 '>R],

whence the result follows.

The principal propositions of the present number are the following:

#1761. r . P exp Q = Prod'P 4 JQ = DJII'P 4 »Q
"J V

#17611. H . P*3 = £ (p exp Q) = # Prod'P
J,

5 Q = #D»II'P 4

»

Q

These propositions merely embody the definitions.

#17614. I- : a ! Q . D.0'(PexpQ)=(C7'P)exp(C"$).C,'P«=(C' <P | 0'Q)A'C"Q

#176151. l-:.P = A.v.Q = A: = .PexpQ = A. = .P« = A

It will be observed that in relation-arithmetic, /*° = 0, whereas in cardinal

arithmetic (j,°~l. The difference is due to the fact that there is no ordinal

number 1 (cf. #153).

#176181. r . P« smor (P exp Q)

#176182. h , (P exp Q) smor (n 'P 4 J Q)j

#17619. r- :: £(P<2) Z\ =s :. £, Te (C'P | C'QW&Q :•

(32/) : y e C'Q . (S'y) P (T'y) : y'Qy y' + y D„ . &y' = T'y'

#176-2. H: iff C"£ eP smor #. 07 C'SeQimrS. D .

( CT j| W)e T C"(ii exp £) e (P exp Q) smof (R exp £)

#176-21. With the same hypothesis, {U\\W)\ C'{RS) correlates P« andRs

#176-22. h : P smorR . Q smor£ . D . (P exp Q) smor (22 exp S) . PQ smor#s

#176*24. r-:. Mult ax. 3:

R e Rel2 excl n Nr'Q . C'R C Nr'P . D . II'£ smor (P exp Q)

This proposition connects multiplication and exponentiation.

#176-31. r- : a ! Q . . fi*(P exp Q) « (5'P) exp (C'Q)
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*176'311-32-32l. Similar propositions for 5'Cnv'(P exp Q), B'(P%^(Cnv'pO)

#17634. f- : g ! Q . E ! B'P . D .

B'(P exp Q) = (B'P) i "C'Q . B'(P<*) = (i'B'P) | 0<Q

We come next to the formal laws. We have

*17642. I- : 3 ! Q . g ! R . C'Q n C'R = A . D . P« x Pernor pe** .

(P exp Q) x (P exp R) smorP exp (Q$-R)

#176-44 h-.Se Rel2 excl .SGJ.3.
f
Prod'(P exp)5jS) smor {P exp (£<S)}

This is an extension of #1 76*42.

#176-57. h : R G J . . {(P exp Q) exp #} smor {P exp (R x Q)}

.

(P^* smor P*x«

#17601. PexpQ = Prod'PJ,;Q Df
•t

#17602. P« = s5(PexpQ) Df

#176-1. I- . P exp Q = Prod'PJ, >Q = DJII'P
J,

'>Q [(#176-01)]

#i76ii. f-.p^=s;(PexP g)=s;Prod
fPi;Q= <s;D;n fp

;
ir ;Q [(#i76-02)j

#17612. H : : ^ (P exp Q) r . = :. fi, v e (C'P) exp (C'Q) :.

(32/> x,x'): x \,y e ft . x \,y e v . xPx' : zQy .z^y .w ^ze pi. Ow<z .w ^zev
Bern.

h. #165-2112. #163-1 2. Dl-.PfP | "C'Q eCls-+l. (1)

[#851.*1151.*33-5] D h . D"PA'P | "C'Q = Prod'C'P
J,
"C'Q

[#16512-14.(*116-01)] = (C'P) exp (C'Q) (2)

r . #176-1 . #173-11 . #17211 . #165-12 . D
f ::. fi (P expQ) * . = :: (gjf, JV, y) :. M,NeF*'P\, "C'Q :

yeC'Q.(M'P i
t

y)(P i
f

y)(N'P iy):

zQy.z$y.Dz .M'Plz = N'Plz;fi = D'M.v = ~D'N::

i^ll5.(l)^150-Q]=::(^M,N>
y):.M

)
N€FA'Pi''C (Q. (J, = 'D'M.v=='D tNz

ye C'Q. £(/* n i y"Cf'P)
( J,

yiP)T«j> n j y"CP) :

*Qy . z ± y . Dz .^(/* a 4 y"C'P) =1'(v a
J,
y"C*P) ::

l(2)^150-5o] = ::(^y):: f
j„ve(C'P)exV (C'Q).yeC'Q:.('Kx>

x'):.

xiy^i'(finl y"C'P) . a/ | y = 7'(i> a J,
y^C'P) . aP#'

:

zQy.z^y.wlz = 7'(fir>lz"C'P).

w' I z = \'(v a
J,
^"C'P) . D,|tt|tl, . w = w' ::

[#11611] = : : (ay) :: fi, v e (C'P) exp (C'Q) :.

(g#, x') ix\,y€fi.x'\yep. xPx' :

zQV'Z'ky .w iz€fi.Dw>z . w Izev.i. D h . Prop
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The above proposition is used in #17619. It has the merit of giving

a direct formula for P exp Q, instead of one which proceeds by way of

WP^Q.

*17613. I- : a ! (P exp Q) . s . a ! P« . = . 3 ! II 'P y>Q [#15025 . #176111]

#176131. r:Q = A.D.PexpQ = A.Pe = A [#165-241 . #173-2 . #150-42]

Owing to this proposition, propositions stating analogies between ordinal

and cardinal powers mostly require the hypothesis a ! Q or its equivalent,

because an ordinal power whose index is zero is itself zero, whereas a cardinal

power whose index is zero is 1.

#176132. h:P = A.a!g.D.PexpQ = A.P« = A
[#165244 . #17214 . #176-13 . #15042]

#176133. h . C'PQ = s"C'(P exp Q) [#17611 . #150-22]

#17614. \-:'3.\Q.D.C<(PexvQ) = (C<P)exp(C tQ).C<PQ=(C<PlC<Q)SC'Q
Bern.

h . #165243 . D H : Hp . D . a ! P
J,
)Q

.

[*173161.*165'21] D . C'Prod'P
J,

SQ = Prod'C'C'P
J,

">Q .

[#1761.*16514] D . C'(P exp Q) = Prod'(C'P) I "(C'Q)

[(#116-01)] = (C'P)exp(C'Q) (1)

h . (1) . #176-133 . D 1- : Hp . D . C'P® = s"{(C'P) exp (C'Q)}

[#116-13] =(C'P1C'Q)SC'Q (2)

l-.(l).(2).Df-.Prop

#17615. h:a!P.a!Q.EE.g!(PexpQ). = .a!P«
Dem.

h. #176131132. Dh:a!(PexpQ).D.g!P.a!Q (1)

r . #11618 . #176'14 .DHiglP.aJQ.D.g! C'{P exp Q) .

[*33-24] D.g!(PexpQ) (2)

r.(l). (2). #17613.1)}-. Prop

#176151. r:.P = A.v.Q = A: = .PexpQ = A. = .P« = A [#17615]

#176-16. h . C\P exp Q) C (C'P) exp (C'Q) . C'P« C (C (P | CQ^'CQ
[#17614151]

#176-18. Y.s\ C'{P exp Q) e (P<?) smor (P exp Q)
Dem.

h. #116-131. #17614. D
I-

: a ! Q . D . « f C\P exp Q) «. (C'P«) sin C'iP exp Q) (1)
f-.(l). #176-11. #151-191. D
h : a ! Q . D . sf C'(P exp Q) e (P«) smor (P exp Q) (2)
r- . #176151 . #150-42 . #721 . D
I-:Q = A.D.spC'(PexpQ)e(P <2)smor(PexpQ) (3)
h . (2) . (3) . D I- . Prop
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#176181. K P« smor (P exp Q) [#17618]

#176182. l".(PexpQ)smor(n ,P
;
J,i$) [#1761 .#17316 .#165-21]

#17619. r- :: 5(P«) T.= :.S, Tt>{C<P | CQ^'CQ :.

(32/) : y e O'Q . (S'y) P (Z*y) : y'Qy .
y' + 2/ - D„ . %' = Zy

H. #1761112. D
f-:: Jg(P«)r. = :.(a/i , v):. /t,i; e (OfP)exp(O fQ).>Sf=s>.r=s^:.

(g;^, #, x) : y e C'Q .x\,yefj,.x'^yev. xPx' :

y'Qy •
y' + y • w I y' « ** ^w,« - w i^^:.

[#56'4] = :. (Rfi,v) :. ^, * e (C'P) exp (C'Q) . S= sV ?= s'v :.

(ay, x, x'):ye C'Q . a>% . x'Ty . xPx' : y'Qy .y'^y. wSy' . Oy%w . wTy >..

[*11613.#803] = :. S, Te{C'P f C'Q)A'C'Q ;. (3y) : y e C'Q . {8<y)P{Tl
y) :

y'Qy . y' 4= y Ov> Sy = ?Y ^ h • Prop

The above proposition is often usefnl, since it gives a direct formula for

PQ
, not one which passes by way of P exp Q or II

fP ! » Q.

#1762. I-: ?7pC"22ePsmor 22. F f C"£ e Q smor # . D .

( tf li
W)e r C"(22 exp 5) e (P exp Q) smor (22 exp £)

h . #1 65-362 . D f- : Hp .D . (U ||
IF) f CS'22

J,
»£ e (P | » Q) smor smor (R ± ?S)

.

[#173-3] 0.(U\\W)e l C'Vtq&'R 1 18 e (Prod'P J,
J Q) smor (Prod'22 1 55) (1)

K (1). #1761. Df-. Prop

#176-21. \-iU[G cR€PsmorR.W[G l8eQsw^8.D.

(U jl
W) T C"(-R

s
) e (i*2

) smor (22
s
)

2)em.

I- . #176-2-18 . #151-401 . D f- : Hp . D . s»(^ll W), f C"(22 exp 5) e (PQ) HSof(Rs)

[#150-961] ^.(^ll W) f8"C'(R exp S)e(PQ) smor (Rs) (1)

I- . (1) . #176-11 . #150-22 . D r- . Prop

#176-22. f- : P smorR . Q smor S . D . (P exp Q) smor (22 exp S) . P* smor 225

[#176-2-21]

#176-23. 1- : R smor smorP
J,

J Q . D . II'R smor (P exp <))

Dem.
h . #172-44 . D I- : Hp . D . n f

22 smor II'P 1">Q (1)

K (1).#176182. DK Prop

#176-24. h:.Multax.D:

22 e Rel 2 excl n Nr'Q . C"22 C Nr'P . D . II '22 smor (P exp Q)

[#165-38. #176-23]

E&w li 29
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#1763. h.Cnv'(P<2) = (P)«

Dem.

h. #17619.3

I- :: T(Pf S. = :.S, Te (C'P | C'Q)±'C'Q :.

(32/) : 2V e C'Q . (2*y) P (S'y) : 2/% . y' + y D„ . #V = 2Y :.

[#176-19] = :. S(I*) T:: D h . Prop

#17631. f- : a ! Q . D . ?(P exp Q) = (B'P) exp (O r

Q)

K #165-21. #163-12. #71-221. #93-1. D f- . B fC'P lJQeCls-+l (1)

H. #165-12-01. #37-67. Dh.if"C'P
J,
5Q = a{(a^). z e C'Q. a = 2? | z>P}

[*165'251.*151-5.*38-3] = (B'P)
J, "C'Q (2)

H . #172-162 . #165-243 . D I- : a ! Q . D . 5'II'P
J,

'>Q= B*'C'P | J Q

.

[*17316.#165-21 .#151-5] D . 5'(P exp Q) = B"BA'C'P
J,

J Q

[#85-l.(l).#115-l] = Prod'l?'C'P 4 »

Q

[(2)] = Prod'(l?P),|,"C'Q

[(#11601)] = (B'P) exp (C'Q) : D h . Prop

#176-311. h : a ! Q . D . ]?Cnv'(P exp Q) = (~B'P) exp (C'Q)

[Proofas in #176-31]

#176-32. I- : a ! Q . D . 5^(P«) = (5'P t C'Q)SC
lQ

Dem. f-. #176-3118. #151-5. D

h : Hp . D .1?'^) = s"(B'P) exp (CQ)

[#116-13] = (B'P t C'Q)A<C'Q : D h . Prop

#176-321. h : a ! Q . D . l?'Cnv'(P«) = (B'P f C'Q)*<C'Q [*1 76-32-3]

#17633. f- :. a ! Q . D : a ! 1?'(P exp Q) . = . g !5'(P«) . = . g llS'P

:

3 ! &Cnv'(P exp Q) . = . a ! 2?Cnv'(P«) . = . a IB'P

[#176-31 •311-32321 .#1161815]

#176 34. f- : a ! Q . E ! B'P . D

.

£'(P exp Q) = (5'P)
J,
"C'Q . B'(PQ) = (i'5'P) f C

fQ

Z>m. f- . #176-31 . D h : Hp . D . ]B'(P exp Q) = (i'B'P) exp (C'Q)

[(#116-01)] = Prod'(t'£'P)^ "C'Q

[*38-3.*53-31] = Prod't"(£'P)
J,
"C'Q

[#115143] = i'{(B<P) I "C'Q] (1)
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1

I- . *176-32 . D h : Hp . D

.

~B'(PQ ) = (i'B'P f C'Q)SC'Q

[*116-12.#51-4] = i'{(i'B'P) t C'Q} (2)

h.(l).(2).Df-.Prop

#176341. h:a!Q.E!5fP.D.

B'Cnv'(P exp Q) = (B'P) ± "C'Q . 5'Cnv'(P«) = (i'B'P) f C'Q
[Proof as in#176'34]

#17635. h:PQQ.O.PB <lQR

Bern.

h . #116-12 . D h : Hp.D .(C'Pf C'RyC'RC (CQ^C'RyC'R <1)

I- . (1) . *17619 . D f- . Prop

The above proposition is used in the theory of finite ordinals (#261*64).

The following propositions are concerned in proving (with a suitable

hypothesis)

PQ xPB smor PQ* R

and its extension

{Prod'(P exp)5S} smor {P exp (1'S)}.

#1764. h:RlQ.RlR.P"C<QnP"C<R = A.C'QuC<RC(I<P.'}*
s\C[ C'l(WP

m

>Q) x (Il'P'>R)} e {Il'P'>(Q$R)} smor {{WP'>Q) x (IJ'P>R)}

Bern.

Y . #172-34 . #150-22-24 . D h : Hp . D

.

i|(7 T C' {(Ii'P'>Q) x (n*P5JS)}« {n'CPJQ^PJ^lsmor {(Il'P'>Q) x (II 'PJtf)} (1)

I- . #16236 . D I- : Hp . D . p;Q.£P;.R«p;(Q4ifi) (2)

K (1)
.
(2) . D K Prop

#176-41. f- : a ! Q . a ! R

.

P"C'Q

n

P"C'R = A.C'Qv C'R C d'P . D .

n fPJ(Q4^^)smor(n fPJQ) x ([1'PiR) [#176-4]

#17642. f-:a!g.a!ie.O fQnO'i2 = A.3.PQ xP ii smorP **.

(P exp Q) x (P exp P) smor P exp (Q$R)
Dem.

r- . #72-411 . #165-22 . D

Ha!P.C'QnC'JR = A.D.PJ,"C'QnP4r
"C' JR = A (1)

r- . (1) . *176-41 -^ . #38-12 . #33431 . D

h : Hp . g ! P . D . n <P I >(Q$R) smor (II 'P
J,

5 Q) x (II'P
J,

Ji2)

.

[*176-182.*166-23] D . P exp (Q$R) smor (P exp Q) x (P exp R) . (2)

[#176-181.#166-23] D . P^smorP6 x P* (3)

f . #176151 . #16613 . #153-101 . D
r- : P = A . D . P exp «).££) smor (P exp Q) x (P exp P) .

i*** smor PQxPR
(4)

!-
. (2) . (3) ,(4).Dr. Prop

29—2



452 RELATION-ARITHMETIC [PART IV

*176'43. h : S e Rel3 excl . S G J . D .

s [ CTrod'(P exp)5 8 e [P exp (VS)} smor Prod'(P exp)5 S
Bern.

h . #16522 . *1633 . D h : Hp. ± ! P . D . (PJ, )t> £ e Rel2 excl (1)

H . #162-35 .#3812 . #33431 . D r- . X f(P_4 )t^ = PJ, ?2'>Sf (2)

h . #165-21 . (2)

.

Dh. S'(P
J, )f J£ £ Rel2 excl (3)

h . (1) . (3) . #174-3 . D h : Hp . a ! P . D . (P ^
)+J £ « Rel3 arithm (4)

h . #165-223 . Transp

.

D h :. Hp.g ! P . D : Q4=5 . D . PI J Q+P| 'R :

[*1504.#7214] D:(P4)f^GJ (5)

f- . #1 761

.

D h . Prod'(P exp)» £= Prod'Prod^P
J, )t

; S (6)

K (4) . (5) • (6) . #174-42 . D

h : Hp . a ! P . D .

s T C'Prod'(P exp)5S e {Prod'S'(P ± )f>&\ smor {Prod'(P exp)>S] .

[(2)] D . s [CProd'(P exp)» £ e {Prod'P
J,

J 2SS} £Eor {Prod'(P exp)'" 6'} .

[#176-1] D.s[ C'(P exp)5 £ e {P exp (2'S)} smor {Prod'(P exp)! S} (7)

h . #176151 . #173-21 . #1721314 . D
h ; P = A . D . Prod'(P exp)^ = A . P exp (£'£) = A (8)

h . (7) . (8) . #173-2 . #164-32 . D h . Prop

#176-44. h:Se Rel 2 excl .SdJ.D. (Prod'(P exp)»£} smor {P exp (2'S)}

[#176-43]

The following propositions are lemmas for

EGJ".D.(P«)*smorP**«

#176-5. I- :. itf [ C'R e 1 - 1 . C'E C (I'M . C'Q Cp'(I"M"C<R .

M"C'R Ql-+liz,z'eC'R.>&l D'M'z n D'M'z . D
Zt , .z = z':

T=%X{(Ru,z).u6C'Q.zeC<R.a) = (M<zyu.X = ul(M'z)}:

Dem.

V . #21-33 . D h :. Hp . D : a^X . aTX . D

.

(gw, w', *, sf) . u, u' e C'Q .z,z'e C'R . x = (M'z)'u . a! = (M'z')<u'

.

X = u l(M'z) . X = u' l(M'z')

.

[#55-202] D . (gw, u', z, zf).x = (M'z)'u .
x'= (M(

z')'u' .u = u . M'z = M'z'

.

[#13-22] 0.x = x (1)

I- . #21-33 . D f- :. Hp . D : xTX . xTX' . D .

(aw, u, z, z') . u t u' e C'Q .z,z'e C'R . x= (M'z)'u . x = (M'^'v! .

X = u i (M'z) .
X' = u I (M'z) .

*33-43.Hp]D.(aw,w',^y). u,u' eC'Q . z eC'R.z^z' ,x= (M'z)'u = (M'z')'u'

.

X = ul (M'z) .X' = u'l (M'z') .
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[#13-195] D . (aw, u, z) .u,u'eC'Q.zeC'R.x = (M'zYu = (M'z)V

.

[*7l-59.Hp]D.(gw, u',z) .u = u'.X = ul (M'z) . X' = u' j (M'z)

.

[#13195] D.X = X' (2)

h . (1) . (2) . D H . Prop

#176-501. h : Hp #1765 . D . d'T^C't'Q I '>M'>R

Dem.

I- . #71-16 . D r- :. Hp . D : z e C'R . u e C'Q . . E ! (M'z)<u .

[#21-33] 1.u],(M'z)e(l iT (1)

h. #21-33. D

h:.Hp.D:Z e a fr.D.(a^w).^ e C(fiJ.weC,^.Z = w
>Ki!ff^) (2)

b.(l).(2).Db:.UV.D:Xea<T.= .(Rz,u).z € C'R.<ueC'Q.X = ul(M'z).

[#714] = . (nZ,u).Z e M"C'R .ueC'Q.X = ulZ.
[*15022] = .(<&Z,u).ZeC'M>R.ueC'Q.X = u\,Z.

[#16516.*113-101] = . X eC'VQ^ >M'>R :. D H . Prop

#176502. h : Hp #176-5 . z e C'R . D . T>Q
J,
'M'z = \Q'M'z

Dem.

I- . #150-4 . #16501 . #176-5 . D

h : Hp . D . yJQ j, 'JtP* = £$ {(git, «) . uQv .w=T'i (M'z)'u .y = T' | (J(f'*)'»}

[Hp.#176'5-501] =^ {(ru, v).uQv.x = (M'z)'u . y = (M'z)'v\

[#150-4] =(#^)5Q
[#1501] = fQ'M'z : D h . Prop

#176-503. h : Hp #176-5 . D . re(fQJJf^) smof smor (Q j,
J JfJB)

H . #176502 . #150-1-35 . D I- : Hp . D . Tf » Q
J,
J^i2 = f Q}M'>R (1)

f- . (1) . #176-5-501 . #164-1 . D 1- . Prop

#176-51. h :. M\ C'R e 1 -» 1 . ilf"(7'22 C 1 - 1

.

C'tf C a*M . C'Q Cp'd"M"C'R :

z, z
1

e C'R . g ! D'itf's n D'M'z . D,
t
^ . * = / : D . + QJJfcfSi? smor smor Q | ?-R

Z)ew.

I- . #165-361 . D h : Hp . D . O I JJ1/; R smor smor QL'>R (1)

f- . (1) . #176-503 . #164-221 . D f- . Prop

#176-52. V'..zeC'R.Z>z .M'ze (P'z) smor Q : D . P'>R = fg^i?

h.*15111.DI-:.Hp.D:^eC"i?.D,.P^ = (if^);Q

[#150-1] = tQ'#'* (i)

f- . (1) . #150-35 . D h . Prop
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#176 53. 1- :. Mf C'R e 1 -+ 1 : z e C'R . D, . M'z e (P'z) smor Q :

z, z e C'R . a ! C'P'z r. C'P'z' ,DZiZ>.z = z':0. P>R smor smor Q y>R

Bern.

I-. #14*21. Dhr.Hp. D izeC'R. Dz . E \M'z : (1>

[#33-43] D-.C'RC (I'M (2)

f- . #15111 . D h :. Hp . D : z e C'R . Dz . M'z e 1 -> 1 :

[#37-61.(1)] D:M"C"EC1-»1 (3>

h . #15111131 . D h :. Hp . D : * e C'R . Dz . D'M'z = C'P'* :

[Hp] D : ^ / e C'R . a ! D'M'z n D'JfV . DAJg
. . z = z' (4>

h. #15111, 0\-:.Kv.D:zeC'R.D.(I'M'z = C'Qi

[#37-63] D:ZeM"C'R.D.a'Z=C'Q:
[#40-15] D:C"QCp'CI"if"C".R (5)

h
.
(2) . (3) . (4) . (5) . #176-51 . D h : Hp . D . fQJ^iJ smor smor Q I 5jR (6>

h . (6) . #176-52 . D h . Prop

#176-54. l-:.a!P.a!Q.il/=^[^6C fi2.^={|(Cnv t

>|r
^)}erC"(Pexp0].D:

Jfel->l:*eC7*JB.Di . Jaf'5e(Prod'P4;Q4«)smor(Prod'PJ
r

iQ)

Dem.

h . #116-606 . #17614 . D h : Hp . D . M e 1 -+ 1 (1)

h .#21-33 .#30-3 . D h : Hp . z e C'E . D . if'^ = {|(Cnv*
J, *)} £ f C"(P exp Q) (2)

h . #151-65 . * 165-361 . #1661 . #16501 . D

h . {|(Cnv* iz)} [ C'(Q X P) e (P
J,

iQ
J,*) s"mor s"mor (P

J,

J Q) .

[(2).#l73-3] D h : Hp . z e C"J2 . D .

Jf'jsr e (Prod'P y>Q),z) smor (Prod'P ^ 5 Q) (3)

h.(l).(3).Dh.Prop

#176-541. h . (P ^ )fi Q i
'>R e Rel3 arithm . t'(P l)Y>Ql>R = P I'X'QliR

Dem.

h . #163-3 . #165-21-22 . D h : 3 ! P . D . (P
J,

)|3 Q
J,

JjR e Rel8 excl (1)

h.*165-242.Dh:P = A.a!^.a!5'.D.'pj,5^=A >
|,A.P

;|
f

^' = A >tA:'

[Transp] D f- :. P = A . P pS^P^ >S
f

. 0: S= A . v . S' = A :

[#165-241]

' '

0:Py>S = A.v.Py>S' = A:

[#33-241] D:C'Py>SnC'Py>S' = A (2)

h.*150-221.Dh:.P = A.D:
^T'eC^P^JQ^iJR.T+r.D.

(a^/).^ + /.^/eC"i2.2
7=(P

:
t)JQ^.r = (P^);Q

:
|r
/.

[(2)] D.C'TnC'T' = A '
'

' ''(3)

h . (1) . (3) . #163-1 . D h . (P i )|J Q J,
>i2 e Rel2 excl (4
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b - #16235 .Dr. %<(P I )f,Qi;R = p J,
iZ'Q ^ IR .

(5)

[#165-21] Dh.^(P4)t;$|;iJ 6 Rel'4xcl
'

(6)

b . (4) . (5) . (6) . #174-3 . D h . Prop

*17655. bi&lP.RlQ.D. ProdJ(P Df'Ql >M smor smor (Prod'P i">Q)l'>R

Dem.

h. #17613315. #37-44-21.3

h: a !C tProd fP4^Jf ^r,C"Prod'P^QJf
w.D.

[*176 16.*8014.*165-212] D . (a22) . d'R = C'Qlz. <J'P = C'Q:± w.rIQ.

[*13-l7l.*150-22] D . i z"C'Q = J,
w"C"Q . 3 ! Q

.

[#55232] D.z = w (1)

Prod'P^SQJ,*, Prod'Pj,;^

h . (1) . #176-54 . #176-53 ^ -^— .Dr. Propr i
z, (/

#17656. r:g!P.g!Q.PGJ\:>.
Prod'S'(P 1 )f> Q I >R smor Prod'(Prod'P 1'>Q)1'>R

•} •> •) •*

Dem.

b >*\Q5-223 .Db :.%\ P . P^ Q \,z = P y>Q $,z' .D 1 Q \,z = Q $,z'

:

[#165-22] 0:r\Q.D.z = z' (1)

h . (1) . Transp . D b :. Hp . zRz .^ .P y>Q ],z^P \,>Q ^,2' (2)

h. (2). #150-4. Db:Kv.D.(Pl)Y>Ql
m

>R(iJ ' ' (3)

b. (3). #176-541. #174-43. D
h : Hp . D . Prod'2 f(P

J, )f
; Q

J,
J# smor Prod'Prod? (P

J,
)fJQ ^ 522 (4)

r. #176-55. #173-31. D

h : Hp . D . Prod'Prod!(P
J,

)f> Q j,
'>R smor Prod'(Prod'P y>Q)l >R (5)

h . (4) . (5) . D b . Prop

#176-57. h:22G J\D.{(PexpQ)exp22}smor{Pexp(22 x Q)} .(P^smorP****

Dem.

b. #176-151. Dh:.P = A.v.()=A:D.(PexpQ)exp22^A (1)

h. #176-151. #166-13. D h:.P = A. v.Q = A.O.Pexp(i2x^) = A (2)

I- . (1) . (2) . #153-101 .Dh:.P = A.v.Q = A:D.
\(P exp Q) exp 22} smor {P exp (22 x Q)} (3)

h . *l76-56-541'l . #166-1 .Dh:a!P.g;[Q.22GJ".D.
{(P exp Q) exp 22} smor {P exp (22 xQ)} (4)

h . (3) . (4) . D h : Hp . D . {(P exp Q) exp 22} smor {P exp (22 x Q)\ (5)

[#176-181-22] D.(P«)B smorPJlx« (6)

b . (5) . (6) . D b . Prop

This completes the proof of the second formal law of exponentiation.



*177. PROPOSITIONS CONNECTING Pdf WITH
PRODUCTS AND POWERS

Summary o/#l77.

The principal proposition on this subject is

#17713. h : x 4 y . D . Pdf smor {{x
J, y)

p
)

which is the analogue of #116*72, or rather leads to the analogue of #116'72

as soon as powers of relation-numbers have been denned; for then it becomes

Pdf e2,W
Another proposition is an extension of #171 '6 9, namely

#17722. h:Pe Rel2 excl .PGJ.3. Prod'df>P smor (S'P)dt

where we put df'Q= Qdf .

The remaining propositions of this number are lemmas for the above two.

#17713 shows, for example, that all classes of finite integers can be

arranged in a series of which the relation-number is 2/*, where a> is the

relation-number of the series of finite integers. 2r
™ is not the relation-number

of the continuum, but is closely allied to it.

#1771. h : x 4 y . T= £R [R e {(i'x u t'y) f a]Ja . /* = R'x] • 3 •

Te (Cl'a) sm {(t'a? u i'y) f a}A '« [*1 16-712-713-715]

In the propositions of #116 referred to, A and V appear in place of x and

y, but no property of A and V is used in the proof except A 4= V.

#17711. h : Up #177-1 . a = C"P. D . T'>(x I y)
P = Pdf

Pera.

h. #17619. D

r ::. Hp . D :: /* [^(a" J, y/} p . = :. (3P, 5) : P, # « {{i
lx u t'y) | C"P}A'C"P :

(3*) izeC'P. R'z (x I y) S'z :

*— «—
wP^ . m; 4= z . W . R'w = S'w : fi = R lx . v = S'x :.

[#5513] ~ :. (aP, 8) :R,Se {{i
lx o t'y) f C"P}/C'P :.

wP^ ,w=^z .Dw : xRw . = . xSw : yPw . = . ySw :.

[#71-36] s :. (aP, S):R,Se {(i'x u f 'y) f C'P} A'C"P :.

(2^) :. z eOP . zep — v . /j.= R lx . y = $'ar :.

wP^ .w=f-sr *^M' :,M;e At ' = ,wei' : '

[#177-1] = :. fi, v e Cl'C'P :. (a*) :. * eOP . * 6 ^ - v :.

ifPz . w 4 £ . Dw '.w eyx.s .w ev :.

[*17l'll] = :. /i (Pdf) i, ::. D h . Prop
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#17712. h : Hp*17Ml .D.Te P
rif

slfior {(x I y)
p

)
[#177 111 . #151191]

#17713. h : x + y . D . Pd( smor \(x I yf] [*17712]

#1772. df'Q = Qdf Dft[*177]

#177 21. h : P e Rel*excl . PG J. D .* ^'Prod^Pe^'P^, smor(Prod'df5P)

The proof proceeds as the proof of #174-24 proceeds. If Q e C'P, we shall

have, if JfeiydfCP,
M'QAf

= (s'D<M)nC'Q.

Hence we easily obtain

M(n'dfJP) JV. = . M,NeFSWCP . (s'V'M) (2'P)df (a'D'JV),

whence

/* (Prod'df^P) i».5./t,H Prod'Cl"C'C'P . (s'fi) (2'P)df (s'y),

whence the result follows easily.

#17722. h:P6Rel«excl.PGJ".D.Prod'df5Psmor(S*P)df [*17721]



SECTION D

ARITHMETIC OF RELATION-NUMBERS

Summary of Section D.

In the present section, we shall be concerned with the arithmetical

operations on relation-numbers. Their purely logical properties have been

dealt with in Section A; in the present section, it is their arithmetical

properties that are to be established. These properties result immediately

from the arithmetical properties of relations which have been established

in Sections B and C. The subjects treated of in the present section are

analogous to those treated of in Section B of Part III, with the exception

of such as have already had their analogues discussed in Sections B and C
of Part IV. The analogy is sufficiently close to render it often unnecessary

to give proofs, since these are often step by step analogous to the proofs of

corresponding propositions in Part III, Section B.

The two chief requisites in defining the arithmetical operations with

relation-numbers are (1) to take due account of types, (2) to construct

what may be called separated relations, i.e. relations of mutually exclusive

relations derived from and ordinally similar to given relations. Each of these

points calls for some preliminary explanations.

The sum of two relation-numbers yx, v will be denoted by "jj, + v," in

order to distinguish this kind of addition from /j, -f v (the arithmetical

addition of classes) and fi+e v (the addition of cardinals). In defining fi + v,

we have to take account of the following considerations.

Suppose P and Q are two relations which are of the same type, and have

mutually exclusive fields. Then obviously we shall want to frame our

definition of the sum of two relation-numbers in such a way that the sum
of Nr'P and Nr'Q shall be ~Nr'(P$Q). But if P and Q are not of the same

type, P^-Q is meaningless; and if C'P and C'Q overlap, P^-Q may be too

small to have as its relation-number the sum of the relation-numbers of P
and Q. Both these difficulties can be met by observing that, if Nr'P = Nr'i2

and Nr'Q = Nr'$, we must make such definitions as to have

Nr'P + Nr'Q = Nr'tf 4- Nr'S.

Hence, in defining the sum of the relation-numbers of P and Q, we may
replace P and Q by any two relations R and $ which are respectively like

P and Q. Therefore what we require for our definition is to find two
relations R and 8 which (1) are respectively like P and Q, (2) are of the
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same type, (3) have mutually exclusive fields. All these three requisites are
satisfied if we put

R = i (A r» C'Q)h'>P . S = (A n C'P)
J,

h'>Q.

We then define P + Q as meaning i££S, and we define the sum of the
relation-numbers of P and Q as the relation-number of P + Q. This procedure
is exactly analogous to that of *110; in fact, we have

C'(P + Q) = C<P + C'Q.

In defining the sum of the relation-numbers of a field, we do not have
to consider types, because the members of a field are necessarily all of the
same type. But we do have to consider the question of overlapping. If a
term x occurs both in G'Q and in G'R, where Q, R e C'P, we want a method
of counting x twice over in forming the arithmetical sum. Thus Nr'S'P
cannot be taken as the sum of the relation-numbers of members of C'P,
unless P e Rel2 excl. Suppose, for instance, we have three series

(a, b, c), (6, c, a), (c, a, 6).

These each have three terms; and we want the sum of their relation-numbers

to be the relation-number of a series of nine terms. But if we put

Q — a I b I c (where a I b I c is written for a
J,

b v a I c iy b I c),

R = b 4- c ^ a',

S=c 4 o, lb,

and if we further put

P = QIRIS,
so that P places the above three series in the above order, we have

2'P - (t'a u i*b u i'c) t (i'a u i'b u i'c),

which is not a series, and does not have the relation-number which we require

as the sum of the relation-numbers of Q, R, S.

What is wanted is a method of distinguishing the various occurrences

of a and 6 and c. For this reason, when a occurs as a member of the field

of Q, we replace it by a ^ Q; when as a member of the field of R, by a
J,
R\

and when as a member of the field of S, by a j, & Thus the series (a, b, c)

is replaced by (a I Q, b
J, Q, c j, Q) ; (6, c, a) is replaced by (6 1 R, c I R, a I R)

;

and (c, a, b) is replaced by (c ^ S, a I S, b \, 8). The sum of these three series

then has the relation-number which is required as the sum of the relation-

numbers of Q, R, S.

The above process is symbolized as follows. The generating relation of

the series (a I Q, b I Q, c I Q) is \, Q>Q; thus the three relations whose sum
is to be taken are j, Q>Q, ],R*R, ^S'S, £e , using the notation of #182,

/> r\ r\ r*

according to which we put $ 'x= x $ x, our three relations are \ *Q, 1 'R, 1 '&
•> 7t V
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r\ <-\ r\ r*

But the generating relation of the series (i'Q, I
fR, \, '8) is I >P, since

P^(QIRIS). Thus 1>P is the relation required for denning the sum of

the relation-numbers of members of the field of P; i.e. we put

2Nr'P = Nr'2'J>"P Df.
•>

We will call I >P the separated relation corresponding to P, I >P is con-

structed, as above, by replacing every member x of (7'Q, where Q e C tR
i
by

xlQ; so that if x belongs both to C'Q and to C'R^ it is duplicated by

being transformed once into x
\, Q, and once again into x

J,
R.

1-1

For the treatment of products, we do not require
J,

>P, because WP has

been so defined as to effect the requisite separation. We might, however,

by the use of J,'P> have dispensed with II 'P as a fundamental notion, and

contented ourselves with Prod'P; for we have

n<P = s>Prod'J>P.

Thus we might have taken Prod as the fundamental notion, and defined IT

by means of it.

The addition of unity to a relation-number has to be treated separately

from the addition of two relation-numbers, for the same reasons which

necessitate the treatment of P-\±x and #«fP separately from P-^-Q. There

is no ordinal number 1, but we can define the addition of one to a relation-

number. If Nr'P = )Lt and x^eC'P, we must have

Nr'(P-f* #) = /" + !>

where we write "i" for unity as an addendum. We do not write "lr
"

because we shall, at a later stage, give a general definition of ^r , in virtue

of which, if fM is an inductive cardinal, pr will be the corresponding ordinal.

This definition entails l r=A, and therefore we use a different symbol "i"

for 1 as addendum. The symbol i is only defined in its uses, and has no

significance except in a use which has been specially defined.

We define the product juXv as the relation-number of P x Q, when
/it. =N r'P and p = N r%). The product so defined obeys the associative

law, and obeys the distributive law in the form

(v + «r) X ft = (v X fi) +O X fj)

but not, in general, in the form

H X (v -j- w) = (p X v) + (fj, X v).

The latter form holds when fi, v, or are finite ordinals, as we shall prove at a

later stage (#262). The commutative law also does not hold in general for ordinal

addition and multiplication, but holds where finite ordinals are concerned.
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The product of the numbers of the members of C lP, in the order gene-

rated by P, is defined as being Nr'II'P, and is denoted by IINr'P. It will

be seen that IINr'P is not a function of C lP, since the value of a product

depends upon the order of the factors ; it is also not a function of Nr»P,

unless no two members of C'P have the same relation-number. The pro-

perties of IINr'P result from #172 and #174.

"jj, to the yth power" is denoted by (<
/j.exipr v" and is defined as the

relation-number of PexpQ, where yx = N r'P and v^N^'Q. Its properties

result from the propositions of #176 and #177.



*180. THE SUM OF TWO RELATION-NUMBERS

Summary o/*180.

In order to define the sum of two relation-numbers, we proceed (as in

#1 10) to construct a relation whose relation-number shall be the required sum.

For this purpose, we put

P + Q = \ J,
(A * C"Q)h5P}£{(A nC*P) X'wQ} Df.

This definition has the following merits: (1) whatever may be the types of P
and Q, X(Af\C'Q)h>P is of the same type as (Ar\C'P)lh>Q; (2) however the

fields of P and Q may overlap, and even if P= Q, the fields of I (A n C'Q)h>P

and (A n CT) | H'Q are mutually exclusive; (3) these two relations are

respectively similar to P and Q. Hence it is evident that, without placing

any restriction upon P and Q, we may take the relation-number of P 4- Q as

defining the sum of the relation-numbers of P and Q. Hence we pu^

p + v =; R {(<&P,Q) n = ~$<F'P .v =N r'Q . Rsmor(P + Q)} Df.

From this definition it follows that p + v is null unless yx and v are homo-

geneous relation-numbers, but that if they are the homogeneous relation-

numbers of P and Q, then p + v is the relation-number of P + Q.

In order to be able to deal with typically ambiguous relation-numbers,

we put, as in #110,

Nr'P + y = N r'P+i/ Df,

M 4-Nr'Q = ,u4-N r'Q Df.

The principal propositions of the present number are

*180111. \-.C'(P + Q) = C<P + C'Q

*180'3. h . Nr'P+ Nr'Q = N r'P 4- Nr'Q = Nr'P+ Nor'Q

= N r'P+N r'Q = Nr ((P + Q)

*180 31. h : P smor R . Q smor 8.D. Nr'P + Nr'Q = Nr'Jt! + Nr'S

This proposition is essential, since otherwise Nr'P 4- Nr'Q would not

be a function of Nr'P and Nr'Q, but would depend upon the particular

P and Q.

*180-32. h : C'P * C'Q = A . D . Nr'P+ Nr'Q = Nr'(P$ Q)

*1804. h:g;! /A +i/.D. /A,i/eNR-i'A.
/*,*€N R

*180 42. h. At 4-veNR

*18056. \-.(fL+ V)+-GT = fJi + (v+ *T)

which is the associative law.

*180 61. h . Nr'P+ r = Nr'P = r+ Nr'P
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#180 71. h : /*, v eNR . D . C"(/* 4- *) = C'V +c C"z,

This proposition gives the connection of ordinal and cardinal addition.

It should be observed that, in virtue of #1549, C"fi and C"v are cardinals

when fi and v are relation-numbers.

*180Ol. P + Q = { I (A ft C'Q)h>P} $ {(A ft C'P)
J,

h'»Q} Df

#18002. M + v = P {(aP, Q) . ^ = N r'P . » = N r'Q . P smor (P + Q)} Df

*180"03. Nr'P + * = N r'P+ i/ Df

#180 031. At -i-Nr'Q = /
x+N r fQ Df

On the purpose of the definitions #180'03031, see the remarks on the

corresponding definitions in #110 and II T of the Prefatory Statement.

#1801. h.? + Q={|(An C'Q)n>P} £ {(A n C'P)
J,
hiQ] [(#180-01)]

#180101. h . C l(A ft C'Q)h>P = i (A ft C'Q)"l"C<P .

C'(A r> C'P) I h>Q = (A n C'P) | "t"C'Q [#150-22]

#18011 \-.C'l(AnC'Q)h
m

>PnC'(AnC'P)l'u>Q = A [#180101 . #11011]

#180111. \-.C'(P + Q) = C'P + C'Q

Dern.

h. #180101. #16014. D
h . C'(P + Q) = | (A ft C'Q)"i"C'P u (A r. C'P) ^ "i"C'£>

[(#110-01)] = C'P + C'Q . 3 r . Prop

#18012. h.^AftC'Q^PsmorP^AftC'P^u^smorQ [*151-6P64'65]

#18013. r : P smorP . tfsmor Q . C'R ft C'S =A . D . P^SsmorP-f- Q
P#m.

h . #180-12 . D h : Hp . D . P smor 4 (A ft C'Q)h'>P . £smor(An C'P) J, u»Q (1)

K(l). #18011. #16048. Z>

h : Hp . D . P^tfsmor
{ | (A ft C'Q)h>P.£(A ft C'P)

J,
u»Q}

.

[(*180-01)] D . P££ smor (P + Q) : D h . Prop

#18014. h:C'PftC'^ = A.D.P4iQsmorP + Q [#18013 .#15113]

#18015. h : P smor P . & smor Q.D.R + 8 smorP + Q
Pem.

I- . #18012 . D h : Hp . D .
J,
(A ft C'S)h

m

>R smorP . (A r. C'P)
J,
u>5 smor Q

.

[#18013] D .
{ i (A ft C'S)h'>R$(A ft C'R) I h>8] smorP + Q .

[(#180-01)] Z>.P + £smorP+Q:Dh.Prop

#180151. h :. C'P ft C'Q = A . D : ^ smor (P£Q) . = .

(gP, S) . R smorP . S smor Q .C'RnC'S = A. Z=* R$S
Dem.

h . #160-48 . 3 h :. Hp . D : (gP, S) . P smor P . Ssinor Q . C'R nC'S = A.
Z=R$S. 3. Zsmor (P$Q) (1)
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h . *160'44 . D h : TeZsmoi (P$Q) .D.Z= T>P$T">Q (2)

l-.*16014.*151-ll.Dl-:Te^smor(P^Q).D.C (PCa^.O fgca^ (3)

h. (3). #151-21. Oh:reZsmoi(P$Q).3.r>PsmorP.T'>QmnoTQ (4>

I- . *72'411 . *150'22 . D h :. Hp . D :

re£BSor(P4.Q).D.c<r;pnC<:r;Q=A <s>

I- . (2) . (4) . (5) . D h :. Hp . D : TeZ^oi (P$Q) . D

.

T">P smor P . T>Q smor Q . CT>P n C'TiQ = A . Z= T>P$T
m

>Q :

[#151*12] D:Zsmor(P4-Q).D.

(ai£,iSf).i2smorP.^smor<2.C" JBnC"iSf = A.Z-= JB^S (6)

h.(l).(6).Dl-.Prop

#180152. h :Zsmor(P+£) =

(ai2, S) . R smor P . S smor Q .C'R n C'S^A . Z= R$S
[*180151-11-12]

#180-16. KNr'(P + Q) =

i{(aP^).PeNr fP.^eNr'Q.C"i2AC^=A.Z= i24i.5}

[#180152. #152-11]

#180-2. \-:Ze fx+ v. = .(^P,Q).fx = -N T tP.v = -N
()
T

tQ.Zsmov(P + Q)

[(#180-02)]

#180-201. h:.Ze
/
*4-»'. = :^i;eN R:(aP,Q).PeA*-<2ei».Zsmor(P+Q)

[#155-27. #180-2]

#180202. \-i.Zefi+ v. = -.

a ! ^ . g ! z/ : (gP, Q) . At
= Nr'P . i/ = Nr'Q . Zsmor (P + Q)

Dem.

h . #155-34-22 . #180-201 . D

h:.^6A*+ »'- s: a ! At -a*»''A4»»,eNR! (a-f,»<2)"Pe M-Q ei/ '^ smor (J
:>

+<2):

[*152-44]=:a!^.a!i/. /
A,veNR:(aP,Q)./*= Nr*P.v=Nr'Q.Zsmor(P+ Q):

[#152-41]= : a ! ^ . g ! z/ : (aP, Q) . /z = Nr'P . i/ = Nr'Q . #smor(P + Q) :.

D I- . Prop

In the following propositions proofs are omitted, since they are exactly

analogous to proofs of propositions in #110 whose numbers have the same

decimal part.

#180-21. I- :. fx,v < NR . D : Ze fi+ v . = . (&P,Q) .Pefi.Qev. £smor (P + Q)

#180-211. h:.^j/eNR.D:Ze/A+ P.s.
(gi2,S) . Resmor"fL . Sesmor'S . C'P * C"# = A . Z= R$S

#180212. h.^j/eNR.D^e/i + i/.E.

(gP) . R e smor'V .RdZ.Z\{- C*R) e smor"i/

#180-22. h . N r'P+N r'Q = Nr'(P + Q)
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*18024. I- : R smorP . S smor Q . D . N r'P 4-N r'S=N r'P +N
g
r'Q

[*180l5-22]

#180'3. h .Nr'P4-Nr'£ = N r'P4-Nr'Q = Nr'P4-N r'Q

= N r'P +N r'Q - Nr'(P + Q) [#180-22 . (*180'03-031)]

#180 31. h : P smor i2 . Q smor £ . D . Nr'P+ Nr'Q = Nr'P + Nr'S

*18032. h : C'P * C'Q = A . D . Nr'P + Nr'Q = Nr'(P £Q) [*180l4-3]

*180'4. l-:a!/i + y.D./i
)
j/eNE-M.

/
it

)
reN R

#18042. h./i-i-jeNR

#18043. \-:tt, + v = 'Nar
iZ. = .Zefi+ v

#180-53. h . (P + (J) + P smor P + (Q + R)

Hem.

h . #160-44 . (#180-01) . D
l-:P' = |(Aft C"P)n;

J,
(A n C<Qyn'>P .Q' = |(An C'P)^(A n C'P)

J, ^;Q

.

P' = {A n C'(P + Q)} I wR . D . P' 4- Q' =
J,
(A n C'R)h>{P + Q) . (1)

[(#180-01)] D . (P'4-Q')$K = (P + Q) + R

.

[#160-31] D.P'$(Q'$R')~(P + Q) + R (2)

h . (1) . #18011—^? . #160-14 . D h : Hp (1) . D .

C'P'nC'P' = A.C'Q'nC"P' = A (3)

I- . #18011 . #72-411 . #150-22 . D h : Hp (1) . D . C'P' n C'Q' - A (4)

I- . (3) . (4) . #16014 . D r : Hp (1) . D . C'P' rs C'(Q'$R') = A (5)

h . #180-1 2 . D h : Hp (1) . D . P' smorP . Q' smor Q . R' smorR (6)

I- . (3) . (6) . #180-13 . D h : Hp (1) . D . Qf$R' smor Q +R .

[(o).(6).*180-13] D . P'$(Q' 4-P') smor P + (Q + R).

[(2)] D.(P + Q) + PsmorP + (Q + P) (7)

h. (7). #1319.31-. Prop

#180-531. P + Q + P = (P + £) + P Df

#180-54 h . (Nr'P + Nr'Q) -f Nr'P = Nr'(P + Q + R)

#180-541. h . Nr'P+ (Nr'Q 4- Nr'P) = Nr'(P + Q + R)

#180-55. h . (Nr'P + Nr'Q) + Nr'P = Nr'P 4- (Nr'Q+ Nr'P)

#180-551. h . (Nor'P +N r'Q) + Nor'P =N r'P + (N r'Q +N r*P)

#180-56. \-.(/i + v) + 9 = fJL + (v + i!r)

#180-561. h+ v + ht = (/m + v)+ 9 Df

#180-57. I" .(fJL+ v) + ('Br + p) = fJ>+ V + 1!T + p

#180-6. f-:/ieNR.D./A-i-Or = smor'V = Or -i-/i

Observe that fx 4- r = r 4- (x is an equation depending upon the peculiar

properties of r . We do not in general have fjL+ v= v + fi unless ll and v are

finite ordinals.

r & w ii 30
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#180 61 . h . Nr'P + r = Nr'P - r 4- Nr'P

#18062. \-:/A + v^0r . = .fJi~0r .v = 0r

*180'64. h.0r + r = r

#180642. f-.2r -i-0r=0r -i-2r = 2r

Note that l + r , which will be defined in #181, is rj not i.

The following propositions, being concerned with the relations of relation-

numbers and cardinal numbers, have no analogues in #110.

*1807. h . C"Nr'(P + Q) = C'Nr'P +c C'Nr'Q = Nc'C'P + Nc'O'Q

Dem.

f- . #152-7 . D h . C"Nr'(P+ Q) = Nc'C'(P + Q)

[#180-111] = Nc'(C'P + C'Q)

[#110-3] =Nc'C"P+c :Nc<C<Q (1)

[#152-7] = C"Nr'P+c C"Nr'Q (2)

f-.(l).(2).Dh.Prop

#180-71. h^^eNR.D. C"V+ v) = C"> +e C"v

Dem.

f- . #152-4 . D f- : Hp . D . (rP,Q) . ,u = Nr'P . i/ = Nr'Q.

[#180-3] D . (aP, Q) . /* - Nr'P . z, = Nr'Q .,*+ * = Nr'(P + Q)

.

[*180-7] D . (aP, Q) . ii = Nr'P . v = Nr'Q .

C"(fi+ v) = C'Nr'P +c C'Nr'Q .

[#13*193] D . C'Vi v) = C"fi +c C"v : D I" . Prop



*181. ON THE ADDITION OF UNITY TO A RELATION-NUMBER

Summary q/"*181.

The relation-number i has, according to our definitions, no meaning in

isolation, because our definitions are framed with a view to series, and a series

cannot consist of one term. But we can add one term to a series; hence i is

required as an addendum. In order to get our definitions in the most manage-
able form, we first construct a relation, which we call P 4> ®, which is such

that; whenever P exists, P -\*x has one more terra in its field than P\ the

relation-number of this relation is then defined as Nr'P-fl- We add also a

definition

i-j-i = 2r Df

which is purely formal, and serves to minimize exceptions to the associative

law of addition.

The definitions are closely analogous to those of #180. We put

P+>x=lAxH>P-l*(\r>C'P)ll'a; Df

with a similar definition for x <+- P. as and P may be of any relative types,

and we have always

I AjvPsmorP. (A rs C*P) I t,'x~eC< I AJ6P (*1811M2).

We put

p + i = R {(3P, as) . N r'P = fi . R smor (P-+* x)} Df

with a similar definition for i -f /^. We also introduce definitions analogous

to *180'03-031.

The principal propositions of this number are

*181'3. h.Nr<P+i=Nor<P + i = Nr<(P4»^)

*18i-31. h : P smor Q . D . Nr'P + i = Nr'Q + 1

*181 *32. h : as~ e C'P . D . Nr'P+ i = Nr ((P-b as)

*181'33. l-:.^,z/eNR.a!/i-fi.D:^=v.s.^-j-i=z;-j-i. = .i+/i=i + v

*1814. l-^I^-i-i.D.^eNR-t'A.ycieNoR

*18142. h.^+ ieNR
The following propositions are formally forms of the associative law, but

they need separate proof on account of the peculiarity of 1.

*181-54. r-:if + r .D.(^ + j/) + i-/A + (v4-i)

*181-56. I- :^ + 0,..D.(/z+i) + i=^ + (i + i) = /*-i-2r

*181-58. f-:/t + r .i/ + r .D.(^+i)+ i'«/*+ (i + v)

30—2
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*181'59. h:n$0r .v^0r .D.(f
M+i)+ (i+v) = iJ,+ 2r+ v

The hypotheses in the above propositions are essential.

#181 6. h : a ! P 3 C"Nr'(P 4* x) = Nc'O'P + 1

#181-62. |-:^eNR-t (Or .D.C"V+i) = C"(U^) = C fV+c l

These propositions give the connection with cardinals.

#18101. P -f> « = i A-JtiP -|> (A n C'P)
J,

«'« Df

#181011. a;4 P = («'«) i(An C'P) <f A^ J,
H?P Df

#18102. ^+ i = P{(aP,tf).N r^P = /i .i2smor(P4»#)} Df

#181021. i + fi =£ {(gP, «) N r'P = fi . R smor (cc4 P)} Df

#18103. Nr'P+ i = N r'P+i Df

#181031. i-i-Nr'P = i4-N r'P Df

#18104 \ + \ = 2r Df

Propositions concerning x4 P are omitted in what follows, since they

are proved exactly as the analogous propositions concerning P-f># are

proved.

#1811. \-:.R(P+>x)S. = :(ny,z).yPz.R = (i'y)lAx .S=(t<z)lA x .v.

(W) .yeC<P.R = (I'y) | A, . 8 = (A n C'P) i t'x [(#18101)]

#181-11. h.(Art C lP) I t'x~eC I Axh>P

Dem.

r . #15022 . Dh.C'l A xh>P = J,
A a"i"CfP

.

[#5515] D h : Q e (7
(
4A^P . 3>c . d'Q = i

tAx (1)

I- . #55-15 . D r . d'(A « C'P) I t'x= jV<» (2)

V . (1). (2). #51161 . D r : Q e C<
J,
AjOP . DQ . d'Q$ d'(A n C'P) 4 t'«.

[#30*37.Transp] Dg .^(An C'P) 1 1'*

:

[#13-196] D h . (A n C'P) i l'x ne&l Ajt'>P .Dr. Prop

#18112. h .
J,
A^pP smor P [*151*61-65]

#181-13. h : Q smor P. y^e C'Q. D . Q+>y smorP-+»#

Dem.
h . #181-12 . D h : Hp . D . Q smor | A»H»P (1)

h . (1) . #161-31 . #181-11 .Dr. Prop

*181-2. h : Z e p -j- i . = . (aP, «) . fJl=N r'P . Zsmor (P 4* x) [(#181-02)]

#181 21. \-:.p6~KR.D:Zefi+i. = . (rP,x) .Pep. Zsmor (P-+> x)

[#181-2. #155-26]
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#181 22. h . N r'P + i = Nr'(P 4> x)

Dem.

I- . #181'21 . D h : ZeN r'P + i . = . (g<2, y) . Q eN r'P . ^smor (Q 4>y) (1)

K(l).*15512. #152-11. Dh.Nr'(P4»tf)CN r'P + i
(2)

h . #181-1 211 . #161-31 . D h : QeNor'P.^smor(Q4>y) -3.^smor(P4>a!) (3)

H
.
(1) . (3) . #15211 . D h : ZeN r

(P + i . D . #eNr'(P4»#) (4)

f-.(2)..(4).DKProp

#18124. h:PsmorQ.D.N r'P + i = N r'Q-i-i [*181-22'1211 . *16131]

#1813. h.Nr'P44 = N r'P-i-i = Nr<(P4»#) [#181-22 .(#181-03)]

#181'31. h:PsmorQ.D.Nr'P-fi = Nr'Q-i-i [*181'3-24]

#18132. h:a~ e 0T.D.Nr'P4-i=Nr'(P+>a-) [*181*3'13]

#181 33. h:.fi,v€NR .'^]fj. + i.^:fM = v. = .fi + i = v + i. = .i+fJL = i-\.v

[#161-33. *181-3-ll-12]

The above proposition is used in #253"23'571.

#181-4. h:a!^4-i.D,^eNR-e'A./*cN R [#181'2 . #155*22]

#18142. h.^+ ieNR
Dem.

f- . #181-3 . D I- : AteN R . D . (gP,*?) . ^+ i = Nr'(P -+> <b) .

[#152-4] D.^ + leNR (1)

h . #181-4 . D h : ^~e N R . D . /j.+ 1 = A .

[#154-242] D.^ + leNR (2)

h . (1) . (2) . D h . Prop

#181-43. \-:
fi^l = ^Qr

tZ. = .Ze/jL + l [#155-26 . #181-42]

The following propositions are concerned with the associative law when

1 is one of the addenda.

#181-53. h : -j ! P . oc^y .D . (P \>x) 4» y smor P + (x I y)

Dem.

I- . #13-15 . (#181-01) . D
\- . (P ^x)i*y = I Ayh

m

>[lAxh'>P +>(A nC'P) I c'a:} -l* {A * C'(P -\>x)} li'y

[#161-4] - i A„hS 1 A^^P-b i A/t'(A n OP)
J, e'«-f> (A n C"(P -+»#)} | t'y (1)

f- . (1) . #161-22 . D h : Hp . D . (P 4> «) 4> 2/

= I Ayh'> I Aji'>P$.
{ I Ay'i'(A « C'P) i I'x} I [{A n C'(P-M} i f'y] (2)

f . #180-13 . #181*11 . D
I- : Hp . D . I Ayu> I AjtiP 4.

{
X A/t'(An C'P) | t

(^[[An C"(P4> #)}>UYI

smor P + (# 4 2/) (3)

K (2) . (3) . D h . Prop
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#18154. H: vJr0r .3.(fM + v) + i=fi + (v + i)

Bern.

h. #181-2. *180-2.Dh: Fe (^ + i/)4>i-s •

(gP, Q, R,x) . Nor'P = fi . 'N r'Q = v . P smor P + Q. YsmorR+>x.
[*181-22'31]= . (gP, Q,«) . N r'P = /* . N r'Q = * . F smor (P + Q) 4> « (1)

f- . #153-14 . D h :. Hp . D : N/Q = * . D . g ! Q (2)

I- . *160'44 . (#180-01 . #181-01) .

h : F = i Ax n> i AciQh>P .Q' = l Axh'>Actp | n>Q .I = {An C'(P + Q)} I i'x

.

D.F$Q> = lAxn>(P + Q).(F$Q')-frX = {P + Q)-\>x (3)

r . #180-12 . #181-12 . D h : Hp (3) . D .F smor P . Q' smor Q (4>

h . #18011 . #72-411 . #181-11 . (3) . D

I- : Hp (3) . D . C'F n C'Q' = A . X~

e

C'F . X~eC'Q' (5)

h. #161-23. (4). Dh:Hp (3). g !Q.D.(P' 4.Q')-bX = P'4.(Q'4>^) (6)

I- . #181 -13 . (4) . (5) . D r : Hp (3) . D . Q' +>X smor (Qj*x).

[*180-13.(4).(5)] D . P'$(Q' +> X) smor P + (Q 4> *) (7)

K(l).(2).(6).(7).Dh:.Hp.Hp(3).D:Fe^+ *) + i. = .

(gP, Q, a) . N r'P = ^ . N r'Q = v . Fsmor P + (Q 4» <c)

.

[*180-3.*181-3] = . (gP,Q,#) . N r'P = p . N r'Q = v . FeN r<P + (N r<£+ l)

.

[*W193.*l55-2] = .
fi,ve'N R.Yeft+ (v + i).

[#181 '4.*1 80-4] =
m Ye/i+ (v + i) (8)

h. (8). #1319. DK Prop

#181-55. \-;fi^0r .D.i + (fi+ v) = (i+ft)+ v [Proof as in #181-54]

#181'56. \-:/j,±0r .D.(tA + i)+ i= f// + (i + i) = fi + 2r

Bern.

h. *1532. #180-2. D

l-:^e^-i-2r . = .(aP ?
«

J 2/).^ = Nar
<P.'«4=2/.ZsmorP+(;r42/) (!)

h. (1). *181'53. DH.Hp.D:
Z€ (x + 2 r . = . (gP, x,y).fi~ N r'P . # 4= 2/ ^smor (P 4> #) 4* y -

[#181-22] = . (gP, «, y) . ^ - N r'P . a * y . £ e (N r'P + i) + i .

[#181-4] =.(gfl?,y).«; + y.^e(/A4-i)+ i.

[#24-1] =.Ze(ft+ i)+ i (2)

K (2). (#181-04). DK Prop

The last line in the above proof, in which #241 is used, is legitimate

because x and y may be of any type whatever, and therefore the fact that

A =f V is sufficient to establish (g#, y) . x 4= y in the sense wanted.

#181-561. /i4-i + i=/*+(i + i) Df

This definition adopts the opposite convention to that usually adopted.

But it is convenient to have r -j-i + i = 2r , and also to have as much simi-

larity as possible between the results of adding i at the beginning and end
of a relation. Both reasons lead to the adoption of the above convention.

(Cf. #181-57-571, below.)
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#181-57. h: At + Or .D.i4-(i+ At)=s (i4-i) + /* = 2r +/*

[Proofasin*181-56]

181-571. i + i+jt«(i+i)4-/* Df

*18158. \-: H.^O t
..v^Or .D.(fJl +i) + v = p + {i+v) [#161-232]

The proof proceeds in the same way as that of #181*54.

#181-59. \-:/M$0r .v±0r .3.( /
jl + i)+ (i + v) = n+ 2r+ v [#161-25]

The above propositions show that, except when one of the summands is

zero, the associative law holds for i just as if it were a relation-number.

The following propositions are concerned with relations to cardinal

addition.

*1816. h : a ! P . D . C"Nr'(P 4> as) = Nc'O'P +c 1

Bern.

\- . #152-7 . D h . C"Nr'(P -+»#) = Nc'C"(P -+»#) •

V . (1) . #161-14 . D h : Hp . D . C"Nr'(P 4> ce)

= Nc'[ 4 A.'VC'P u t'((A n OP) I t'x}]

[*110-13-3.*181-11.*110-12] =Nc'C"P+ l : D h . Prop

#18161. h : a ! P . D . C"Nr'(#4 P) = 1 + Nc'O'P = Nc<C'P + 1

[Proof as in #181-6]

#181-62. I- : fieNK - t'0r . D . CV + 1) = #"(1 +^) = C*V+o 1

Pm.
h . #153-16 . #152-4 . D h : Hp . D.(aP). /

a=Nr'P.a!P.

[#181-3-6] D.(aP).^=Nr'P.C"(Nr
<P-j-i)=Nc <CKP+ l

[#152-7] «C"Nr'P+cl.

[#13-193] D.C"(/i+ i ) = C"V+c l (1)

Similarly h : Hp . D . C"(l + p) = 1 +c C"> (2)

h. (1). (2). #110-51. Dh. Prop



*182. ON SEPARATED RELATIONS

Summary o/*182.

In this number, we have to consider, as a preliminary to the addition of

the relation-numbers of a field, the properties of the relation 1>P, which is

defined as follows. If x%y is any function of two arguments in the sense

of #38, we put ? 'a? - x $ x Df. Thus
J

« Q = Q 1 Q, i.e. I'Q^l Q>Q. Hence

JiP is the relation of j Q>Q to I R'>R when QPR. Thus the symbol
J
>P

is only significant when P is a relation of relations ; when this is the case,
/"\

1>P is the relation which results when, for every Q which is a member of
>

0'P}
every member x of C'Q is replaced by # j, Q. The result is a RePexcl,

whose arithmetical properties serve to define the arithmetical properties of

the sum of the relation-numbers of members of G'P. In the next number,

we shall put

2Nr'P = Nr'2'£p Df.
•j

We shall put later

nNr'P = Nr'II<P
and we shall find

n'P = s;Prod'4;P.Nr<n'P = Nr'Prod<J;P.

Thus we might have dispensed with II'P as a fundamental notion, using

Prod instead, and putting

n<p=s;Prod< J;p Df.

But this course is on the whole less convenient than that adopted in #172

and #173.

The notation % is thus required in connection with ordinal addition,

where it is almost indispensable. It has besides certain minor uses. The

object of the notation is to enable us to exhibit as a function of x an ex-

pression of the form x % x, where % is any descriptive double function which

exists for all possible pairs of arguments. Thus for example x ^ x is a

function of x, but the notations hitherto introduced do not enable us to

exhibit it in the form R t
x. Hence if we wish (say) to deal with the class

a.

P {(g#) *xea..P = x],%}

we cannot write it in the form R (ta unless we introduce a new notation.

We put

J,

lx — x X x

whence P {(g/z?) .xea..P = x\
f
x} = \ "a.
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We introduce the notation generally for all descriptive double functions

which exist for all possible pairs of arguments. Thus " $ " in this number
corresponds to " $ " in #38.

In the present number, we shall begin by a few propositions illustrating

possible uses of the notation $ . Thus for example if A, is a class of relations,

we have hitherto had no simple notation for expressing the class of their

squares. But since Rs =
|
'R, the class of the squares of A,'s is

|
"X. The

notation is, however, introduced chiefly in order to be applied to \ and

4.. We therefore proceed almost at once to propositions on ^, and especially

<">

•on I >P. We have

#182 16162. h.l'fPe Rel'excl . 1 e 1 -> 1 . l'>P smor P
•J V *9

#182 2. h . I 'Q = Il<(Q IQ) = I1<1<Q

#18221. \-.i>p = n>l>p
•J

We next prove (#182*27) that if PeRePexcl, then P has double likeness

to ^ >P, the double correlator being I
\
D with its converse domain limited

to C'l'l'>P (#182-26). We then prove (#182-33) that if T^C'^'P is a

double correlator of P with Q, then T[|Cnv'jTf (with its converse domain

limited) is a double correlator of 1>P and I 'Q, whence we deduce
•j m t

s\ /-\

#182'34. h : P smor smor Q . D . 1 >P smor smor I »Q
•} '}

We next proceed to prove

#182-42. I- . II'P = sSProd' \ 5?=*^' J >P= Wl' J >P

The proof of this is as follows: In virtue of #182'21 and the associative

law for II, we have

Now £'I;P = Pvy/rC"P (#182-413),

and Il<(PvItC'P) = n<P (#172-51).

Hence our proposition results. Hence we arrive at

#182-44. I- . Nr'n'P = Nr'Prod* J JP = Nr<n< J >P

Finally we have some propositions showing how the notation % can be

applied in cardinals. It is then applied to I , instead of, as above, to I

.
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We have (#182'5-51'52) e I a = I 'a . « I "« = J "« . 2'* = s< I "«. Thus the
** »* jj

notation of the present number might have been employed in dealing with

cardinal addition (#112) instead of the notation e J a. The general notation

P 1 x was, however, required for other purposes (cf. #85) and could not have

been dispensed with.

In #183 we shall put

2Nr<P = Nr'2'I;P,

and by #182'52 we have

2Nc'« = NcV I "tc.

It will be seen that these formulae have the usual kind of analogy.

#18201. % = $%{y = x%x) Df

#18202. Viy%x.=a.y**x%x [(*182'01)]

#182021. b . ?
lx = x %

x

[#18202 . #303]

#182-022. b.E I %
l
sc [#182021 . #14-21]

#182023. (- : ? e 1 -* Cls : (a) . a

C

a* J [#182022 . #71166 . #33431]

#182-03. b .?<£ = R* [#182-021 . (#34-02)]

Thus if \ is a class of relations, the class of their squares is
|

"\.

#182-031. K ?'« = «?« [#182-021]

#182032. b.1 tx = x\,x [#182-021]

#182033. h . 2 - % = D (

I = l g [#5613 . #182032 . #1533]

#182'04 b . I 'a. = i a"a [#182-021 . #38-2]

Observe that in i , we first take I , and then put a circumflex over it.

If we first took j, , we could not then place two commas under it, because |,

is a relation, not a double descriptive function, and two commas can only

significantly be placed under a double descriptive function.

#182-05. 1- . I 'Q = I Q>Q = Q I Q [#182-021 . #150-6]

The relation for the sake of which the above notation is chiefly introduced

is X >P, where P is a relation of relations. If P relates Q and R, then J, >P

relates
J, Q>Q and

J,
R'*R. This is stated in the following proposition:

#182-1. b.y>P =xf
{(a& R) . QPR >X = Qj,Q.Y=RlR]

[*182-023-05 . #150-4]
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#182 11. I- . C< I >P = I «C'P [*1 50-22]

#18212. b . C< I <Q = I Q«C'Q ^F\Q [*182'05 . *15022 . *33'5 . (#85-5)]

#18213. \-.C"C t

l'>P = Fl"C'P [*182-11-12]

#18214. r.PJel-*l

Dem.

b . #18212 . 3\-:FlQ = FlR.3.l Q"C'Q = I R"C'R (1)

f- . (1) . *55'232 . #37-45 . D h :FIQ=FIR.±\Q . D .Q = R (2)

1-
. #37-45

.

D b :
J,
Q"C<Q =

J,
R"C'R . Q »A . D 4 i£"(7 tf

7e =A

.

[*37 -45.*33'241] D . R = A (3)

K(l).(2).(3). D H : PI Q = P J £.:>.£ = £OK Prop

#182 15. r : g ! PJ Qn P J £ . D . Q = P

1- . *182'12 . D f- : Hp . D . g !
J,
Q"C'Q n j £"C*£ .

[*55'232] D . Q = i£ : D r . Prop

#182 16. f- . J ">P e Rel2 excl [#182-12'15]

#182161. bil'Q^l'R.s.QaR

Dem.

b . #182-05 .0\-:l
(Q = l<R. = .QlQ = RlR.

[#165-23] LQ= R (1)

I- . (1) . #30-37 . D h . Prop

#182162. b . I € 1 -» 1

.

1 JPsmor P [#182-161 . *71"57 . #151-243]

#18217. b . C<$' l '>P = S{(<&Q,x) .QeC'P.xeC'Q.S^oclQ]

Dem.
b . #182-12 . #162-22 . #40-4 . D

[#55-231] = S{(rQ,x) t QeC'P.%eC<Q.$= xlQ}.Db. Prop

#18218. b . s'C'Z' J JP - Pf C'P
•)

Dem.
r. #182-17. D

b.s<C<$<],'>P = §R{(RQ,a;).QeC<P.W€C<Q. y(*J, Q)P}
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[#55'13] = pR ((gQ.a?) .QeC'P .xeClQ.y = oc . R=Q]
[*13'22] = $R{Re C'P . y e C'R]

[#33-51] = §R{Re C'P . yFR)

[#35-101] = F[C lP . D I- . Prop

#18219. t- . s'D"C<2' I >P = C"2'P . s<<I"C"2< 1 >P = C'P - t
fA

Dew.

1- . #41-43 . #18218 . D V . s
fD"CfV J JP = D^PfC'P)

[#162-23]
' = <7<2'P (1)

I- , #41-44 . #182-18 .Dr. s'd"^' i JP = d^PfOP)

[#172-192] = C"P-t'A (2)

I- . (1) . (2) . D V . Prop

*1822. b . J
<Q= n<(Q I Q) = II< I 'Q [#182'05-032 . #172-2]

#18221. b.i'*P = Wl'>P [#182-2]

The following propositions lead up to #182'26'27.

#182-22. r . D; I <Q = Prod' | <Q « pQ [#1822 . #1731-22]

#182-23. r . 7;d; J <Q =» Q [*182'22 . #151'252]
•)

#182-24. I- . Tf JDf > l'>P = P [#182-23]
•t

#182-25. \r . ^D^' I >P = 2'P . C*2* J
JP C a^Tj D)

Dew.

K #55-15. DI-.t'D' 4,^ = 3,.

[#33-43] DK jQVe(I<(t|D).

[#18212] DK(7<I<QC<P(ijD).

[#162-22] Df-.C«2'i;PCa'(T|D).

[#162-35] D f- .^D52'
J
?P = 2'tf JDf J

J
JP

[#182-24]
' = 2<P.DKProp

#182-26. r : P € Rel2 excl . D . T| D f C<2< J »P eP smbr smor J 5P

-Dew.

!-.*182'24-25.Df-.P = (r|D)t5iJP.C'2 £ ljPCa'(r|D) (1)
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K*182-17.*55-15.D

h:S,Te C't< I
iP . t'DSS =I'DT . D .

K (2). #16311. D

r : Hp . S, T e C"2< J >P . 7'D'S= ^D'T . D .

[#13l95-17.2]D.)Sar (3)

K(3).*7r55OK-HpO.i|Dr0'2'J;Pel-*l (4)

h. (!) (4). #16418. DK Prop

#18227. r : P 6 Rel2 excl . D . P smor smor j SP [#182-26]

The following propositions lead up to #182'33'34.

#182-3. r : TfC'X'Q eP smor smor Q . D . (^j Cnv'l^f) |* C'V J
JQ e 1 -* 1

Dm. ^

r : T^aWC!' I JQ, Tf T s'd^G'V J 5Q e Cls -» 1

.

(T||Cnv'T)rC*2'|SQcl-+l (1)

r . #182-19 . #16418 . D h : Hp . D . T (VD"C'2'
J
JQ e 1 -* 1 (2)

r . *164\L813

.

DFiHp.D.^^'Qel-^l.

[#182-19] D.rf|V<I"C7'2'JiQel-*I (3)

r . *164'18 . #182-19 . D b : Hp . D . s<r>"C"2 f

J JQ C d'T (4)

h. #1501. #33431. Dh.s*a"C?'2'l'<2Ca'7l

t

1

(5)

h.(l).(2).(3).(4).(5).Dh
;
Prop

#182-31. h : B !! T"C'S .D.J
lT>S*=(T Ij Cnv^t)'

J SSf

Dem. \- . #18205 . D K J <T>S~(T>S) ^(T'S) (1)

K (1) . #165-31 . 3

H ! Hp . D . J 'TO = T| Jflf
J,

(Tifif)

[#150-1 .#165-321] = T| »( |
Cnv'Tf^ J, £

[#150-13.#182*05]= (T\\ Cnv'Tty Z'S'.lh. Prop
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*18232. H : E !! T"C'VQ .3 .l'>Tf>Q = (r\\ CnvTf) f 5

J
'>Q

Dem.

h . #162*22 . D b :. Hp . D : S e C'Q . Ds . E !! T"C'S .

[#182-31] Ds . I T>S = (T\\ Cnv<TfY> I 'S

:

[#15035*1] D : J
J Tf»S = (T\\ Cnv'T-f)Y> l'>Q:.Dh. Prop

#182*33. h : T\C'VP eP smor smor Q . D .

(r||Cnv'Tt)r^SU5Q6(7;P)^orsmor(Ii(3)

r . #164-18 . D F : Hp . D . CL"/
1 C C'Z'Q . T^C'^'P el-+l . P=T\">Q

.

[#74*11] D . E !! T'C't'Q . P = TfiQ .

[#182-32] D.^P = (T||Cnv (7
Tf)tn^ (1)

\- . (1) . #182-3 . #164-18 . D f- . Prop
/^ *\

#182'34. H : P smor smor Q . D .
J,
>P smor smor

J,
JQ [#182-33]

•i •>

/-»

The converse of the above proposition is false. For example, if Q = J,
JP,

we shall have \, >P smor smor 4- 'Q, by #182*16-27, but we shall not have

P smor smor Q unless PeRePexcl, as appears from #182*16 and #164*23.

#182 -41 1*412 are lemmas for #182*413. All the following propositions

lead up to #182-42, which leads to #182*44.

#182*411. f-

.

slC< I'P^It&P
Dem. h . #150*22 . D f- . s'C J '>P = s' J "C'P

[#182-032] = s<M {(fry) . y e C'P . R = y \ y]

[#41-11] =M
{(^) .y*C'P.x(yly)*}

[*55*13.#13-195] = xz{zeCtP.x = z)

[#50*1.*35*101] = I T C'P . D \- . Prop

#182-412. b.F'>l'>P = P
Dem.

r . #150-11 . #182*032 . D 1- . F'> J >P = my {(^z
t
w).zPw . xF(zlz).yF(w

J,
w)(

[#33-51.#5 5*1 5] = xy {faz, w) . zPw .x = z.y= w]

[#13-22] = P . D (- . Prop

#182-413. I- . £ f

J JP = P vy / p CfP [*182-411*412 . #162*1]

#182*414. K I;p e Rel*excl

Dem.

V . #150-22 . D h . Cf

J SP = J "OP
[#182-032] =0{(a^)-^eC"-P-Q = ^>L^{ (1)
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h . (1) . #5515 . D h : Q, R e C< J >P . g ! C'Q n GlE . D

.

(3^ V) • #> y e C'P . Q = a?
J,

a? . R = y J, # . g t t<# n ^y .

[51*231.Transp] D . (g#, y)-Q~xlx.R = yly.x=^y.
[13195172] Z> . Q = P : D H . Prop

182*415. h:QeC"I;P.D.(7'Qel

Dm.
h . #150*22 . D h : Hp . D . (gar) . a* e C'P . Q = x

J,
og .

[55*15] D . (g#) . a* e C'P . CQ = i'x .

[521] D.C'QelOh.Prop

The purpose of the above proposition is to enable us to apply 174*221*231

to II'Ii; J>'P,as is done in 182'42-43'431 below.

18242. I- . n'P = s>'Prod<
J >P

= i>D>n' J >'P = Wl c

l'>P

Dem.

h . *i82-2i .31-. s»d;if J ;p= ^duiti; 1 ;p

[*174-221.*182'414415] = ITS' J >P (1)

[182-413] = II'(P v I [ C'P)

[17251] =WP (2)

K (1). (2). 173-1. Dh. Prop

182-43. r- . s T (C'Prod' £ JP) e (ITP)smor (Prod* £ JP)

Dew.

I-. #174-231 . 182-414-415 . D

h , i T (C'Prod 'II J J 'P) e (II'2 r

I ;P) snTor (Prod'IIJ J >P) (1)

(- . (1) , 182-21-42 . D h . Prop

182-431. f- . s
i

D T (CII' I ~>P) e (II 'P) smof (II'
J
JP)

[174 221 . 182-414415-21-42]

*182'44. KNr'n'P = Nr<Prod'J;p=Nr'n'I;p [*182'43*431. 152-321]

18245. r : P e Rel2 excl . D . Nr'Prod'P = Nr'Prod' \ '>P [#18244.#17316]

The following propositions are concerned with cardinals. They show

how to express the propositions and definitions of *112 in the notation of

this number, and they thereby illustrate the analogy of cardinal and ordinal

addition.

182-5. f- . e I o = I 'a [#182*04 . #85*601]

182-51. \r . e I "k = I "k [*182-5]
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*182 52. h.2 f* = s'I"K.2Nc'* = NcvJ"* [#182*51 .#1121101]

*182-53. biC^C'Pel^l.D.

(
i C) UC'V l JP) e (

1 «C«C<P) sm sm (C"C< J 5P)
•t t> •)

Dem.

h . #18218 . #41-44 . 3 h . s'<J"C<2;< J
JP= d^Pf C'P)

[#35-64]
' CC'P (1)

h . (1) . #7475 . D (- : Hp . 3 . ( | C) [ C lV J
JP e 1 -* 1 (2)

r . #55581 ^ . D h . (a? j Q) |

(7 = x
J,
C'Q .

[#38-11] D H .
|
C' I Q'cc = I (C'QYx

.

[*1 82-12-04] Dh. I C"C" J %> = 1 '<?%) .

•t a

[#1 50-22] D f- .
|
C<"C"C ( l'P = l "C"C lP (3)

f- . (2) . (3) . *111-14 . *162-22 . D I- . Prop

#182 54. f- : f C'P e 1 -+ 1 . D . Nc'C'S* J
JP = XNc'C"C"P

[*182-52'53. #111-44]



*183. THE SUM OF THE RELATION-NUMBERS OF A FIELD

Summary o/#183.

In this number we have to define and consider the sum of the relation-

numbers of the members of C'P, where P is a relation of relations. Since

relational sums are not commutative, we cannot define the sum of the

relation-numbers of members of a class of relations \: it is necessary that

\ should be given as the field of a relation P, where P determines the order

in which the summation is to be effected.

/-s

In order to avoid repetition, we replace P by I >P, so that if Q is a

member of C'P, Q is replaced by | 'Q> *'•& by I Q'Q- This relation is like Q,

and its field has no members in common with the field of
J,
R>R, unless Q = R.

Hence we are led to the following definition

:

*18301. SNr'P = Nr<2< J >P Df
m t

This definition is analogous to #11201, as appears from #1 82*52, and the

propositions of the present number are analogous to some of the propositions

of #112.

We have not merely

*183 11. I- : P smor smor Q . D . SNr'P = XNr'Q

but also

*18315. r- : 1 »P smor smor J JQ . D . SNr'P = SNr'Q
j •>

which is a proposition with a weaker hypothesis than that of #183*1 1 (cf.

note to *182 34).

Important propositions in this number are

*183 13. h.Pe Rel2 excl . D . Nr'S'P = SNr'P

*183-2. 1- : SNr'P = r . == . t'P = A
I.e. a sura is only zero when there is no summand except (at most) zero.

(Cf. *162-4-45.)

*183-25. h . SNrfP
J,

*>Q = Nr'(<2 x P)

#18326. b :. Mult ax . D : P e Nr'iZ . C'P C Nr'S . D . SNr'P = Nr<(£ x S)

This proposition connects addition and multiplication.

#183-31. r : P + Q . D . 2Nr'(P | Q) = Nr'P -i- Nr'Q

This proposition connects the two kinds of addition. We have also

#18333. f- : a I P . Z~ e C'P . 3 . 2Nr'(P -+» Z) = SNr'P+ Nr'^
R&W II 31
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The associative law of addition in a very general form is

18343. r : P e Rel2 excl . D . SNr'SJ J f>P = SSr'X'P

Finally the connection of ordinal and cardinal addition is given by

1835. r : G\ C'P e 1 -+ 1 . 3 . C"2Nr'P = 2Nc<C«C'P

183-01. 2Nr'P = Nr'2'j;p Df

1831. I- . SNr'P = Nr<2<
J >P [(#183-01)]

18311. h : P smor smor Q . D . SNr'P =* SNr'Q

Dew.

h . 182-34 . D r- : Hp . D . ( 1 5P) smor smor ( I >Q) .

•r 't

[164-151] D.(2'JjP)smor(S'J;Q).

[#183-1.*152'321] 3 . SNr'P = SNr'Q Or. Prop

183-12. r : P smor smor I J Q . D . Nr'S'P = SNr'Q [#164-151 . #183-1]
•i

183-13. r : P e Rel2 excl . D . Nr'S'P = SNr'P [*182'27 . #183-12]

183-14. t- . SNr'P= 2Nr< \ \P

Dem. ^
h . 18216 . #183*13 .31-. Nr'S'J, >P = SNr'J, »P (1)

K (1). #1831. Dh. Prop

183-15. (- : 1 JP smor smor T JQ . 3 . SNr'P = SNr'Q [*183'11'14]
j mJ

1832. 1- : SNr'P = r . == . 2<P = A
Dem.

h . #1831 . #153-17 . D

r:.2Nr'P = r . = :2'I;P = A:j

[162-42] = :C<J;PO'A:

[182-05] =:Qe'c<P.1Q .lQ'>Q~A:
[151-65.#153101] = : Q e C'P . 3Q . Q= A :

[162-42] = : 2<P = A :. D r . Prop

#183'22. b :. Multax . D:g!( J;P)smor (T >Q) n El's]»0iO.2Nr<P=2Nr'G

Dem,

V . #16446 . #182-16 . D

1- :. Mult ax . D : a ! ( J
ip) sHTof ( J

iQ) n Rl'smor . D . 2' J >P smor S tf

J 5Q .

[*183-1.#152-321] '

'

D.SNr'P-SNr'QoV.Prop
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#183-23. h :. Mult ax . D : P, Q 6 Rel2 excl . 3 ! P smor Q n Rl'smor . D

.

2Nr'P = :SNr<Q [*164'46 . #18313]

#183 231. I- : P e Nr'tf . C'P C Nr'S . = . I >P e Nr'R . Cf 1 JP C NrSS

Dew.

h . #182-162 . #15231 '321 . D h : P e Nr'i? . = . 1 »P e Nr'i? (1)

Qe^P.Dg.lQJQeNr'/Sf:

Qetf'P.Dg.QeNr'S:

C'PCNr'tf (2)

f- . #18205*11 . 3 h : C< I JP C Nr'/Sf .
=

[#151-65] =

[#22-1] =

h.(l).(2).Dh.Prop

#183 24. l-:.Multax.D:P,QeNr (i2.(7'P,a^eCl fNr^.D.SNr (P=SNrfQ
Dem.

V . #183-231 . 3 I- :. P, Q 6 Nr'iZ . C'P, <7<Q e Cl'NrSSf . D :

I >P, l>Qe Nr'E . C
J

5P, 0' | JQ e Cl'Nr'S

:

[*164'48.#182-16] D : Mult ax . 3 . J \P smor smor J
5 Q .

[*183-15] D . SNr'P r. SNr'Q (1)

t- . (1) . Comm . D h . Prop

#183 25. h . XNr'P y>Q= Nr'(Q * -P)

Dem.

h . #165-21 . #183-13 . D f- . SNr'P
J,

JQ = Nr'2'P
J,

~>Q

[#166'1] = Nr'(Q x P) . D h . Prop

#183-26. (- : . Mult ax . D : P e NrfE . C'P C Nr'tf . D . SNr'P = Nr'(i2 x S)

Dem.

I-.*1 65-27. *183-24.D

h :. Mult ax . D : g ! tf.PeNr'iZ . C'PCNr'S. D . 2NrfP= SNr'S^'22

[#183-13.*166-1] = Nr'(i2x£) (1)

f-.*153iri01.D

h : -Sf = A . P e Nr'fl . C'P C Nr'S . D . C'P C t'A

.

[#162-42] D.2'P = A.
[#183-2] D.2Nr'P = r (2)

h . #16613 . D h : # - A . D . E x 8- A (3)

K (2). (3). #153-17.3

h : £= A . P e Nr'jR . C'P C Nr'# . D . SNr'P = Nr<(iZ x #) (4)

I- . (1) . (4) . D (- . Prop

#183-3. r- . 2Nr<A = r [*183*2 . #162-4]

#183-301. K2Nr'(A|A) = P [*183'2 . #162-41]

31—2
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*183-302. h . 2Nr'(P J, P) = Nr'(C'P f C'P)

Bern.

V . *18313 . *163-41 . D h . 2Nr'(P ]f P) = Nr'2'(P I P)
[*162-3.*160-1] = Nr'(C'P f C'P) . D h . Prop

*18331. I- : P 4= Q . D . 2Nr'(P
J, Q) = Nr'P+ Nr'

Q

I- . *1831 . D h . 2Nr'(P J, Q) = Nr'2' J 5(P 4 Q)

[*150-71] = Nr'2'K I 'P)4 ( J 'Q)}

[*162-3] = Nr'(J'P£?'Q) (1)

h . (1) . *1 80-32 . *18212-15 . D h : Hp . D .

2 Nr'(P 1 Q) = Nr' 2 'P 4- Nr' 1 'Q

[*182-05.*151-65.*18031] = Nr'P + Nr'Q Oh. Prop

*18332. h : C'P n C'Q = A . D . SNr^P^ Q) = SNr'P + SNr'Q

ZJem.

h . *183-1 . D h . 2Nr'(P4lQ) = Nr<2' I '(P£Q)

[*162-31.*160-44] = Nr'(2'i;p£2'J;Q) (1)

|-.*182-17.*55-202.D

h : a ! C'2' J;P n C2'
J 5Q . = . (rS, R,x) .

R

e C'P n C'Q . #

e

C'R . 8-

x

J,
R

.

[*10-5] D.glC'Pn C'Q (2)

h . (2) . Transp . D (- : Hp . D . C'2' l'>Pn C'2' J ">Q = A

.

•* •*

[*180-32] D.Nr ,(S f ^P4l2'J'Q) = Nr^l5P + Nr t2 f

J'Q
[*1831]

'
' -SNr'p'+SNr'Q (3)

h.(l).(3).Dh.Prop

*18333. h : a ! P . Z~ e C'P . D . 2Nr'(P -b Z) = SNr'P + Nr'£
7)ew.

I- . *1 831 . D h . 2Nr'(P -&Z) = Nr'2' J
i(P +> Z)

[*161'4] = Nr'2'(
J IP 4* J

'£) (1)

I- . (1) . #16243 . D h : Hp . D . 2Nr'(P -**£)- Nr'(2' J *P4 I *Z)

[*182-12-15.*180-32] = Nr'2' J
JP + Nr'

J
'£

[*183-l.*182-05.*151-65] = SNr'P+ Nr'Z : D K Prop

*183'331. I- : ^ ! P . Z~ e C'P . D . 2Nr'(Z«f P) = Nr'Z+ SNr'P
[Proof as in *1 83-33]
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*183'42. I- : P e Rel2 excl . D . J f 5P € Rel8 arithm

h . #163-3 . #182-162 . D h : Hp . D . J f;p 6 Rel2 excl C1 )

I- . #16235 . D h . 2< 1 f5P = 1 52'P .

j »

[#182-16] Dh.S'Jt'-PeRePexcl (2)

I- . (1) . (2) . #174-3 .Dr. Prop

#183-43. b:Pe Rel3 excl . D . 2Nr<2 5 J

f

;^ = SNr'S'P

This is a form of the associative law of addition.

Dem,

h . #183-42 . #174-36 . D h : Hp . D . S» J t'p e Rel2 excl

[#183-13] D . SNr'S

J

I Y>P = Nr'2'25 1 Y>P

[#162-34] = Nr'2'2' J f^P

[#162-35] = Nr<2< J
>2'P

[#183-1] = SNr'2'P : D h . Prop

#183-5. h : C[ C'P e 1 -> 1 . D . C'SNr'P = £Nc<C"C'P

h . #152-7 . #183-1 . D (- : Hp . D . C"2Nr'P = Nc'0'2* J
5P

[#182*54] = 2Nc<C"C"P .Dr. Prop



*184. THE PRODUCT OF TWO RELATION-NUMBERS

Summary o/#184.

The propositions of this number are for the most part analogous to those

of the propositions of *113 which are concerned with jx x v. Those of #113

which are concerned with a x j8 have their analogues in #166. We put

#18401. fxXv =R ((aP, Q) . /x = N r'P . v = N r'Q . R sinor (P x Q)} Df

#18402. Nr fPx^=N r fPx^ Df

#18403. tixNr lQ = fxXN r'Q Df

We prove that fxXv is only zero when one of its factors is zero (#184-16);

we prove the associative law (#184-31), and the distributive law in the

forms

#184-33. I- : P e Rel2 excl . D . SNr'P X Nr'iZ = 2Nr'(x R)'>P

#184-35. h .(p-i-a7)X/A = (yX/*) + (wX/i)

and we prove 2r X/x = /x+ jx (#184'4). Also we extend the distributive law

to the case where one of the summands is 1, i.e. we prove

#184-41. h:*=t=Or .D.(v + i) */* = (* */*) + /*

#184-42. h : v ^ r . D . (i + v) X /x = /x + {v X fi)

and the connection of cardinal and ordinal multiplication is given by

*184'5. h : /x,v eNR . D . C"(fi Xp) = C"h x C"v

*184'01. (xXv = R ((aP, Q) . p = N„r'P . v = N r<Q . R smor (P x Q)} Df

#18402. Nr'Px* = N r'Px* Df

#18403. ^xNr'Q^xNor'Q Df

#184-1. h : R e

^

x * . = . (gP, Q) . fx = N r'P . v = N r'Q . iZsmor (P x Q)
[(#184-01)]

The proofs of the following propositions are omitted, since they are

analogous to those of the corresponding propositions of #113.

#184-11. \-iRlfxXp.'2.jx >
P€ N R . a ! fx . a ! v

#184-111. h -.^(jtt, v eN R) . D . ix X *> = A
#18412. h :. ^yeNR.D :R6fxXv. = . (gP,Q) . P eju . Q ei> . iZsmor (P x Q)

#18413. h . Nr'P x Nr'Q = N„r<P X Nr'Q = Nr'P X N r'Q

= N r'P X N r'Q = Nr'(P x Q)

#184-14. h : P smorR . Q smor 8 . D , Nr'P X Nr'Q = Nr'iZ x Nr<S
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*18415. r.^x^eNR

#18416. b:.f4Xv*=0r . = :f4,v€NR - i
lA : p « r . v . v = r

*1842. h : . Mult ax . D : P e Nr'iJ . C'P C Nr'S . D . SNr'P = Nr'ii X Nr'S
[*I83-26 . #184-13]

*184'21. ht.Multax.D^veNR.v+A.Pe^.C'PCy.D.SNr'P^Xi/
Bern.

h . *152'45 .Dh:/*eNR.Pe/i.D.^ = Nr'P (l)

|-.*152'45.DI-:*>eNR.C"PC *. tfeC'P. D . * = Nr'£. C'PCNr'S (2)

(- . (1) . (2) . #184-2 . D

I- :. Mult ax . D : ^ v eNR . P e fx . C'P C y . £ e OP . D .

XNr'P = Nr'P * Nr'S . /* « Nr'P . v = Nr'S

.

[*1313] D.2Nr'P=/iXy (3;

h.(3).*10-H-21-23.D

!-:.MuItax.D:^veNR.Pe
/i.C

fPCr.a!C"P.D.SNr fP = ^Xi' (4)

r.*1832. #162-4. D h :P = A . Z) . 2Nr'P= r (5)

h . *15316 . Transp .Dh:./ieNR.Pe /i .P=A.D:/i = 0,:

[#184-16] Dn/eNB-t'A.D./iX^O, (6)

h . (5). (6) . D h : ^veNR . v± A . Pe/* . C'P C v . P = A . D .

SNr'P = /***> (7)

h. (4). (7). Dr. Prop

#1843. r . (Nr'P * Nr'Q) X Nr'£=Nr'P X (Nr'Q X Nr'i2)=Nr'(P xQxR)
Dem.

h . #18413 . D h . (Nr'P X Nr'Q) X Nr'£ = Nr'(P x Q) X Nr'iJ

[*184'13] = Nr'(PxQxi2)
[#166-42] = Nr'{Px(QxP)}
[*184-13j = Nr'P X (Nr'Q X Nr'i2) .Dr. Prop

#184-31. \-.(p'kv)'kvr = ti'k(pJtvr)

Dem.

h.#184-lll.D(-:~(/i,^i!7eN R).D.(
/*Xv)X«r = A./iX(vXar) = A (1)

h. #155-2. Dhr/i^.fireNoR.D.

(aP, Q,R).ii = N r'P . * =N r'Q . *7 = N„r'i2 (2)

K #184-13.3

h!/* = N,r'P.^N r'g. Sr =N^.D.(/t j«:p)^-Nr'{(PxQ)xB|

[*184'3] =Nr'jPx(QxJ2)}

[#184-13] =txk(vX*r) (3)

h . (2) . (3) . D h : /*, v, w e N„R . D . (/i X v) X w = /* X (v X w) (4)

r.(l).(4).Dr.Prop

#184-32. ti-kvkvr^ip-kv)*™ Df
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*18433. h : P e Rel2 excl . D . SNr'P X Nr'iZ = 2Nr'(x R) >P
Dem.

r . *1 83-13 . D h : Hp . D . SNr'P x Nr'i2 = Nr'2'P X Nr'i2

[184-13] = Nr'(2'Px JR)

[*166-44] =Nr'£'(xi2);P (1)

I- . #166-3 . D h : Hp . D . (x i2)JP e Rel3 excl

.

[*183-13] Z) . Nr<2<(xR)
m

>P = 2Nr'(x iJ) JP (2)

h . (1) . (2) . D h . Prop

*184-34. h . (Nr'P -i- Nr<Q) X Nr'iZ = (Nr'P X Nr <J2)+ (Nr'Q X Nr'ii)

Dew.

h. *180-3.*1 84-13. D
h . (Nr'P+ Nr'Q) X Nr'i2 = Nr'{(P + Q) x 12}

[*166-45.*1801] = Nr'[{ |(An (7'Q)J* JPj x ^{(A n C'P)
J,
u^} X R]

[*166-3.*180-ll-32] = Nr'[U (A n C'Q)h
m

>P} x R] + Nr'[{(Ar. G'P)ln'>Q} x 72]

[*184\L4.*180-12] = Nr'(P x 12)+ Nr<(Q x R)
[*184-13] - (Nr'P X Nr'Q) -i- (Nr'Q X Nr'12) . D h . Prop

*18435. \-.(v+ ^)Xfi = (vXfi) + (nfX/x) [*18434]

The proof proceeds as in #184-31.

*184-4. h.2r X/i = /A+ /i

Dem.

h . #184-111 . *1804 . D h : p~eN R .D.2r X/i = A./t+ /A = A (1)
h. #15324. #18413. D
h:/* =N r'P.D.2,X/i = Nrf

{AJr
(t^)xP}

(2)
H.*166-l.Dh.A;(t^)xP = 2'P

;
l,'(A4t'a?)

[#150-71] = 2'{(P ^ A) 4 (P J,
«*«)}

[*162-3] -(P£A)£(P£i ;
aO (3)

h . #180-31-32 . *165-251211 . Transp . D

KNr'((P^A)4L(P^t'tf)} = Nr'P+ Nr'P (4)

l-.(2).(3).(4).D|-:
/* = N r'P.D.2r X/* = Nr fP+ Nr fP

[#180-3] = „ + ,» (5)
h.(l).(5).Dh.Prop

*18441. H:i>4=0r .D.(* + i)X/i = (**/*) + ,*

Dem.
\-

. #16653 . #18032 . #165-251 . D

f-:a!Q.y~eC^.D.Nr'{(Q4>y)xP} = Nr'(QxP) + Nr'P (1)
i-.(l). #181-32. #184-13. D

^--V = Nr<P.v=Nr<Q.p$0r .y~eC<Q.O.(v+ i)Xfi = (pXfi) + /j. (2)

^.*181'lM2.Dh:p6NR-t'A.D.(a Q,y). tf -Nr'Q.y^eO»Q (3)
f-.(2).(3).D
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h:/AeNR.j/€NR-t'A.y=t=Or .D.(y+ i)X/* = (yX/i)-i-/A (4)

h.*184\Lll. #181-4.3

h:~(
/
Lt eNR.yeNR-t'A).D.(y-fl)X/* = A.(vX/*) + /A = A (5)

h.(4).(5).DKProp

#18442. h : v + 0, . D . (1 + ») X a* « /*+ (» X /*) [Proof as in #184*41]

*184'5. I- : & v eNR . D . C"(fi X v) = <?"> x c C"v

Bern.

V . #18413 .Dh-Hp.Pe/A.Qe^.D. C"(/a X^) = 0"Nr'(P x Q)

[#152-7.*16612] = Nc'(C'P x C'Q)

[*1527.*1 13-25] = C"Nr'P x C"Nr'Q

[#152-45] = <?•> *o 0"v (1)

h. #184-11. *l 13-204. D

h:-(a ! /i . a ! I;).D.(7"(/iXi') = A.C"/A x C^ = A (2)

h . (1) . (2) . D h . Prop



#185. THE PRODUCT OF THE RELATION-NUMBERS
OF A FIELD

Summary o/#185.

The subject of this number is analogous to part of the subject of #114.

The propositions concerned are immediate consequences of previously proved

properties of n'P, and offer no difficulty of any kind.

#185-01. nNr'P = Nr'n'P Df

#185-1. h . nNr'P = Nr'n'P [(*185'01)]

#18511. I- : P smor smor Q . D . nNr'P = IINr'Q [#1^2-44]

#18512. h . nNr'P = Nr'Prod'
J
5P = Nr'n' 1 ">P [#182-44]

#1852. I- . nNr'A= 0, [#17213]

#185-21. r . nNr'(P J, P) = Nr'P [#172*2 . *I65251]

#185-22. h . nNr'(A J A) = r [#185-21]

#185-23. r : A e C'P . D . nNr'P = 0, [#172-14]

#185-25. h :: Mult ax . D :. nNr'P=0r . = : AeC'P. v.P = A [#172182]

#185-27. h : . Mult ax . D : P, Q e Rel2 excl . g ! P smor Q n Rl'smor . D .

nNr'P = nNr'Q [#172*45]

#185-28. h :. Multax . D : P, Q e Rel2excl. P, QeNr'tf. C'P, C'QeCl'NrSS . D.

IINr'P = nNr'Q [#164-48 . #185-11]

#185-29. h : . Mult ax . D : P e Rel2 excl . P e Nr'iZ . C'P C Nr'S . D .

nNr'P = Nr'(Sexpi2) [#176-24]

#185-31. h:a!P.a!Q.C"PnC"Q = A.D.nNr'(P4iQ) = nNr'PxnNr'Q
[#172-35]

#185-32. r : £~ € C'P . D . nNr'(P -f> Z) = nNr'P x Nr'# [#17232]

#185-321. h : Z~ e C'P . D . nNr'(£«f P) = Nr'Zx nNr'P [#172-321]

#185-35. I- : P+ Q . D . nNr'(P
J, Q) = Nr'P X Nr'Q [#172-23]

#185-4. (•:.?£ Rel2 excl : QPQ . De . C'Q

e

« 1 : D . nNr'n>P = nNr'S'P
[#174-241]

#18541. !-:PeRel2 excl.PG/.D.nNr'nJP = nNr'2'P [#17425]
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The following proposition gives the connection between ordinal and
cardinal multiplication.

*185-5. h : P e Rel3 excl . g ! P . D . C'lINr'P = IINc<C"C"P

Dem.

h . *17316 . D h : Hp . D . <?"IINr<P = C"Nr'Prod'P

[*1527] = Nc'C'Prod'P

[*173\L61] = Nc'Prod'C"<?<P

[*I6316.*115-12] = flNc'C'CP : D b . Prop



*186. POWERS OF RELATION-NUMBERS

Summary q/**186.

For " jm to the i>th power," where ordinal powers are concerned, we use

the notation "pexiprp." We cannot use "/xv " or "fiexipv" because these

have been already used for cardinals and classes (#116). We therefore put

a suffix r to "exp" to show that it is relational powers that we are dealing

with. We put

H expr v = R {(aP, Q).fx = N r'P . v = N r'Q . R smor (P exp Q)} Df

The following are the principal propositions of this number:

#186*2. h : (j, eN R . D . r expr p = r . /* expr r = r

We do not have ft exp,. r — 1, because there is no ordinal 1.

*18621. I- . fi exp,. 2r = /j,X/*

#186-22. h.aexp,(/9-i-i) = (aexpr #)xa

#186*23. r-.aexp,(i+/9) = aX(aexp,./9)

#18614. t-:v^0r .nr^0r .3 .n expr (y + «0 = (/* exp, y) X (/* exp, «r)

#18615. h:wC Rl'/ . D . fi exp, (or x i>) = (/* exp, v) exp, «r

#186-31. I- :. Mult ax . D : ft i;eNR-('A . Pe Rela excl n/t.C'PCv.D.

nNr'P-^exp,.!/
which connects exponentiation with multiplication.

#186-4. h . Nr'Pdf
= 2, exp, (Nr'P) (cf. #177)

#186-5. r : fx, v eN R . v 4= r . D . 0"(/* exp, *) = (C'V)
""

which connects ordinal and cardinal exponentiation.

#186-01. /*expr i/ = i2{(aP,Q).^ = N r'P. v = N r^.i2smor(PexpQ)} Df

#18602. (Nr'P) exp, * = (N r'P)expr * Df

#18603. /*expr (Nr'Q) = /i expr (N r<
Q) Df

#186-1. h : R e fx expr v . = . (gP, Q) . p = Nor'P . * - N r'Q

.

R smor(P exp Q)

[(#186-01)]

#18611. h.^I^exp^ .D.^i/eNoR./i^eNR-t'A

#186111. h:~(^, I; e ]S[ R).D. /i expr i/ = A
#18612. r:i2e^exprI;. = .(aP> Q).^ =N r'P. I; = N r'Q.iesiBorP«

[#176181 . #1861]
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#18613. h . (Nr'P) expr(Nr'Q)= (N r'P) expr (Xr'Q) » (Nr'P) expr (N,r<Q)
= (N r'P)expr(N r<Q)=Nr'(PexpQ)=Nr<(P«)

[Proof as in #180-3]

#18614. h :p^0r .'ST^0r .'5
. fi exp,. {v + «y) = (/* exp,. v) x (/* expr w)

K*180-4.*186111.D
I- : ~(yc4, y, w eN R) . D . /i expr (v+ or) = A . (p exp,. y) X (jjl expr ct) =A (1)

h. #1 86-13. #1 80-3. D
I- : ,* = N„r'P . v = ~S r'Q . tir = N r'i2 . D .,* exp,. (» + <*) = Nr<P0+* (2)

h . #176-42 . *180\L1 . D
I- : Hp . Hp (2) . D . Nr'P0+* = Nr^P*^ ^'^ x p<A~o<m w*)

[*180-12.*l76-22.*166-23] = Nr'(P« x P*)

[*186-13.*184131 =
(fj,

exp, v) x O expr «) (3)

h . (2) . (3) . #155-2 . D h : ^, v, «r e N R . v + r . w 4= 0,. . D .

.*> /* expr (f + w) = (/t exp,. v) x (/x expr cr) (4)
h . (1) . (4) . D h . Prop

#18615. h : cr C Rl f
J" . D . /u, exp,. (or x j>) = (fi expr y) expr or

Dem.

h.*186111. #184-111.3

h :<^(/i, v, sr e

N

R) . D . /x expr («r X j>) = A . (p expr y) expr w = A (1)

h. #186-13. #18413. D
h : ^ = N r'P . v = N r<Q . «r = N r

f
i2 . D . ^ expr («**) = Nr'(P*x

«) (2)

|-.*176'57.Df-:Hp.Hp(2).D.Nr f(PJix«)=Nr'(P«)B

[#186-13] = {(N r'P) expr (N r'Q)} exp, (NQr<R)

[Hp] = (/z, expr v) expr er (3)

(-. (2). (3). #155-2.3

h : /*, z>, «r e N R . w C Rl'./ . D . yu, exp,. (wXv) = (/* exp,. y) exp,. ot (4)

h.(l).(4).Df-.Prop

#186-2. r-:/ieN R.D.0r expr)L4 = r .)L4expr r = r [#176151]

*18621. V . /j, expr 2r = /* x /*

Dem.

h. #186-111. #184-111. D (- :^~eNoR.D.^expr 2r = A. /*X^ = A (1)

I- . #186-13 . #1761 . D h : ^ =»N^P . a: + y • ^ •

/* expr 2r = Nr'Prod'P j,
>(x J, y)

[#150-71] = Nr'Prod'{(P
J,
«) I (P J, y)}

[*l73'24.*165-211.Transp] = Nr'{(P
J,
#) x (P ±y)}

[#165-251.*166-23] = Nr'(P x P)

[#184-13] =/*X/* (2)

h. (2). #155-2. #24-1 .Dh: ^ e N R . D . /* exp,. 2r = /*X/a (3)

K(l).(3).Dh.Prop
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*186'22. h . a exp*. ($+ i ) = (a expr /S) X a

Dem.

h.*186-lll.*181-4.D

h:^(a,/S€NoR).D.aexpr (/9 + i) = A.(aexpr /9)>Ca = A (1)

h . *186-13 . *18122 . D

h:a S=N r'P./9 = Nor'Q.D.aexpr (/9 + i) = Nr'{Pexp(Q4*^)}.

(aexp,.,S)Xa = Nr<(Pexp#)xNr<P (2)

h.(2).*l76'151.*16613.D

H:Hp(2).P = A.D.aexpr (/3+ i) = r .(aexpr /9)x« = r (3)

h . *1652 . *161'4 . *176 1
.
(*181-01) . D

h.Nr'{Pexp(Q4>^)} = Nr'Prod'[PJ,i4,A!rH^-^PJ,{(AACr

'P)4,t^}] (4)

h . *165221-222 . *181 11 . *162'22 . D

f-:g!P.D.PJ,{(An C'P) I l'x)~ e C'P
J,

J J, AJOQ .

C'P I {(A a C'P) I l'x) a C'2'P
J,

J
J,
A^fciQ = A (5)

h . (4) . (5) . *1 65-21 . *173-25 . D h ; g ! P . D .

Nr'{P exp (Q 4> *)} = Nr'[(Prod'P
J, 5 J, A^Q) x P

J,
{(A a C'P)

J,
I'cc}]

[*18112.*165'251.*1761-22.*18413] = Nr'(P exp Q) X Nr'P (6)

h.(2).(6).Dh:Hp(2).a!P.D.aexpr (/9 + i) = (aexpriS)Xtx (7)

h.(l).(3).(7).DKProp

*186'23. h . a expr (i +/3) = a X (a expr /9) [Proof as in *18622]

*186'3. h :. Mult ax . D : P e Rel" excl a Nr'iZ . C'P C Nr'S . D .

IINr'P = (Nr'P) expr (Nr'S) [*1 85*29]

*186*31. H :. Mult ax . D : /a, v eNR- t'A . PeRel2 excl a p.C'PCv .3 .

IlNr<P= ^expr * [*186-3]

*1864. h . Nr'Pdf » 2r expr (Nr'P) [*177'13]

*186*5. h:fi,v€N R . * ± r . D . C'V expr v) = (O^) ""

Dem.

h . *152'7 . *18613 .Dh/t = N^'P . * =N r'Q . D .

C"(fi expr i/) = Nc'C"(P exp Q) (1

)

K (1) . *17614 . D h : Hp (1) . v + r . D . O'V expr i>) = Nc'{(C'P) exp (C'Q)}

[*116-222] = (Noc'C'P^oc'CQ

[*155-6] = (C^Nor'P) "*^
[Hp] =(C»c"*:DKProp



PART V

SERIES



SUMMARY OF PART V

A relation is said to be serial, or to generate a series, when it possesses

three different properties, namely (1) being contained in diversity, (2) transi-

tiveness, (3) connexity, i.e. the property that the relation or its converse

holds between any two different members of its field. Thus P is a serial

relation if (1)P G J", (2) Pa G P, (3) x, y e C'P . x + y . 3X, v :xPy.v. yPx. The

third characteristic, that of connexity, may be written more shortly

«eC"P. D* .~P'xv i
lx u P'x = C'P,

i.e. xeC'P.X.V'x^C'P,

using the notation of *97; and this, in virtue of *97'23, is equivalent to

*P"C'P eOul.

In virtue of #50*47, the first two characteristics are equivalent to

PnP = k.P*GP.

When P n P = A, we say that P is "asymmetrical." Thus serial relations are

such as are asymmetrical, transitive, and connected.

It might be thought that a serial relation need not be contained in

diversity, sinee we commonly speak of series in which there are repetitions,

i.e. in which an earlier term is identical with a later term. Thus, e.g.

a, 6, c, a, e, /, b, g, h

would be called a series of letters, although the letters a and b recur. But in

all such cases, there is some means (in the above case, position in space) by

which one occurrence of a given term is distinguished from another occurrence,

and this will be found to mean that there is some other series (in the above

case, the series of positions in a line) free from repetitions, with which our

pseudo-series has a one-many correlation. Thus, in the above instance, we

have a series of nine positions, which we may call

1, 2, 3, 4, 5, 6, 7, 8, 9,

which form a true series without repetitions; we have a one-many relation,

that of occupying these positions, by means of which we distinguish occur-

rences of a, the first occurrence being a as the correlate of 1, the second being

a as the correlate of 4. All series in which there are repetitions (which we

may call pseudo-series) are thus obtained by correlation with true series,

i.e. with series in which there is no repetition. That is to say, a pseudo-series

has as its generating relation a relation of the form S'P, where P is a serial

relation, and S is a one-many relation whose converse domain contains the

field of P. Thus what we may call self-subsistent series must be series without

repetitions, i.e. series whose generating relations are contained in diversity.

r&wii 32
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For our purposes, there is no use in distinguishing a series from its

generating relation. A series is not a class, since it has a definite order,

while a class has no order, but is capable of many orders (unless it contains

only one term or none). The generating relation determines the order, and

also the class of terms ordered, since this class is the field of the generating

relation. Hence the generating relation completely determines the series,

and may, for all mathematical purposes, be taken to be the series.

When P is transitive, we have

P^P.Pt-PuItC'P.
Hence all the propositions of Part II, Section E become greatly simplified

when applied to series.

Also, since the field of a connected relation consists of a single family, a

series has one first term or none, and one last term or none.

In the case of a serial relation P, the relation P1 (defined in #121 -02)

becomes P—P2
, i.e. the relation "immediately preceding." In a discrete

series, the terms in general immediately precede other terms. A compact

series, on the contrary, is defined as one in which there are terms between

any two : in such a series, Py = A.

It very frequently occurs that we wish to consider the relations of various

series which are all contained in some one series; for example, we may wish

to consider various series of real numbers, all arranged in order of magnitude.

In such a case, if P is the series in which all the others are contained, and

«, /S, 7, ... are the fields of the contained series, the contained series them-

selves are PI a, jP£/8, P^ 7, .... Thus when series are given as contained

in a given series, they are completely determined by their fields.

In what follows, Section A deals with the elementary properties of series,

including maximum and minimum points, sequent points and limits.

Section B will deal with the theory of segments and kindred topics; in

this section we shall define "Dedekindian" series, and shall prove the important

proposition that the series of segments of a series is always Dedekindian,

i.e. that every class of segments has either a maximum or a limit.

Section C, which stands outside the main developments of the book, is

concerned with convergence and the limits of functions and the definition of

a continuous function. Its purpose is to show how these notions can be

expressed, and many of their properties established, in a much more general

way than is usually done, and without assuming that the arguments or values

of the functions concerned are either numerical or numerically measurable.

Section D will deal with "well-ordered" series, i.e. series in which every

class containing members of the field has a first term. The properties of
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well-ordered series are many and important; most of them depend upon the
fact that an extended variety of mathematical induction is possible in dealing

with well-ordered series. The term "ordinal number" is confined by usage

to the relation-number of a well-ordered series; ordinal numbers will also be

considered in our fourth section.

Section E will deal with finite and infinite. We shall show that the

distinction between "inductive" and "non-reflexive" does not arise in well-

ordered series.

Section F will deal with "compact" series, i.e. series in which there is a

term between any two, i.e. in which P* = P. In particular we shall consider

"rational" series (i.e. series like the series of rationals in order of magnitude)

and continuous series (i.e. series like the series of real numbers in order of

magnitude). Our treatment of this subject will follow Cantor closely.
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SECTION A

GENEEAL THEORY OF SERIES

Summary of Section A

.

In the present section, we shall be concerned with the properties common

to all series. Such properties, for the most part, are very simple, and present

no difficulties of any kind. Many of the properties of series do not require

all the three characteristics by which serial relations are defined, but only

one or two of these properties: we therefore begin with numbers in which,

though the properties proved derive their chief importance from their

applicability to series, the hypotheses are only that the relations in question

have one or two of the properties of serial relations. Thence we proceed to

the most elementary properties peculiar to series, and thence to the theory

of minimum and maximum members of classes contained in a series, and of

the successors and limits of classes. We then proceed to the correlation of a

series with part of itself. The ground covered is familiar, and the difficulties

encountered are less than in most previous sections.

It will be observed that where series are concerned, if a is an existent

class contained in C'P, p'P"a is correlative to P"a (which is s'P"a): P"a
<—

is "predecessors of some a," and p'P"a is "successors of all as." If a is an

existent class contained in C'P, the whole of C'P, with the exception of the

last term of a (if there is such a term), belongs to one or other of the classes
4—

P"a, p'P"a, of which the first wholly precedes the second. The division

of C'P into these two classes is the Dedekind "cut" defined by a. But

when only part of a is contained in C'P, we must replace p'P"a by

p'P"(a r\ C'P), since p'P"a = A if a has any member not belonging to C'P.

Again, if ar\C'P = A, we have p'P"(a n C'P) = V. But what we want is

the complement to P"a, which in this case is null. Hence we must replace

p'P"(anC'P) by C'P*p'P<'(a*C'P): this is C'P when P"a=*A, i.e.

when a a C'P = A. In any other event it is equal to p'P"(a a C'P). If a

is contained in C'P and is not null, C'P r\p'P"(ar\C'P)*=p'P"a. Thus
the Dedekind "cut" defined by a class a, whether or not this class is

contained in whole or part in C'P, is always the two classes

P"a, C'P njt)'P"(« n C'P).

Throughout the elementary propositions of this section, we have been

careful to avoid stronger hypotheses than are required: we have not assumed
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P to be serial, if our conclusion would follow (e.g.) from the hypothesis that

P is transitive and connected. It will be found that many properties of

series depend upon the fact that, if x, y are two different terms of a series P
then xPy . = . o*> (yPx) (#204 -

3). Here the implication xPy . D . <v> (yPx)

requires that P should be asymmetrical, i.e. that we should have P n P = A
or P*(ZJ. The implication ~(yPa;).D .xPy requires that P should be
connected. Thus the hypothesis required is not that P should be serial, but
that P should be connected and asymmetrical (*202*5).

Again, consider the proposition that if P is a series, P1 ~P^-I>i
. This

relation Py is the very useful relation "immediately preceding"; thus the

above proposition is important, as is the further proposition that if P is a

series, P, is a one-one relation. It will be remembered that (by #121)

"xP^" means that P(xy-ty) consists of two terms. It was shown in

*121'304-305 that if Ppo is contained in diversity, "xP^" implies "xPy"
and is equivalent to the statement that x and y constitute the whole interval

P(xt-ty) and are not identical. Also by #121-254, P1
= (Pp0)1 . It is evident

that, if Pp0 is contained in diversity, and xP^y, we cannot have xP*y, because

there is no term other than x and y in the interval P (x i—i y), and we cannot

have xPx or yPy. Hence if Pp0 QJ, we have P1 Q—Pi
. Hence by what

was said above (#121-305), if P^QJ, we shall have P^P^-P*. On the

other hand, if P is transitive, we have P—P^GPi (#201 61). Combining

these two facts, and remembering that if P is transitive, P = Pvo (#201'18),

we find that P1 =>P—P2 if P is transitive and contained in diversity. We
find further (#202*7) that if P is connected, P—P2 is one-one. Hence we
need the full hypothesis that P is a series in order to prove that P1

is a

one-one (#204*7). This is a good example of the way in which the various

separate characteristics that make up the definition of series are relevant in

proving the properties of series.



*200. RELATIONS CONTAINED IN DIVERSITY

Summary q/"#200.

Some of the propositions of this number are repetitions or immediate

consequences of previous propositions, especially those of the propositions

of #50 which deal with diversity. But we are chiefly concerned here with

propositions which will be useful in the theory of series; this leads us to
<

—

introduce propositions on p'P"a and on matters connected with relation-

arithmetic and other topics. It will be seen that "I^QJ" {i.e. "P is

asymmetrical") is an important hypothesis, as is also P^QJ, of the use of

which we have already had examples in #96 and #121.

The following are among the most useful propositions in this number:

#20012. h : P e Rl'J . D . C'P~e 1

This is the proposition which makes it impossible to define an ordinal

number 1 which shall take its place among relation-numbers applicable to

series.

#20035. r:PGJ\ael.:>.P£a = A
This is a consequence of #200 12.

#200-36. h-.PGJ.D.PGJ

#200361. h : Pa G /. D . P'x * (i'x w P'x) = A . P'x n (P'x u t'x) = A
I.e. if P8 G J, no term precedes itself or any of its predecessors, and no term

succeeds itself or any of its successors.

#200-38. h-.P^QJ.D.P^^P^^J

#20039. h : Pp0 G J . x e C'P . 3 . P*'x n P%'x - i'x

We then have a collection of propositions concerned with relation

-

arithmetic.

#200-211. hiPG/.PsmorQ.D.QG/
I.e. the property of being contained in diversity is invariant for likeness-

transformations
;

#200-4. h : P£ Q e Rl '/ . = . P
} Q e Rl<J . C'P a C'Q = A

#20041. \-\P-frxQ.J.~.x4\-PG.J. = .PQ.J.x~eC'P
and other such propositions.

We then have a set of propositions concerned with p'P"a and p'P"eu
The most important are
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#2005. hPCJ.D.an p<P"a~ A . a n^P"a = A

*200-52. \~:PGJ.D.C'P~ e~P"C'P

*200'53. r:P2 G/O.P"anp'^'a = A.P"an^P"a = A
J.e. if P is asymmetrical, the terms which precede part of a do not succeed

the whole of a, and vice versa.

*20011. hrPeRl'/.^.PeRl'J" [*50'23]

#20012. h : P e UVJ. D . C'P ~ e 1

Dem.

h . #5011 . #3317 . D h :. Hp : xPy . v . yPx :D .y^x. ye C'P (I)

r-.(l). #33132. D hr.Hp.D: xeC'P.3. (^y)

.

y^x.y e C'P:

[#52181] D : C'P ~ e 1 :. D h . Prop

#2002. h:y 6 l^l.D.TJ(P/SJ) = TJPAjr

Dem.

h.*150-4.Dh:.Hp.D:

a; {T>(PnJ)} y. = . (rz.w) ,x=T'z .y=T'w . zPw .z^w.
[*71'56] = .('&z,w).x^y .x=T'z ,y = T'w .zPw .

[#150-4] = . x [F>P nJ]y:.DV. Prop

*200-21. h-.TeCh-+l. PC J. O.T">PGJ

Dem.

h . #1501 . #5024 . D h :. Hp . D : x (T'>P) y . D . (a*, w) . aT* . yTw . s 4= w .

[*7ll71.Transp] D . a; 4= y :. D h . Prop

*200'211. l-iPC/.P smor Q.3.QGJ [*200'21. #1511]

The properties of relations are very frequently common to all relations

which are like a given relation, and this applies specially to the kinds of

properties with which we are most concerned. The above proposition is an

illustration of this fact: it shows that the property of being contained in

diversity is invariant for likeness-transformations.

*200'22. h : P G J . = . N r'P C Rl'J . = . a ! N„r<P n Ul'J

Dem. h . #15511 . #200211 . D h : P G J. D . N r'P C Rl'/ (1)

h. #15512. DhiNor'PCRl'J.D.PGJ (2)

h . #15512

.

D h : P G J\ D . a ! N r'P n UYJ (3)

h . #15511 . #200211 .Dhg! N r'P n U\'J. 3.PGJ (4)

h.(l).(2).(3).(4).Dh.Prop

We have, without the need of typical definiteness,

h :PG /.D.Nr'PCRl'/

and h: a !]Srr'PnRl'/.D.PGJ,
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both of which are immediate consequences of #200*211. The converse

implications, however, fail if Nr'P is taken in a type in which Nr'P = A.

*200'3. KAeRl'/ [#25-12]

#20031. \--.x$y. = .xlye Rl'J [*55'3]

#200-32. b:a^/3QJ. = .an/3 = A [#50*55]

#20033. h-.PGJ.D.PtaGJ [#35442]

#20034. b-.PtaGJ.^.PtaGJ.^.alPGJ [#5058]

#20035. h:PGJr

.ael.D.PPa = A
Dem.

b . #52-16 . D h :. Hp . D : x, y e a . DXt y . ^ (xjy) .

[#23-81] 1x>y .~(xPy):

[#11-521] D : (x, y) . ~ [x,y€a. xPy) :. D h . Prop

#200-36. hiPGJ.D.PG/ [#5045]

#200-361. h : P* G J . D . P'x n ((,'x w P'x) ~A.P'xr> (P'x vi'eo) = A

Dem.

h. #51*15. ^Y-.yeP'xcM'x.l.xPx (1)

f- . #200-36 . D h : Hp . D . ~ (xPx)

.

[(l).Transp] l.P'xn i'x = A (2)

h. #34-11. D\~;>3l 1P'x*p'<x. = .xP*x (3)

h . (3) . Transp . D h : Hp . D . P'# a P'a: = A (4)

h.(2).(4). Dh:Hp.D.P'«n(t'a!rtP ;r

a!) = A (5)

Similarly h : Hp . D . P'a: n (P'x w t'#) = A (6)

h . (5) . (6) . D h . Prop

#200-37. h : a ! Pot'P a Rl</ . D . P G /
Dem.

h. #91-373^.D
h :: «P* : S e Pot'P . tcSx . D5 . x(S \ P)x : > : Q e Pot'P . Oq.xQx (1)

h.#3-2. Dh:.#Pa:.D:a-£#.D.#>Sf#.a*Pa:.

[#34-1] 0.x(S\P)x (2)

h . (1) . (2) . D h :. xPx . D : Q e Pot'P . 3Q . xQx .

[#50-24] DQ . ~ (Q G J) (3)

*-
. (3) . Transp . D h : (aQ) . QePot'P . Q G J\ D . ~ (aPa)

.

[#50-24] D.PG/Oh.Prop

#200-38. hiP^G/.D.Ppo-Pfc/S/ [#91-541]
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*200381. h : Ppo G J, D . P
P(
> nP^ = A . Pp> J^'a; = A

h. #01-56. DhiHp.D.P^G/.

[#200-361] D . Pp> n
( t^ w Ppo'*) = A -Xo'tf « <?po^ ^ t'a?) = A

.

[#91-54] D . P^x n P*<# = A . Ppo'x n P*<a = A;DK Prop

#20039. h : Ppo G / . a; e C'P . D . P*'x n P*'«? = t'a;

Dem.

h . #91-54 . D r- : Hp . D . P*'# n P*<# = (Pp0'x u i<#) n (P^x w i<#)

[#22-69] = {Pvo'x n Pp» u t<# (1)

h . #91-56 . D I- : y eP^ft Pp> . D . yPpoy (2)

h . (2) . Transp . D h : Hp . D . Pvo
fx nlp^'x = A (3)

h.(l).(3).OKProp

^ ^ —

%

#200-391. h : Ppo G J . D . P*>P smor P . P* f C*P e (^* ;^) smor P

h.#90-12.Dh:Hp.^y€C<P.P^ = P^y.D.^P^y.yP
9|t

a;.

[#20039] D.x = y (1)

h. (1). #151-24. Dh. Prop

The above proposition is useful in the theory of segments.

The following propositions are concerned with the ideas of relation-

arithmetic. Analogous propositions will be proved for transitiveness and

connection in #201 and #202, whence analogous propositions concerning series

will be deduced in #204.

#200-4 h : P$Q e Bl'J . = .P,Qe Rl'J". C'P nC<Q = A
Dem.

h. #23-59. #160-1. D

b-.P^Qem'J.^.PiQem'J.C'PtC'QGJ.
[#200-32] =.P,Qe RlV . C'P n C'Q = AO h . Prop

This proposition is part of the proof that the sum of two mutually

exclusive series is a series.

#200-41. h:P-t>xGJ. = .x4\-P<iJ.=.PGJ.x~eC'P [*23'59.#20032]

#200 42. h : X'P G J . = . C'P C Rl<J . F'>P G J

Dem.

h. #23-59. *162-l.I)h:2;'PG J. E.iWG J. F'>PG J.

[#61-52] = . C'P C Rl'J . FiP G J : D h . Prop
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The following propositions (*200421-422-423) are lemmas for *204'53.

*200'421. h :PeRels excl. PQ J. QsC'P. D . Q = (X'P)t C'Q

Dem.

h . *163'11 . *16213 . D h :: Hp . D :. x {(#F)t C'Q] y . = :

(<&R) .ReC'P. x,yeC<Q.xRy .R = Q.v.
(ftR,S).RPS.x,y€C<Q.xeC<B.y€C'S.R = Q.S=Q:

[*13195'22] =:xQy.v. QPQ .x,ye C'Q :

[*50'24.Hp] = : xQy :: D h . Prop

*200422. h:2<P(lJ.D.Pt(-i<A)GJ
Dem.

h.*U2l3.*50-24.0h;:Hp.5:.QPR.3:xeC (Q.y€C(R.'}.x$y:
[*2437] l-.C'QnC'R^A:
[*24-57] D : a I Q . D . C'Q * C'R .

[*30-37] D . Q + # :: D h . Prop

*200-423. h :. P eRel2 excl . A ~ e C'P . D : 2'P G J. = . P G J. C'P C El'/

Dem.

h.*200422-42. D h : Hp. S'PGJ. D . PC J. C'P CRl'J (1)

h.*61'52. D h : C'P C Rl<J. D.s'C'P G J (2>

h . *16312 . *20021 . D H : Hp . P G J . D . **,!P G J (3)

h.(2).(3).*1621. DhiHp.PGJ.C'PCRl'J.D.^PGJ (4>

h . (1) . (4) . D h . Prop

*20043. h:PGJ.D.n*P =

&$t {M, N € FSC'P : (aQ) . (ifcf'Q) Q (A"Q) . Af f~P'Q =- tf f~P'Q}
Z>em.

K*4-71.*172'l.Dh:Hp.D,

n<P =M {MyN e F^'C'P :. (gQ) : (M'Q) Q (N'Q) : £PQ . DB . M<# = A"£}

[*35-71.*7l-35]

=MN [M,

N

€ F^'C'P : (aQ) . (M'Q) Q (N'Q) .M[
r
P'Q = N[ ?'Q} . D h . Prop

The following propositions, with the exception of #200*52, are concerned
—* 4_

with p'P"a and p'P"a, i.e. the class of terms preceding (or succeeding) the

whole of ct.

*2005. biP(lJ.3.ar>p'P"a = A.anp<P"a=A
—

+

Dem. h . #4051 . D h :. a? € o np*Ptfa .D :xea:yea.3y . #Py

:

[*10<26] D : #Ptf

:

[*50-24] D:<v(PGJ) (1)

h . (1) . Transp . D h : Hp . 3 . « n p'~P«a = A (2)

Similarly h : Hp . D . a r.^"a= A (3)

h.(2).(3).DKProp
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*200'51. h : P G J . 3 ! P . D . p'l&'C'P = A . p'P'C'P =A
Dem. h . #40-62 . D h : Hp . D .p<P"C'P C C'P

.

[#22-621] ^.p<P"C'P=C'Pr>p<P"C'P
[#200-5] =A (i)

Similarly h : Hp . D .p'P"C'P = A (2)

K(l).(2).Dh.Prop

#200-52. h : P G / . D . <7<P~ € P"C"P

Dem. h . #50-24 . D h :. Hp. D : xeC'P . D*. a>~eP'a;

.

[#13-14] ^.CP^'x:
[*37-7.Transp] D : C'P~e P"C"P :. D h . Prop

This proposition is often used in the theory of well-ordered series.

#200-53. h : P» G J . D . P«a np'*P (
'oi = A . P"a n p'P^'a - A

Dem.

(ay) -yea. xPy : y ea . 5y .yPx:

to) • tf-Py yP#

:

xP2x:

~(P"GJ) (1)

h . #371 . #40-53 .Dh:.^e P"a n p'P"a . D

[#10*56] D

[#34-5] D

[#50-24] 3

h . (1) . Transp . D h : Hp . D . (x) . x~ € P((a np'P"a (2)

Similarly h : Hp . D . (a?) . x~ e P"a n j/P"« (3)

h . (2) . (3) . D h . Prop

The above proposition is frequently used. If a is an existent class con-

tained in ClP, P"a and p
(P"a are the two parts of the Dedekind "cut"

determined by a (excluding the maximum of a, if any). The above pro-

position shows that these two parts are mutually exclusive.

#200-54. h : P G J. a ! P . D .p'P"{C'P np'P'a} =p (P"p (4P"a

Dem. h . #40-62 . D h : a ! a . D . C'P n p'P'a =p'P~( 'a (1)

h.*40-2. Dh:« = A.D.^P(<o=V. (2)

[#4016] 3.p (P"p<p'"ctCp<P"C<P (3)

h . (3) . #200-51 . :> h : Hp . a = A . D .p'P'ypi'a = A (4)

h . (2) . #24-26 . Dh:a = A.D. C'P nptp't(a = C<P (5)

h . (5) . #200-51 . D h : Hp.a = A. D.p<P"(C'P r>p'*P«a) =A (6)

h
. (1) . (4) . (6) . :> h . Prop

This proposition is a lemma whose purpose is to avoid the necessity of

introducing the hypothesis g; ! a in proofs in which it is not really necessary.

The first use of this proposition occurs in #206'551.



*201. TRANSITIVE RELATIONS

Summary o/#201.

There are two main varieties of transitive relations, namely those that

are symmetrical (P = P), and those that are asymmetrical (P r\P = A).

Transitive symmetrical relations have the formal properties of equality;

examples of such relations have occurred above, e.g. identity, similarity, and

likeness. The propositions of the present number, however, are rather such

as will be useful in connection with transitive asymmetrical relations, since

they are intended to be applied to series.

We denote the class of transitive relations by "trans"; thus

trans = P(P2 GP) Df.

Many propositions of this number are analogous to propositions whose

numbers have the same decimal part in #200. Such are : If P is transitive,

so is its converse (#201* 11), and so is any relation which is like P(#201'211);

A and x I y are transitive (#201 SSI); if P is transitive, so is P £ a (#201'3S).

The propositions #201*4—'42, which deal with the ideas of relation-arithmetic,

are also analogous to #200"4—*42.

Most of the other propositions of this number, however, have no analogues

in #200. Among the most important of these are the following

:

#201-14. h : P e trans . xPy .Z.P'xC ~P'y

#20115. h.ij^e trans

#201 18. h : P2 G P . D . Ppo = P . P* = P o J \ C<

P

This proposition is very important, since it effects an immense simplifica-

tion in the use of all propositions involving P^ or P# , when these propositions

are to be applied to transitive relations. Owing to the above proposition,

Ppo drops out where transitive relations are concerned. P^, on the other

hand, remains useful: if yeC'P, "xP%.y" will mean "x precedes or is y"
which, if P generates a series of which x and y are members, is equivalent to

"x does not follow y"
—

>

We have a series of propositions (#201 "5—'56) on P"a and p'P"a. The
chief of these are

#2015. hPe trans . D . P"P«ct C P"a

#201-501. h : P e trans . D . P"~P'x c'P'x

These two propositions express the fact that a predecessor of a predecessor
is a predecessor.
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#201-52. h : P e trans . D . P*"a = P"a w (a r. G'P)

Thus if a C G'P, P#"a consists of a together with the predecessors of its

members.
-> —

>

#201 521. h : P e trans . a? e C'P . D . P*'tf = P'« v t'#

*201'55. h : P « trans . D . P"(a v P"«) « P"a

We have next a set of important propositions on P—P2 and P
x , The

chief are

*201'63. h : P € trans n Rl<J,0.P^P-P2

#201*65. h : . P e trans n Rl'J .D:P1
= A. = .P2 = P

On these two propositions, see the notes appended to them below.

#20101. trans = P(P*(1P) Df

#2011. I- : P e trans . = .P*GP [(#201 '01)]

#20111. h :Pe trans. = .Pe trans

h . #201-1 . #31-4 . D h : P « trans . = . Cnv'P2 G P

.

[*34'63.#2011] =.P e trans Oh. Prop

#20112. I- :. Pe trans .D:PGJr

. = .P2 GJ. = .PAP = A [*50'47]

In virtue of this proposition, being contained in diversity is equivalent

(where transitive relations are concerned) to asymmetry. This is not in

general the case with relations which are not transitive; thus e.g. diversity

itself is contained in diversity, but is symmetrical.

#20113. h . R1'7 C trans

Dem.
h . #34-34 . D h : R G I. D . P2 G R

j
/.

[#50-4] D . R? G R : D h . Prop

#20114. h : P e trans . xPy .Z.P'xC P'y

Dem.
h . #201-1 . :> h : Hp . zPx . D . *Py (1)

h. (1). #3218. Dh. Prop

The following propositions (#201-15—*19) are concerned with R% and Pp0 .

#201-15. h . R* € trans [#9017]

#20116. h . iJpo e trans [#9156]

This proposition is important, since it often happens that a series is given

as defined by a one-one relation R, as in #122 for example, and in such cases

JRpo is a serial relation in our present sense. By the above proposition, JRpo
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is always transitive; by #96421, Rvo is connected when confined to the

posterity of a given term, provided iJeCls —>1; by #9623, if Rel —>Cls
and xBR, Rvo is contained in diversity throughout the posterity of x. Thus

if R is a one-one, Rvo confined to any family which has a beginning will be

a serial relation.

#20117. h : P2 G P . Q e Pot'P .3.QGP
Bern. K #3434. D h :. Hp . : 8 Q P. Ds .8\ PGP (1)

K #91171 ^-f^-.D
<po

h:.QePot'P:#GP.>s .#]PGP:PGP:D.QGP (2)

K (1). (2). #23-42. Dh. Prop

#20118. h : P2 G P . D . Ppo = P . P* = P a / f OP
Dem. h. #20117. #41-151. (#91-05). D I- :Hp.D.PP0 GP (1)

h.(l). #91-502. Dh iHp.D.

P

P0=P (2)

h. (2). #91 -54. Dh. Prop

This proposition is important, since it simplifies all propositions con-

cerning Ppo and P^ in case P is transitive. The following proposition is an

instance of this simplification.

#201ia h:Petrans.D.P(#-y) = P'#nP<y [#20118 . (#121-01)]

The following propositions (#201'2—*22) are concerned in proving that

transitiveness is unaffected by likeness-transformations, and therefore belongs

to every member of a relation-number or to none.

#201-2. h : 8 e Cls -* 1 . d'Q C <J<£ . D . (S'>QY = S>Q>

Dem. K#1501. D h .(S'*Qy = S\ Q\S\8\ Q\8 (1)

h . #72-601 . D h : Hp . D . Q \
8

\

8= Q (2)

h.(l).(2).Dh:Hp.D.(^Q)2 = JS|Q2 jS:Dh.Prop

#201-201. h : S € Cls- 1 . D'Q C CP£ . D . (£SQ)2 = SJQ2

[Proof as in #201-2]

#201 -21. I- : S e Cls -> 1 . Q e trans .D.S'Qe trans

i>em. (-.*150-36.*35-452.Dh./S»Q-SiQpa' JSf (1)

I- . (1) . #201-2 . D h : Hp . D . (S'>Qy = #S(Q £ d'S)*

.

[*150'31.#2011] D . (S'>QY GS'>Q:3h. Prop

#201-211. h : Pe trans. Qsmor P. D.Qe trans [*20121 .#1511]

This shows that transitiveness is a property which is unchanged by
likeness-transformations. Hence

#201-212. h : P e trans . D . Nr'P C trans [#201-211]
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#201 22. h : P e trans . = . N r'P C trans . = . g ! N r'P n trans

[Proof as in #200*22]

#2013. h . A e trans

Dem. h.*34-32. Dh.A2 = A (1)

h . (1) . #23*42 . D h . A2 G A . D h . Prop

#201 31. h . x \ y e trans

Dem. h . #55'13 . D h : z (x 4, y)
2 w • = (a>) .z = x.u = y.u — x.w = y.

[#10-35] D . z — x . w = y

.

[#5513] D . z (x I y) w : D h . Prop

Unless # = y, {x\, yf = A. A relation whose square is A is transitive,

because A is contained in every relation.

*20132. h . a t £ * trans

Dem. h . *35'103 . D h : x(a^ 0)
2 z . = . (<&y) . x e a . y e . y e a . z e ft .

[#10-35] D.xea.zeft.

[*35'103] ^.x(a^ft)z:D\-.Vrop

#201-33. h : P e trans . D . P £ a e trans

Item. \-.*m-l%.'}\-:x{Ptayz. = .{'Ky).x,y,zea.xPy.yPz (1)

h.(l). Dh:.Hp.D:tf(P£a)2 ^.D.(a#).#,y,sea.xPs.

[*10-35.*36-13] D . # (P p «) z :. D h . Prop

The following propositions (#201'4—-42) are concerned with the ideas of

relation-arithmetic.

#201-4. f- : P, Q e trans . C'P n C'Q = A . D . P$Q* trans

Ztem.

h.*160'51. D h :Hp. D. (P^Q^P^QsoD'Pt C'Q u C'P fCFQ (1)

I-. #201-1. Dh:Hp. I).

P

2 GP.Q2 GQ (2)

h . #35-432-82 . 3h .WPf C'QGC'P^ C'Q .C'P \<J'QGC'Pt C'Q (3)

h. (1). (2). (3). D h: Hp. D.(P4iQ)2GPa$u C'P ? C'Q :Dh. Prop

#201-401. I" : . C'P r> C'Q = A . D : P£ Q e trans . = .P,Qe trans

I- . #160-51 . 3

h :. Hp . D : P$Q e trans . = . P2 a Q2 a D'P | C'Q a C'P f a'Q G P£Q

.

[#1601] = .P*vQ*GP$Q.
[#160-5] D.(P*u Q2

) tC'PGP.{P*v Q2
) £ C'Q G Q

.

[*36-4.*34-56] D .P*GP .Q*GQ (1)

h . (1) . #201-4 . D h . Prop
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#201*41. h :. se^eC'P . D : P e trans . = . P -+» #« trans . = .^<f?6 trans

Bern.

h . *34"301 . D h : Hp . D . (C'P | t'a>)
|
P = A

.

[#1611] 3 . (P +> a;)
2 = P2 u (C'P 1 1^)2 w P

I

(C'P t t'a?;

[#35-881] = P2
ci (C'P j i^)2 ci (D'P | i'x)

[#35-895] = P*v(D'Pit,'x) (1)

r-.(l). #201-1.3

I- :. Hp . D : (P -b x) e trans . = . P2 ci (D'P f i'x) G P ci (C'P | 1'«)

[#35-432-82] =.P*<lPu (C'P | t'x) (2)

h . #33-33 . #34-56 . #35-86 . D V : Hp . D . P2 * (C'P | t'a?) = A (3)

h
.
(2) . (3) . #25-49 . D V :. Hp . D : P -+» are trans .~.P*GP.

[#201-1] = . P e trans (4)

Similarly h : . Hp .D:a'4fPe trans . = . P e trans (5)

I- . (4) . (5) . D h . Prop

#201-411. h:z^x.z^y.3.xly-\*Z€ trans [*201'41'31]

#201'42. r : P e trans r» Rel2 excl . C'P C trans . 3 . 2'P e trans

Dem.

h. #1621.3

I- . (S'P)2 = (s'C'P)2 ci (P^P)2 ci (s'C'P)
|

(P^P) ci (F">P)
j

(s'G'P) (1)

I- . #41-11 . D h : x(s'C'Pfz. = . (aQ, R,y).Q,Re C'P . a#y . yi& .

[#33-17] =.(<zQ,R> y).Q >
R6C<P.xQy.yRz.<zlC'Qr>C<R (2)

h. (2). #16311.3

r :.Hp. 3 :#(s'C'P)2 s. D.(aQ,2S, y) . Q,ReC'P .xQy .yRz .Q = R

.

[#13-195] D . (aQ) .QeC'P. xQ>z .

[#201-l.Hp] D . (aQ) .QeC'P. xQz

.

[#41-11] D.a. (s'C'P) z (3)

I- . #20121 . #163-12 . D V : Hp . D . (PJP)2 G P?P (4)

h . #341 . #41-11 . #150-52 . 3

h:x(s<C'P)\(F'>P)z.3.(nQ
}
R,S,y).Q€C<P.xQy.RPS>y€C'R.Z€C<S (5)

h. (5). #16311. #13-195. D

h:.Hp.D:x(s'C'P)|(p;P)^.D.(aQ,^
2/).Q6C'P.^.QP^.^eC>Sf.

[*33-l7.#150-52] D.^(PJP)^ (6)

Similarly h : . Hp . D : a; (P?P)

|

(s'C'P) z.O.x (F>P)

z

(7)

f-.(l).(3).(4).(6).(7).D

h : Hp . D . (2 'P)2 G s'C'P ci PJP : D h . Prop

The following propositions (#2015—-56) are concerned with P"a and—

>

p'P"a, i.e. with the predecessors of some part of a class and the predecessors

of the whole of a class.

#201-5. h:P e trans.D.P"P"«CP"a [*37-33'201]
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#201 501. h : P e trans . 3 . P"!*'® C ~P*x [*53'301 . #201 -5]

*201'51. h : P e trans . 3 . P<yP"a Cp'P"a

Dem.

b . #37*1 . *40"51 . 3 h :.*ePy?"a . = : (ay) : z ea . Dz . yPz : xPy

:

[#531] D^ea.Dj.aiP2^ (l)

h.(l).*2011. Dh :.Hp .D : xe P"p'P"« .3 : z ea .Oz .xPz

:

[*40'51] D : a? <?yP"a :. D h . Prop

*20152. h : P e trans . D . P*"« = P"« u (« n C'P) [*91'543 . *20118j

#201 521. hiPe trans .xeC'P.3. P*'x = P'x u t'a [*201"52 . #53301]

#201 53. h : P e trans . D . P^ (tP((a = P"ct [*201-5-52 . #37265]

#201-54. h : P e trans . D . P*"p<P"a C p'P"a [#201-51-52]

#201 55. h : P e trans . D . P"(a v P"a) = P"a

Dem.
h . #201*5 . D h : Hp . D . P"a = P"a u P"P"a
[*37'22] = P"(a v P"«) :Dh. Prop

The following proposition is a lemma which is used in #205192 and

#206-24.

#201-56. h : P e trans . £ C P"a . D .

P"(a w yg) = P"a . jt><P"[(a u £) n C'P} =^'P"(a n C'P)

h . #37-22 . D h . P"(a u /3) = P"a w P"/3 (1)

h . #37-2 . D h : Hp . D . P<</3 C P"P"a .

[#201-5] D.P"/3CP"a (2)

h.(l).(2).DK-Hp. D.P"(av£) = P"a (3)

h . #40-51 . #37*265 . D

h :: Hp . D :. 2 €j)'P"(a rs C'P) .xe /3 r> C'P .3 :

y e a n C'P . Dy . yPs : (gy) . y eanC'P *xPy:

[#10-56] D : (gy) . icPy . yPz :

[#34-5.Hp] D : xPz (4)

h . (4) . #40-51 . D I- : Hp . D . p'P"(« n C'P) Cp'P"(/3 r. C'P) .

[#22-621] D .i?'P"(a « C'P) =p'P"(a n C'P) n p'P"(/3 n C'P)

[*40-18.#37-22] =^'P"}(a u /3) n C'P} (5)

h.(3).(5).Dh.Prop

The following propositions, to the end of the number, are concerned with

the relation Pi defined in #121. We may regard Px as meaning "immediately

precedes." #201'6'61'62 are lemmas for #201-63.

h & w II 33
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#201-6. h : P e trans .~(xPx) .~(yPy) • xPty . D . as(P-P2
) y

Dem.
I- . #121-32-242 . D h : Hp . D . P(a? wy) = t'# u t'y u P («-y)

<— —

*

[#20119] = i'x\Jl'y\jP fxri Pf

y (1)

I- . #121-321 . #20118

.

D h : Hp . D . xPy (2)

h. (2). #1314. Dh:Hp.D.#*y (3)

h.(l) . (3) . #54-53 . #12111 . D h : Hp . D . P^nP'yCt^w t<y (4)

(.#32-18181. Dh:Hp.D.<r~eP'a?.y~eP'y (5)

h.(4).(5). Dh:Hp.D.KrnP<y = A.
[#3411] S.~(xP*y) (6)

r- . (2) . (6) . D I- . Prop

#201 61. h : Pe trans . D . P^Pa G P,

Ztem.

h.*121-242.*90-151.Dh!a?Py.D.P(a?My) = t'aywt'ywP(a;-y) (1)

h . (1) . #20119 . D F :. Hp . D : xPy . 3 . P(# My) = i
txvi lyv(pixrj>'y) (2)

(-.#3411. Dh:^(^P2y).D.PiicnP^=A (3)

h. #34-54. Dh:a?Py.~(a?P8y).D.a?+ y (4)

h . (2) . (3) . (4) . 3 h :. Hp . D : xPy.~{xP*y) . D . P(a?wy) = I'a? u t'y.x^y.

[#54101] D.P(>wy)e2.
[#121-11] ^.xP^yi, I) h. Prop

#201-62. h : . P e trans .~(xPx) . ~(yPy) . D : xP
xy . = . x (P -^P8

) y
[#201-6-61]

#201-63. h:Pe trans « Rl'J . I) . P, = P^-P2 [#20162]

The above proposition is of fundamental importance. The relation Px

(defined in #121) plays a great part in the theory of series. It is the relation

"immediately preceding." Its domain consists of those terms which have

immediate successors; its converse domain, of those that have immediate

predecessors. In well-ordered series, D'P1
= D'P, while (PPi consists of all

terms (except the first) which do not belong to the first derivative (cf. #216).

In any series, d lP - (l
lP1 consists of all the terms which are limits of

ascending series, and D'P — D'Pj consists of all the terms which are limits of

descending series.

#20164. h :. P e trans . D : P^ P* = A . = . P2 = P
Dem.

r- . #23-41 .Dh':.Hp.D:P2 =P.s.PGP2
.

[#25-3] = . P-^P* = A :. D h . Prop

#201-65. h :. P e trans n Rl'J . D : P1
= A . = . Pa = P [*201*64'63]



SECTION A] TRANSITIVE RELATIONS 515

When P is a series, P2 = P is the condition for its being a compact series,

i.e. one in which there are terms between any two. In virtue of *201-65,

this condition is equivalent to P, = A, which states that no terra has an
immediate predecessor.

The following proposition is first used in #253'521.

*201*66. h : P € trans . E ! P'x . P'x + x . D . (P'x) P1x

Dem.
h.*20l-521.*12ril.D

r :. Hp . D : {P'x)Ptx. = . {i'P'x u *P'P'x) n (i'x v P'x) e 2 (1)

h.*5331.Dh:Hp.D.

(i'P'x y P'P'x) a (i'x UA) = (i'P'x u P'P'a) n (i'x u t'P'a)

[*30'32.*22-68] = i'x u t'P'# (2)

h . *54-26 . D r : Hp . D . (i'x v i'P'x) e 2 (3)

r
. (1) . (2) . (3) . D h . Prop

*201-661. h : P e trans . d'P e 1 . 3 ! D'P - d'P . 3 . d'P C d'Px

r . *33151*4 . *60-38 . D

h : Hp . y e D'P - d'P . D . P'y e 1 . y~ e P'y . P'y = d'P .

[*53'3] D . E ! P'y . y 4= P'y . I'P'y= d'P

.

[*201-6611.*121-26] D . yP^P'y) . t'P'y = d'P Oh. Prop

The above proposition is a lemma for the following.

*201-662. r : P e trans . a ! £'P . a ! d'P -d^ . D . d'P~ e 1

[*201-661 . Transp]

This proposition is first used in *253'521.

33—2



*202. CONNECTED RELATIONS

Summary of #202.

A relation is said to be connected when either it or its converse holds

between any two different members of its field, i.e. when, if x, yeC'P.x^y,

we have xPy . v . yPx. Thus the field of a connected relation consists of a

single family, unless the relation is null, in which case it has no families.

Conversely, a relation which has one family or none is connected. Connection

is necessary, in addition to transitiveness and asymmetry, in order that a

relation may generate a single series. If \ is a class of transitive or

asymmetrical relations, s'X is transitive or asymmetrical; but if X is a class

of connected relations, s'X is not in general connected. Hence if X is a class

of series, s'X is not one series, but many detached series. This is one reason

why the arithmetical sum of a relation of relations is not defined as s'C'P,

but as s'C'P o F>P (cf. #162), because the latter, but not in general the former,

is connected when P and all the members of C'P are connected (#202*4<2).

When P is connected, if a is any class contained in C'P, we have

C'P = P"a uau (C'P n p'*P"a),

and there is at most one member of a belonging neither to P"a nor to

C'P r\p'P"a. This member of a, if it exists, is the maximum of a. If,

further, P*GJ (i.e. if P is asymmetrical), (P"aua)n (C'P np'P"a)=* A.
4-

Thus when P is both connected and asymmetrical, P"a w a and C'P e\ p'P"cc

are each other's complements, and the two together constitute the Dedekind

cut defined by a, P"a w a being all the terms that do not follow the whole of
4—

a, and C'P r> p'P"a being all the terms that do follow the whole of a.

More generally, if a is any class, not necessarily contained in C'P, then

when P is connected, we have

C'P - p'*P"(0L n C'P) C P"a u (a n C'P),

and when P is asymmetrical, we have

P"a u(«fl C'P) C C'P - /)'P"a.

Thus when both conditions are fulfilled, we have (#202*503)

C'P -p'P'Xa n C'P) = P"a u (a n C'P).

The above inclusions and the consequent equality will be constantly

required throughout what follows. The division of C'P into the two mutually

exclusive parts

P"a v (a n C'P) and C'P n j/P"(a n C'P)
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is the Dedekind "cut" defined by the class a. If aCO'P, the two parts

become, as above mentioned,

P"ava and C'Pnp'pi'a.

If, further, a is not null, they become

P"a v a and p'P"a.

If a is contained in C'P and contains all its own predecessors, they become

a and C'Pnp'P"cL

In this simplified form, Dedekind "cuts" will be considered later (#211).

We take as our definition

connex = P {x eC'P . Dx . P'x = C'P) Df.

Some of the propositions of the present number are analogues of

propositions in #200 and #201. Such are : If P is connected, so is

P (#202-11); if P is connected, so is any similar relation (#202-211); A and

x),y are connected (#202*3-31); if P is connected, so is Pi a (#202'33); and

various propositions connected with relation-arithmetic (#202*4—*42). The
majority of the propositions of this number, however, deal with properties

peculiar to connexity. Among the most important of these are:

#202101. hi.Pe connex . = : x e C'P . Dx . P'x u (,'x u P'x = G lP

#202*103. h :: P e connex . = :. x, y e C'P ."^
x>y : xPy . v . % = y . v . yPx

These are merely alternative forms of the definition.

#202*13. h : M% e connex . = . i?p0 e connex

#202*5. h :. P e connex . P2 G J . x, y e C'P . 3 : x ^ y .~(xPy) . = . yPx

#202*501. h : P e connex . D . C'P - a - P"a C p'P"(a n C'P)

#202*503. h : P e connex .P'QJ.D. C'P -p'P"(a n C'P) = (a n C'P) w P"a

#202*505. h : P e connex . D . C'P = P"a u(«n C'P) u {C'P n p'P"(a n C'P)}

#202*52. h : P e connex . D .~B'PJ2'P e u 1

#202*524. h : P e connex . g ! B'P . D . <1'P = P'B'P

#20255. h : P£ aeconnex. a C C'P. a~el .D.C"P£a = a

In virtue of this proposition (and others) if P is a series and a is a class

(not a unit class) contained in C'P, P £ a is the generating relation of the

series consisting of the class a in the order which it has in the series P.

#202*7. V : P e connex .D.P-*-P2 el-*l

This proposition is to be taken in connection with #201*63. The two

together show that when P is a series, P1 is one-one.
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#202 01. corme* = P\xe C'P. Dx .P'x = C'P} Df

For the definition of P'x, see #97 01.

#2021. r :. P e connex . = : x e G'P . Dx . P'x = C'P [(*202'01)]

#202101. h : . P e connex 1 = :*eC'P.DJ!
.P'*u i'x u P'x = C'P

[#2021 . #97-1]

#202102. h : P e connex . = . P"C*P eOul [*97231 . #202101]

#202*103. h :: P e connex , = :.x,ye C'P ."5
XtV : ®Py • v . x = y . v . yP#

[*97-23 . #202102]

#202104. h ::P e connex . = :.x,ye C'P .x^y.D^yZ xPy . v . yPx

[*202-l03.*5-6]

#20211. f-

:

P

e

connex . = . P

e

connex [#202104 . #3322]

#20212. h : . a ! P . D : P e connex . = . P"C'P e 1 . = . P"C'P = i'CP

Dm.

h . #2021 . 3 H : P e connex . = . P"C'P C v'C'P (1)

h . #3745 . 3 I- :. Hp . D : a I P"C'P :

[5*64102] D:P"C"P~e0:

[#202102] D : P e connex . 3 . P"C'P e 1 (2)

h. #202102. D f- : P"C"P el. 3. Pe connex (3)

h . (2) . (3)

.

D h :. Hp . D : Peconnex . = . P"C'P e 1 (4)

h . (1) . (4) . *52-46 . 3 H :. Hp . 3 : P e connex . 3 . P"C"P = i'C'P (5)

h . (1) . *22-42 . 3 h : P^'C'P = i'C'P .D.Pe connex (6)

I- . (4) . (5) . (6) . D h . Prop

The following propositions, down to #202181 inclusive (excepting

#20216161), are concerned with R% and Upo . It often happens that these

are connected when R is not so, e.g. if R is the relation +„ 1 among inductive

cardinals.

#20213. I- : R% e connex . = . iJpo e connex

Bern.

Y . #202104 . 3.

h :: R% e connex ,= :.x,ye C'R% . x =j= y . Dx>y : xR%y . v . yR%x :

[#91-542] =:.x,ye C'R% .x^y.DXiy : xR^y . v . yR^x :.

[#9014.#91'504] = :. x,y e O'R^ *x^y. Dx>y : xR^y . v . yR^x :.

[#202104] = :. Rpo e connex :: 3 h . Prop

#202131. r : P e connex . C'P = O'Q . P G Q . 3 . Q <• connex [#202103]
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*202132. h:Pe connex . 3 . P^, P* e connex

[*202131 . *9014'151 . *91'502-504]

*202133. h::ItC'P<ZP.D:.P€COimex. = :xeC'P.Da! .C'P = P'wv*P'a:

Bern.

h . *35-101 . 3 r :. Hp . 3 : x e C'P . 3 . i'x C P'x (1)

h . (1) . *202101 . 3 h . Prop

*202134 h ::. JfC'P GP . 3 ::P econnex . = :.x,yeC'P . DX)V : a?Py . v . yPx

[*202-103]

*202135. r : P e connex . = . P v I f C'P e connex

Bern.

h . *202-134 . 3 h :: P w 7 f C fP e connex . s :.

*,yeC"P.D
fl

.

itf
:*(Po7|^C"P)y.v.y(Po/rC"P)*:.

[*202103] = :. P e connex :: 3 h . Prop

*202 136. h :. P* e connex . = :<£< C'P . 3* . C'P = P*'a: u P*'a

[*202-133.*9014\L5]

*202137. V :: P* e connex . = :. a, y e C'P . DXt y : xP*y . v . yP*x

[*202\L34.*9015]

*202138. h:.Pe trans . 3 : P e connex . = . P* e connex [*202-13 . *201*18]

*20214. h : R e Cls- 1 . 3 . R^ £ .ft*'*7 e connex [*96"303 . *202104]

*202141. h : £ e 1- Cls . 3 . £po £ £*'# e connex [*202141 . *20211]

*->

*20215. b:Rel-*l .D.Rpot R%'x e connex

Bern.
*-» —

>

«—
H . #97'13 . 3 h :. y, z e i2#'# .

Vi z : y,z e #*'# .v .y,ze R*l
oc . v .

— <— <— —

>

y e i2^'a? . z e i2^'a? . v . y e i^'a? . .z e ii^'a? (1)

h . *202-141104 . 3 I- :: Hp . 3 :, y,z e R*'x .y^z.O: yR^x . v . xR^y (2)
<—

h . *202'14-104 . Dh::Kip.D:.y,2(:Rx ix.y$z.D:yRvo x.v.xRpoy (3)
—

>

<—
h . *9017 . 3 H : y e R%x . z e R%fx .y^z.D. yR%z .y^z.

[*9V542] O.yR^z (4)

Similarly h : y eR^x.z e R^'x . y=f=^ • ^ zRvoV (^)

h.(l).(2).(3).(4).(5).3

h :: Hp . 3 :. y,* e £*'# . y + * 3y,z : y^po* v .^poy (6)

h . (6) . *202104 . 3 V . Prop

The above proposition is used in the ordinal theory of finite and infinite

(*260-4).
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#20216. h : P e connex . x, y e C'P . ~ (xPx) . ~ (yi>y) , P'm= P'y . D . « = y
Dew.

h . #3218181 . D I- : Hp . D . ~ (*Py) . ~ (ypx) .

[*202*103] 3.a = y:3h.Prop

#202161. h : P e connex r, RLV . D . ?f C'P e 1 -* 1 . P |* CP * (P >P) smor P
Dew.

h . #20216 . D r :. Hp . D : a,y e C'P3lx = P'y ,3.x=y (1)

h . (1) . *71'55 . #151-24 . D h . Prop

#202162. h:Peconnex.Ppo GJ'.3.Pt;iP^JPsmorP.P^|P^I
k C"Pel->l

i)em.

f- .#36-13 . 3 hi. PI ~P*<x = Pt~P*<y . = :

— —
wPv . u, v € P%'x . = u v ^P^ «, v e P*'y (1)

h.(l). #11-1. #90-12. D

h:.x,y e C'P.Pt%'x = Pt%'y.D:xPy.yP^x. = t xPy.xP^y.

yPx . yP%x . = . yPx . xP%y :

[#90-151 .#91-52] D : xPy . D . #PP0« :yPx.3. yP^y (2)

h . (2) . D h : Hp . xy y e C'P . P£ P*'* = P^*'y 3 ~ (aity) ~($Px) .

[#202-103] D.« = y:3KProp

#202"17. h : Ppo e connex .yeP(aH^).D,P(aHy)uP(yH^) = P(«iH^)

Dem.
h. #201-1415. #121-103. D

h:Hp.D.P(aiHy)CP(icH*).P(yH*)CP(*H5) (1)

h . #20213137 . #121-103 . 3
I" :. Hp . w € P (x \r-\z) . D : wP^y . v . yP%w : xP%w . wP%z:

[#121103] D:weP(*i-iy)wP(yM*) (2)

h (1) . (2) . D h . Prop

*202'171. h'.P^e connex . y e P (x m 2) . D .

P (a; -h 2) = P (a? -h y) u P (y -h ^) . P (a? I— z) = P {x \— y) u P (y i— z)

[Proofas in #202-17]

#202172. I- : Ppo e connex . y e P (x - a) . D .

P(tf-y) = P(0-iy)vP(y-2)-P(a-y)v,P(yf-*)
[Proof as in #202*17]

#20218. I- : P^ e connex . E ! B'P . 3 . C'P =*P*'B'P

Devi.

V . #2021 . D I- : Hp . D . C'P = Pp0'P'P

[#97-2.#91'504] - %'B'P .Oh. Prop
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#202181. r : Ppo e connex . E ! B'P . E ! B'P . 3 . C'P = P (B'P n B'P)

Bern.

h . #202*18 . D h : Hp . 3 . C'P =*P*'B'P a P^'fi'P

[#121*103] = P (B'P^B'P) : 3 h . Prop

The above proposition is used in the ordinal theory of finite and infinite

(*261'2).

The following proposition is a lemma for #202 ,

211, which shows that if a

relation is connected, so are all similar relations.

#202*21. h : P e connex . 8 e 1 -* Cls . D . S'fP e connex

Dem.

V . *150'202 . 3 h :: Hp . 3 :. x, y e C'S'>P . x =f y . 3 : x, y e S"C'P .x^y:
[*71'4.*30-37] 3 : (rz, w) . z,iv e C'P .x= S'z .y = S'w . z ^w :

[#202104] 3 : (rz, w):x = S'z .y = S'w: zPw . v . wPz :

[*150*4] D:x(S'>P)y.v.y(S>P)x (1)

r
. (1) . #202*104 . 3 h . Prop

The proofs of the three following propositions proceed like the proofs of

the analogous propositions in #200 and #201.

#202*211. h : P € connex . Q smor P . 3 . Q e connex

#202-212. h : P e connex . D . Nr'P C connex

#20222. h : P e connex . = . N r'P C connex . = . a ! N„r'P n connex

#202*3. h . A e connex

Dem.

h . #37*29 . 3 h : P = A . 3 . P"C'P = A .

[#202*102] D . P e connex : 3 h . Prop

#202 31. h .x lye connex

Dem.

h . #55-15 . 3 h :. z,weC'(xly) . 3 :

z, w e t'x . v . z, w e t'y . v . z e i'x . w e v'y . v . z e t'y . w e i'x :

[#51-15.#13*1 72] D:z = w.v.z = x.w = y.v.z = y.w = x:

[#55*15] D : z = w .v .z(x ly)w .v .w(x\,y)z (1)

h.(l). #202*103. Dh. Prop

#202 33. h :Pe connex . 3 . P £ a e connex

Dem.

h . #37*41 . 3 h : a;, y e C'Pt a . 3 . x,y e a . x, y e C'P (1)

h . (1) . #202103 . 3
h :: Hp . 3 :. x, y e C'P £ a . 3 : #, y e a : #Py . v . sc = y . v . i/P* :

[#36-13] D:x(Pta)y.v.x*=y.v.y{Pta)x (2)

K (2) . #202103 . 3 h . Prop
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The following propositions (#202*4—•42) are concerned with applications

of relation-arithmetic.

#202*4. I- : P, Q e connex . 3 . P-£ Q e connex

Dem.

h . #16014 . 3 h :. a?, y e C'(P £ Q) . == :

x^jeC'P.v.^yeC'Q.v.xeC'P.yeC'Q.v.xeC'Q.yeC'P (1)

h . #202103 . 3 I- :: Hp . 3 :. x, y e C'P . 3 : #Py . v . x = y . v . yPa :

[#1601] D:x{P$Q)y.v.x = y.v.y(P$Q)x (2)

Similarly h :: Hp . 3 :. x,yeC'Q . 3 : x(P £ Q)y . v . x = y.v.y(P$ Q)x (3)

h . #1601 . #35103 .D\-:x€C'P.yeC'Q.D.x(P$.Q)y (4)

f- . #1601 . #35103 . 3 h : a e C'Q . y e C'P . 3 . y (P £ Q) a? (5)

h.(l).(2).(3).(4).(5).3

h :: Hp. 3 :.x,yeC'(P $ Q) . 3 :*(P 41 Q)y .v .x = y .v .y(P $Q)x (6)

h
. (6) . #202103 . 3 r . Prop

The above proposition illustrates the reasons for defining P $- Q as was

done in #160. When P and Q are connected, Pc/Q is in general not con-

nected: it is the additional term C'P f C'Q which insures connection.

#202401. h :. C'P n C'Q = A . 3 : P $ Q

e

connex . = . P, Q e connex

h . #202-33 . 3 h : P$Q e connex . 3 . (P^Q)D C'P, (P^Q)D C'Q e connex (1)

h . (1) . #160-5 . 3 h :. Hp . 3 : P^Q e connex . 3 . P, Q e connex (2)

h . (2) . #202*4 . 3 h . Prop

#20241. \- : P e connex . 3 . P-\*z e connex . 2*fP e connex

Dem.

h . #16114-2 . 3 r :. w, y e C'(P +» *) . x 4= y . 3 : x, y e (C'P u t's) . a? 4= y :

[#51-236] D:x,yeC'P.x^y.v.xeC'P.y = z.v.yeC'P.x = z (1)

h . (1) . #202-104 . 3
I- ::Pe connex . 3:.#,ye C'(P -+» #) . x =j= y . 3 :

#Py . v . yPx .v .xe C'P .y = z .v .y e C'P .x = z:

[#16111] Dix{P-frz)y.v.y(P-+>z)x:.
[#202-104] 3 :. P -p> z e connex (2)

Similarly h : P € connex . 3 . z *f P e connex (3)

r . (2) . (3) . 3 h . Prop

#202-411. f-. x I y+> ze connex [#202-41 -31]

#202'412. h z.zr^eC'P . 3 :Pe connex. = . P-r>#e connex. = . ^4fPe connex

Dem.

h . #16116 . 3 h :. Hp . 3 : P = (P -^ z) £ C'P :

[#202-33] D:P+>ze connex . 3 . P e connex (1

)

Similarly h : . Hp . 3 . z*\- Pe connex . 3 . P e connex (2)

h (1) . (2) . #202-41 .3K Prop
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*202 42. h:Pe connex . C'P C connex . 3 . S'P e connex

Dem.

)-.*162-22.D\-:x,yeC'$<P.=:.(>zQ
}
R).Q,ReC'P.xeC tQ.y6CtR (1)

h.(l).*202-103.D

h :: P € connex . 3 :. <r,yeC'£'P . D :

(nQ,&):QPR.v.Q = R.Q,R€C<P.v.RPQ:w€CtQ.y€C<B (2)

h . *162 13 . D h :. QP# . v . EP# .oceC'Q.yeC'RiO :

x{VP)y.v.y(VP)x (3)

K*13195 0r:(gQ,£).Q = P.Q, fleC'P.tteC'Q.?/eC'.K.D.

(aQ).Qe^P.^yeC"Q (4)

I- . *202103 . D h :: C'P C connex . D :. (gQ) .QeC'P .x,y € C'Q.D:

(aQ) : Q * C'P : a% .v.x = y.v. yQx :

[*162-13] D:x(2'P)y.v.x = y.v.y(2'P)x (5)

K(4).(5).Z>

I- : : C'P C connex . D :. (gQ, R) .Q = R. Q,R € C'P .xeC'Q .ytC'R .Dt

x(Z'P)y.v.x = y.v.y(2<P)x (6)

h.(2).(3).(6).DI-::Hp.D:.

£c,y € C'2'P,D:x($'P)y.v.x = y.y.y(2'P)x (7)

f-.(7).*202-l03.Dh.Prop

*2025. h :. P e connex .P*Q.J .x,ye C'P . D : x ^y . ~ (aPy) . = . yPa?

Dem.

h.*50-43. Dh:.P*GJ.DzyPx.D.~(xPy) (1)

h.*200-36. Dhz.P'QJ.D-.yPx.D.x^y (2)

h . *202\L04 . D h :. P econnex . a>,y e C'P . D : a?=f=y . ~ (aPy) . D . yPx (3)

H.(l).(2).(3).Dh.Prop

The following propositions (#202'501— 51) are concerned with the relations

of P"a and p'P"(ar\ C'P). They are important, and *202-50V503-505 will

be often used.

*202 501. H : Pe connex . D . C'P - a - P"a C j9'P"(a n C'P)

Dem.

K *1314.*37l.D I- z.ye C'P- a- P"a.ae a. D.x^y.~(yPx) (1)

h . (1) . *202-103 . D h :. Hp . D : y e C'P - a - P"a .^anC'P.D.xPy:

[*40'53j D : y e C'P - a - P"« . D . y ep'P"(« n C'P) :. D h . Prop

*202-502. h:Peconnex.P2 GJ
r

.a!anC'P.D.C'P-a-P"a=p'P"(anC'P)

h.*40-62. Dh:Hp.D.jD'P"(anC'P)CC'P (1)

h.*200-5. 3h:Hp.D./)'P"(anC'P)C-a (2)

h . *200'53 . D h : Hp . D . />'p""(a n C'P) C - P"a (3)

h . (1) . (2) . (3) . *202-501 . D h . Prop
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#202-503. h : P e connex . i» G J . D . C'P -p'*P"{a « C'P) = (a « C'P) w P"a

Bern.

V . #202501 . #2443 . D (- : Hp . D . (7'P -^'P*"(a r, CP) C«y P"a (1)

h . (1) . #22*43 . D (- : Hp . 3 . C'P -#<P"(a n C'P) C (a v P"a) n C'P

[*22-68.*37-15] C (a n C'P) v P"a (2)

I- . *200'5-36 . D h : Hp . D . a n C'P C - p'P"(a r. C'P) (3)

I- . #20053 . 3 h : Hp . D . P"a C -p'P"(a r. C'P) (4)

h . #22-43 . «3M5 . D h . a n C'P C C'P . P"a C C'P (5)

h . (3) . (4) . (5) . D H : Hp . 3 . (a n C'P) w P"a C C'P - p'P"(a n C'P) (6)

I- . (2) . (6) . D h . Prop

#202504 h : P e connex .P*GJ.D.C'Pn p'P"(a n C'P) = C'P - a - P"a

h . #2005-36 . Dh: Hp. D. p<P"(an C'P) C-

a

. (1)

h. #200-53. Dh:Hp.D.|AP"(anC'P)C-P"a (2)

h . (1) . (2) . #22-48 . Dh : Hp. D. C'P n j»'P"(a r,C'P)CC'P-a-P"a (3)

h . (3) . #202-501 . D h . Prop

*202'505. h : P 6 connex . D . C'P = P"a u(«n C'P) u {C'P n #'P"(a n C'P))

Dew.

h . #202-501 . D h : Hp . D . C'P - o - P"a C j»'P"(a r. C'P)

.

[#24-43] D . C'P C a u P"a u {yP"(« n C'P)}

.

[*22'621.*37-15p . C"P=(flnC'i3)uP' f«y{0<i5np ,P"(anO'P)} : D h . Prop

#20251. h:Peconnex.aCC'P.a!a.3.

C'P = P"a u«u j)'P"a = P"a way p'P"a
Dem.

h . #4062

.

3 I- : Hp . D . p'P"ct C C'P (1)

h. #22-621. Dh:Hp.D.a = anC'P (2)

h . (1) . (2) . #202-505 . D h : Hp . D . C'P = P"a u a vp'P"a (3)

h. (3) p. #202 11. 3 r : Hp . D . C'P = P"a v a v p'?''a (4)

h . (3) . (4) . D K Prop
—

>

The following propositions (#202-511—-524) are concerned with B'P.

#202*52 shows that if P e connex, P cannot have more than one first term or

more than one last term, and #202*523 shows that this still holds if only P#
is connected. #202'511 shows that if P is a connected relation which has a

first term, then if a is any class, there are predecessors of the whole of

a r\ C'P when and only when B'P is such a predecessor, and when and only
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when B'P^ea. #202-524 shows that if P is connected and has a first term,

Q'P consists of the successors of the first term. These propositions arc

much used.

#202 511. K-.Pe connex . E ! B'P . D :

3 ! p<P"(a n C'P) . = .B'P~ea. = . B LP e p*P"(a n C'P)
Dem.

r . #202-104 . #931 . D h :. Hp . B'P ~ e a . D : x e (a n C'P) . D* . (B'P) Px :

[#40-51] D:fi'Pep'P"(anCfP): (1)

[#10-24] D : a ! p'P"(a n C'P) (2)

1- . #93-1 . Z> r- : Hp. B'P ea . D . (as) . ~ {wP(B (P)} .B'P can C'P .

[#40-51] D . p'~P"(a a C'P) = A

.

(3)

[#24-105] D . J5'P~ e p'P"(a n C'P) (4)

r . (2) . (3) . D h :. Hp . D : 5'P ~ € a . = . a !p'P"(a a C'P) (o)

h . (1) . (4) . D h :. Hp . D : J9'P ~> e a . = . B'P ep'P"(a a 0*P) (6)

h.(5).(6).Dh.Prop

#202-52. h : P e connex . Z> . ~B'P, B'PeOul
Dem.

V . #93103 . D h : x, y e~B'P .O.x, ye C'P. x~ed'P . y^ed'P .

[#33-14] D .•#, y e C'P .~(xPy) .~(yPx) (1)
—

>

h , (1) . #202103 . D h : . Hp . D : oc t y e B'P ,D.x=y:

[#52-4] D:i?<Pe0ul (2)

h. (2). #202-11. DHHp.D.lf'PeOul (3)

h . (2) . (3) . 3 h . Prop

#202521. h : P* e connex . D .1?'P Cp'P*"C'P
Dem.

\- . #202 13-103 . D

1- :: Hp . D :. x e B'P .yeC'P.D: xP^y .v.x = y.v. yP^x (1)

1- . #91504 . D h : a e~B'P . Z> .^(yP^x) (2)

h.(l).(2).DH::Hp.D:.fl;eB'P.yeO'P.D:a!Ppoy.v.a; = y:

[#91-54] D : a?P# y :: D h . Prop

#202522. r=.2?P = 2?Ppo [#91504]

#202-523. h : P# e connex . D .^'P e u 1 [#20213-52-522]

#202 524. h-.Pe connex . a ! B'P . D . d'P = P'B'P
Dem.

h . #202-52 . D h :. Hp . 3 : E ! S'P :

[#202104.#93 103] 3:xe d'P . D . (B'P) Px (1)

h.(l).#33151.Dh.Prop
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The following propositions (#20253—*55) arts concerned with relations

with limited fields. Such relations are constantly used in the theory of series.

#20253. h : Qeconnex .P*dJ.Q G P. D. Q= P£ C'Q

Dem.

h . *33'17 . *36'13 . D h :. Hp . D : xQy . D . x(P£ C'Q)y (1)

h .#50*43 . D h :. Hp . D : xPy . D.~(yPx).

[*2381] l.~(yQx). (2)

h. #200*36. D\-:.Kp.3:xPy.D.x$y (3)

h . (2) . (3) . #202104 . D h :. Hp . D : x, y e C'Q . xPy . D . xQy :

[#3613] D:x(PtC'Q)y.D.xQy (4)

h . (1) . (4) . D h . Prop

This proposition is important in series. If P and Q are serial relations,

and QCP, they verify the above hypothesis; hence if Q is a series contained

in a given series P, Q is simply P with its field limited. Thus series contained

in a given series are completely determined by their fields.

#20254. r : P£ a e connex . a n C'P~<- 1 . D . C'P£ a= a n C'P

r. #52*181.3

h :: Hp . D :. x fan C'P . Da : (3y) . y ea n C*P . y=(= a :

[#202*104] 3X : (32/) :y eanC'P : xPy .v . yPx :

[*36*13] 3.:(ay):^(Pt«)y-v-y(PCa)«:
[*33\L32] 3x :xeC'Pta (1)

h .#37-41*15-16 . D h . C"P[; aCan C'P (2)

K(l).(2).I)r.Prop

The above proposition is frequently used. #202*55, which is an immediate

consequence of #202-54, is used incessantly.

The following proposition is used in #232*14.

#202*541. h : P e trans n connex . a r\ <7'P~e 1 . D . (PI a)* = P# £ a

Dem.

h . #201*18-33 . D h : Hp . D . (P £ a)* = P £ a c* / f (C'P £ a)

[#202-54] =p£au/fk (C"Pna)
[*201-18.#36*23.#50*5] = P# D a

#202*55. H:P[;aeconnex.aCC <P.a~el.D.C,iPta = a [#20254]

#202*56. h : P e connex . P G J . a e C'P . /9Ca^P.P'^CP<aO./3CP<# u t'a

r.*37*l. 1h:P"l3C'P<x.yel3.xPy.D.xPx (1)

r . (l).Transp . D h : Hp . </ e/3 . D .~(%Py) (2)

H . (2). #32*18 . D h : Hp
. 2/ ej3-P'x . Z> .~(xPy).~(ypx) .

[#202*103] D. y = a: Dr. Prop

The above proposition is used in #212-652.
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#2026. h : : P € connex , P GJ.D \.x,ye C'P . x
=f= y . = : xPy . v . yPx

Bern.

K #202104. Dh:;Hp.3:.x,yeC'P.x^y.D:xPy.v.yPx (1)

f- . #5011 . #3317 . D h :: Hp . D :. xPy . v . yPx : D . x, y e C'P . x =(= y (2)

H . (1) . (2) . D h . Prop

The following proposition is a lemma for #202*62, which is itself a lemma
for #204-52.

#20261. h :: P e connex . P G J: <f>(x,y) .
=
x

, y . (y, x):D:.

xPy . D^ .<f>(x,y)i = :x
t
ye C'P .x^y. Dx>y . <}> (x,y)

Bern.

H . #2026 . D h : : . Hp . D ::x, y e C'P .x ± y Da ,
„ . O, 2/) : = :.

aP?/ v y-ffc : 3«,jr (^ y) '••

[*4'77] = :. xPy . D^y . (x, y) : yPa: . ^XiV .<f>(x,y):.

[*4-85.Hp] = :. xPy . DXtV . </> (x, y) : yPa . 3x>y .
<f> (y, x) :.

[#424] = :. xPy . Dx>

y

. ^ (x, y) ::. D h . Prop

*202'611. h:.Peconnex.PG t/. JK = JR.D:PGi?. = .^C<PG JB

<f> 0> 2/).

#20262. h :. P e connex .PQJ.D-.Pe Eel2 excl . = . F'>P G J
Bern.

h . #202-61 . #1631 . D h :: Hp . D :.

P e Rel'excl . = : QPB . DQiB . C'QnCB = A :

[#24-37] =:QPR.xeC'Q.yeC<R.DQiRiXiy .x$y.

[*15052] =.x(F'>P)y.3XtV .x^y:;3h.¥roip

The three following propositions (#202-7—*72) are concerned with P—P2
.

Of these, #202"7 is important : it shows that if P is connected, no term can

have more than one immediate predecessor or successor. #202 '7 2 is used in

#20471, which is an important proposition.

#2027. h:Pe connex. D.P-P2 el-»l

Bern.

h . #34-5 . Transp . D h : zPx .~(yP2x) . D .~(yPz) (1)

Similarly h : yPx .

~

{zP*x) . D .~ (zPy) (2)

h . (1) . (2) . D h : y (P^-P*)

x

. z (P-P*)

x

. D .~{yPz) .~(zPy) (3)

h . (3) . #202103 . D h :. Hp . D : y(P-^P*)x . z(P-^P*) x.D.y = z (4)

Similarly h :. Hp . D : x(P^P*)y .x(P-P*)z . D .y = z (5)

h . (4) . (5) . D h . Prop

#20271. hPe connex .x(P-^P*)y .D . Ppo'y = P#'x

Bern.

h. #9152. Dh:Hp.D.^CPpo^ (1)
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b.*9V57. lb z.zP^y.ltzPy.V.zP^Py:
[#25-41] Z> :z(P-P*)y. v.z{PhP*)y.v.z{PVt0

\P)y.

[*91'502] 3:z(P-P*)y. v.z(PV0 \P)y (2)

K #202*7. Df-:Hp.*(P-i-P»)y.D.* = a- (3)

h.(2).(3).Dh:Hp.jPpo y.***.D.*(Ppo |P)y.

[#341] D.(aw).*i>

Po
w " WjPy (4 )

I- . #34*5 . D b : wPy . aPw . D . aPty (5)

b . (5) . Transp . D h :. Hp . wPy . D :~(a;P«;) :

[#202103] 3 : wP*c . v . w = x (6)

h . (4) . (6) . D h :. Hp . zP^y . z + * . D : *Ppo «! . v . (gw) . *Pp0 M> . wPa-

:

[#91-511] D^P^a; (7)

h . (7) . #91-54 . D b : Hp . D . Ppo <2, C P*^ (8)

f-.(l).(8).Df-.Prop
—> —

>

#20272. h : P e trans n connex . a; (P—

P

2

) 2/ . D . P'y = P*# u i'x

[#202-71. #201-18-521]

#2028. H : Q e connex . £ e P smbr Q . C'Q n £~e 1 . D .

#f/3 e(PtS"0) smor Q^/3
Dera.

h. #71-29. :>h:Hp.D.£p/3el-*l (1)

h . #3564 . #15111 . D h : Hp . D

.

Q'(8[fi) = C'Qn/3

[#202-54] =C'(Qt0) (2)

b .#150-37. D b : Hp . D. (#p/3);Q = Pp£"£ (3)

h.(l).(2).(3).Dh.Prop

#202-81. h : Q e connex . 8 e P smor Q . D . (P p 8"/3) smor Q^>0

Dew.

h . #2028 . D h : Hp . C'Q n 0~ e 1 . D . (P p #"£) smor Q p /3 (1)

t- . #3613 . #33*17 . 3b:C'Qn@ = i<y.D.QtPGyly (2)

b. #3613. Dh:.Hp(2).D:
2/(Qp^) 2/ . = .

2/Q2/ (3)

h.(2).(3).*55-341.Dh:Hp(2).yQy.3-QCi9-yiy (4)

h. #35-64. #151-11. Dh : Hp. 3. <P(Sr^) = C'Q n£ (5)

h.(4).(5). Dh:Hp(4).D.a^p/9) = C"(QP^) (6)

h. #71-29. #150*37. 3t-:Hp.D.Sr£el-»l.PpS"£ = S;(Qp£) (7)

h. (6). (7). #151-1. Dh:Hp(4).D.(PpS"£)smorQ££ (8)

h.(2).(3).#55-341.Dh:Hp(2).-(2/Q^).D.Qp^ = A. (9)

[(7).#150-42] D.PpS"/3 = A (10)

b .(9). (10). #153-101 . D h : Hp (9) . D . (Pp 8"j3) smor Q p /3 (11)

b . (8) . (11) . #52-1 . D 1- : Hp . C'Q n £ e 1 . D . (Pp £"£) smor Q p /3 (12)

h.(l).(12).Dh.Prop

The above proposition shows that if Q is connected, and any class /9 is

picked out of C'Q, and P is similar to Q t

then Q arranges ft in an order which

is similar to that in which P arranges the correlates of 0.



#204. ELEMENTARY PROPERTIES OF SERIES

Summary o/#204.

In this number we give the definition and a few of the simpler properties

of series. Most of the propositions of this number result immediately from

those of #200, #201, and #202. Our definition is

Ser — Rl't/ n trans n connex Df.

We have

#20416. h : P e Ser . = . P e connex .P2 GJ.P8 GJ.= .Pe connex .P^QJ
either of which might have been taken as the definition.

After a few propositions giving other possible forms of the definition of

series, we proceed to a set of propositions which follow immediately from

those of #200, #201, and #202. Such are

#2042. HPeSer.-.PeSer

#20421. h'.PeSei.PsmovQ.D.QeSeT

#20424. h.AeSer

#204*25. h:«=f=2/. = .«i2/eSer

Another important proposition on couples is

#204272. r:.PeSer.:>:D<P«l. = .P*2r . = .(FPel

so that couples are the only series having unit classes for their domains or

converse domains.
—

>

We then proceed to a set of propositions on P'%. We have

#204-33. \"..PeSer.x,yeC'P.3:cc + y.P'yCP'a:. = .yPcc

Also, if P e Ser, Pf C'P is a one-one and P>P smor P (#204*34*35).

We then have some propositions (#204*4—-44) on relations with limited

fields. The most important of these are

*204'4. HPeSer.D.P^aeSer

#204*41. h:P,QeSer.QGP.D.Q = P^C^
This proposition is important, since it shows that any series contained in

a given series is wholly determined when its field is given.

We have next a number of propositions (#204-45—*59) applying relation-

arithmetic to series. The first set of these (#204*45—*483) are concerned

with the proof that if a "cut" is made in a series, the series is the sum of

the two parts into which the cut divides it, where the sum is taken in the

sense of #160 or #161, according as one part of the cut does not or does

r & w n 34



530 SERIES [PART V

consist of a single term. Most of these propositions do not require the

full hypothesis that P is a series, but only some part of it. Thus we have

for instance

#204-46. h : P econnex . E ! B'P . d'P ~ e 1 . D .

P= B'P «f P I d*P . Nr'P = i -j- Nr'(P £ (FP)

with a similar proposition for B'P and D'P (#204*461).

We next prove that if P, Q are mutually exclusive series, their sum
(P :£. Q) is a series, and vice versa (#204*5); that if P is a series to which x

does not belong, P -f> x and x <4- P are series, and vice versa (#204*51); that

if P is a series of mutually exclusive series, its sum %'P is a series (#204*52);

that if P, Q are series, so is P x Q (#204-55) ; that if P is a series of series,

H'P is contained in diversity and is transitive (#204*561), while if P is also

well-ordered, i.e. such that every existent sub-class of C'P has a first term,

then H'P is a series (#204*57); and that if P and Q are series, and Q is well-

ordered, then Pe and P exp Q are series (#204*59). These propositions are

essential to ordinal arithmetic, but they will not be referred to again until

we reach that stage (Sections D and E of this Part).

We have next a collection of propositions (#204*6—*65) on p'P"a for

various values of a, and finally three propositions on Plt Two of these are

much used, namely

#204-7. h : P e Ser . D . i\ e 1 ~> 1

#204-71. h : P e Ser . xP,y . D . P'y = P'x u t'x

#204 01. Ser = Rl<J n trans n connex Df

#204*1. h:Pe Ser. = . PGJ,P*QP . P e connex .

= . P e R\'J . P e trans . P e connex [(#20401)]

#204*11. h :.PeSer . = : P G J. P2 G P : x e C'P . Ox .~P'x u t'x v*P (x = C'P

[#204*1 . #202*101]

#20412. r-::PeSer. = :.PCJr .P, GP:.ar,yeO'P.Da .

v :

xPy . v . x = y . v . yPx [#204*1 . #202-103]

#204-121. h :: P e Ser . = :. P G J. P2 G P :. x> y e C'P . x 4= y . DXt y :

aPt/ . v . yPx [#2041 . #202*104]

#204*13. H:PeSer.D.P2 GJ.PnP = A
Bern.

V . #204*1 . #23*44 .Dh:PeSer.D.P2 GJ.Pe trans (1)

H. (1). #20112. ^h. Prop

#204*14. h:PeSer. = .PnP = A.P2 GP.Pe connex

[#2041 . #50-47]
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#20415. h : P econnex .P*GJ.P3 GJ.3.Pe trans

Dem.
h.*34-5. 3h;.P*GJ.3;xPy.yPz.3.x^z (1)

h. #50-41. Dh:.P3 GJ.3;xPy.yPz.3.~(zPa)) (2)

h . (1) . (2) . D h :. Hp . D : xPy . yPz . D . # =M . ~ {zPx) .

[#202-103] D . xPz :. D h . Prop

#204*151. h:Pe connex . Ppo G J . D . P e trans

[#204-15 . #91-502-503'5ll]

#20416. h : PeSer . = . P econnex .P'GJ .P3 GJ.= . P econnex . P^dJ
[#204-15-151 . #200-36 . #201-18]

We have also

h : PeSer . = . Peconnex . P6 G /.

For, by #200-37, since P6 = (P2

)
3 = (P3

)
2
, it follows that

Ps CJ.^.P'dJ.P3 (iJ.

A relation such as x^yviy^zviz^x, where x^py.y^z.z^x, satisfies

P e connex .P2 GJ, but not P3 G J". On the other hand,

xlyKjylz\vzlwww],x
satisfies P2 (LJ.P3 Q.J, but not P e connex.

#2042. H:PeSer. = .PeSer [#20011 .#20111 .#202-11]

#20421. h:PeSer.PsmorQ.D.QeSer
[#200-211 . #201-211 . #202-211]

#20422. h-PeSer.D.Nr-PCSer [#204"21]

#204-23. H : P e Ser . = . N r'P C Ser . = . g ! N,r'P n Ser

[#20022 . #201-22 . #202-22]

#204-24. h . A e Ser [#200'3 . #201-3 . *202'3]

#204-25. bix^y.^.xlyeSer [#20031 .#20131 .#20231]

#204-26. hzx^y.x^z.y^z.l.xly-frze Ser

[#200-31-41 . #201-411 . #202-411]

The three following propositions deal with couples. Conples often

require special treatment, owing to the fact that, if P is a couple,

PtD'P = A,so that C%PfcD'P) + D'P, whereas in any other case, if P is

a series, C"(P£D'P) = D'P. Hence the following propositions are often

required.

#204-27. H : P e Ser . xPy . D'P = l'x . D . P = x
J, y

Dem.
h. #33-14. ^Y:B.^.zPw.^.z = x (1)

h . (1) . #5024 . D h : Hp . zPw .?.w^x.

(l).Transp^|] 3.~(t«Py) (2)

34—2
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h
. (1) . Transp . #50-24 . D h : Hp . D . ~ (yPw) (3)

h. (2). (3), #204-12. Db:Hip.zPw.3.y = w (4)

h . (1) . (4) . D h : . Hp . D : zPw .^.z = x.y = w (5)

h . (5) . #55-34 . D h . Prop

*204'271. f-:PeSer.D'Pel.D.Pe2r

Dem.
h . #204-27 . D h : Hp . D . fax, y).P = xly.
[#204'25] D.(RX,y).x^y.P = xly.
[#56'11] Z>.Pe2r Oh.Prop

#204272. h:.PeSer.D:D'Pel.~.P<:2r . = .(I'Pel

[#204-271-2. #56-111]

#2043. H : . P e Ser . a, y e C'P . D : x ± y . ~ (yPa) . = . xPy

[#202'5 . #204-13]

#204-32. h :. P e Ser . ^ y e CfP . D : P'y C P'« . = . y e P'x u i
lx

Dem.
h . #204-1 . D h :. Hp . D : yPx . zPy . D . zPx :

[#32-18] D:ye'P'x.3.~P'yC~P'x (1)

h. #2242. 3h:y = x.-D.~P<yCP'x (2)
— — —

>

h . (1) . (2) . D h :. Hp . D : y e P'# u t'ar . D . P'y C P'a (3)

h . #204-11 . D h : . Hp . D : y ~ e P'# u t'# . D . y e P'x

.

[#3218181] ^.xeP'y (4)

h. #50-24. Dh:Hp.D.#~eP'a (5)

r . (4) . (5) . Z> h :. Hp . D : y ~ e P'x u t'# . D . ~ (P'yCP'x) (6)

h . (3) . (6) . D h . Prop

#20433. h :. P e Ser .as, y e C'P . D : a; + 2/

.

P'y C P'a . = . yPx

Dem. — —> —

>

h . #204-32 .D h :.Hp.D :« + !/. P'y C P*« . = . a;#2/ . 1/ eP'« u t'd?

.

—
[#51\L5] = .x^y .y eP'x .

[Hp.#47l] =.2/Pa;:.Dh.Prop

The three following propositions only require P e Rl't/ n connex, but are

required for application to series, and are therefore convenient in the form

here given.

#204-331. \-:.PeSer.x,yeC'P.3;'P'x=~P'y.= .x=*y

[#202-161. #71-55]

#204-34. r : Pe Ser. :> .Pf C'P el~»l.Pf C'P e(P;P)smofP [#202161]
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#20435, r : P e Ser . D . P?P sraor P [#204-34]

This proposition shows that the series of segments which have immediate
successors is like the original series, for a segment whose immediate successor—

*

—*
is x is P ix

}
and the series of such segments is P>P.

The following propositions (#2044—"44) are concerned with relations with

limited fields.

#2044. h : P e Ser . D . P £ a e Ser [#20033 . *201'33 . #202*33]

*20441. r : P, Qe Ser . Q GP. D . Q = P£ C'Q [*202'53 . #20413]

In virtue of the above two propositions, the series contained in a given

series are the relations resulting from limitations of the field ; the process of

limiting the field is merely the process of selecting a part of the original series

without changing the order.

#20442. h :. Pe Ser . D : Q e Ser . Q G P . = . (ga) . Q = P£ a . = . QeD'PC
[#204-4-41]

#204-421. h : P e Ser . D . Ser n Rl'P = D'P£ [#20442]

#204-43. h:P2 GP.PG J. QGP. Qeconnex.D.QeSer

Dem.
h . #231 . #34-55 . D r :. Hp . Z> : xQy .yQz.l. xPz .

[*50-43.Hp] D.~(zPx).x^z.

[#23-81.Hp] D.~(zQx).x^z.

[#202-103] O.xQz:

[#34-55] Ds^GQ (1)

r . #23-44 . D h : Hp . D . Q G J (2)

h . (1) . (2) . #204-1 . D H . Prop

#204-44. h : P e Rl'J n trans . D . Rl'P n connex C Ser [#204'43]

The following propositions (#204-45—-483) are concerned with the division

of a series into two parts, one of which wholly precedes the other. The case

where one of the parts consists of a single term requires special treatment,

and so does the case where both parts consist of single terms, i.e. where the

series is a couple.

#204-45. r:P e connex.aeCl'(7^P-l.P"aCa./3 = C^P-a./3~el.3.

P= P£ a£P£ £ . Nr'P = Nr'P£ a+ Nr'P£ /3

Dem.

h . #24-411 . #3317 . D h :: Hp . D :.

osPy . = : y e a . xPy . v . x e ft . y e . xPy ,v.xt yeft. xPy (1)

K*3717. Dr-:.Hp.D:^ea.«Py.D.«€« (2)

h . (2) . Transp . #202-103 . D h :. Hp . .' y e ft . x e . D . yPx (3)

h . #202-55 . D h : Hp . D . a~ C<P £ a . = C'P £ j3 (4)
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h.(l).(2).(3).(4).Dh::Hp.D:.

xPy . = : x{Pl a) y . v . x e C'P^ a
.
y e C"P£ /3 . v . x (Pp /3) y :

[#160-1] 5iw{Pta$Pt/3}y (5)

h . (5) . *180'32 . D h : Hp . D . Nr'P= Nr'Pp a + Nr'P£ @ (6>

h . (5) . (6) . D h . Prop

#204-46. H : P

e

connex . E ! B'P . (FP~e 1 . D .

p = #<p <f p p a<p . Nr<p = i + Nr*(P p cfp)
Bern.

h. #202524. D\-:.Kp.3:x = B'P.yed'P.3.xPy (1)

h . (1) . #161111 . D h :: Hp . D :. a (3'P «f P p <FP)y . = :

x = £<P . y e d'P . xPy .v.x,ye d'P . xPy :

[#93-103] = :xeC'P.ye d'P . xPy :

[#33-14-17] = : xPy (2)

h. (2). #181-32. Dh:Hp.D.Nr'P = i + Nr<(Pt(FP) (3)

h . (2) . (3) , D V . Prop

#204-461. h : P e connex . E ! B'P . D'P~ e 1 . D .

P = PI B'P +» B'P . Nr'P = Nr'(P p D'P) + i

[Proof as in #204'46]

#204-462. I- :. P, Q econnex . E ! B'P . d'P ~ e 1 . E ! B'Q . d'Q~e 1 . D :

Psmor Q . = . Pp (I'Psmor Qp (FQ [#161-33 . #204*46]

#204-463. V:P,Qe Rl'J" . E ! J5'P . d'P e 1 . E ! B'Q . d'Q e 1 . D .

P smor Q . P p d'P smor Q p d'Q
Dem.

K #5637. Dh:Hp.D.P,Qe2r (1)

h . #20035 . D h : Hp . D . P p d'P = A . Q P d'Q = A (2)

h.(l). (2). #153-202101. D

h : Hp . D . P smor Q . Pp d'P smor Q£d'Q Oh. Prop

#204-47. h :. P, Q e connex n U\'J . E ! B'P . E ! S'Q . D :

Psmor Q . = . Pp (PPsmor Qp (FQ

h . #151-18 . #200-35 . #202*55 . #153-102 . D

h-.n-p. d'P el. d'Q~ el. 3. ~(P smor Q).~(Pt d'P smqrQtd'Q) (1)

h . (1) . #204-462-463 . D h . Prop

#204-48. H::PeSer.D:.

E ! B'P . = : OQ) . g ! Q . Nr'P = i + Nr'Q . v . Nr'P = 2r

Dem,

h . #204-46 . D I- : Hp . E ! B'P . (FP~e 1 . D . (gQ) . Nr'P = i + Nr'Q (1)

h. #161-2. Dr:a!P.Nr<P = i + Nr'Q.D.g!Q (2)

I- . (1) . (2) . D h : Hp . E ! B'P . <PP~£ 1 , D .

(aQ).a»Q.Nr'P«i + Np'Q (3)
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K*204'272.D!-:Hp.(rP<=l .D.Pe2r (4)
h . (3) . (4) . D r : Hp . E ! B'P . D :

(aQ).3!Q.Nr'P=i + Nr'Q.v.Nr'P=2r (5)

I- . *181'iri2-32 . D h : Nr'P = i -i- Nr'Q . D .

(giJ, 2) . R sraor Q . 2 ~ e C'R . Nr'P = Nr'(s 4* i£) (6)
1- . *161-15'12 . D r :. a ! i2 . z ~ « C'# . 3 : E ! B'(z -f» #) :

[*151'5] 3:Nr'P=Nr'(><4--R).:>.E! JB<P (7)

I- . (6) . (7) . D I- : Nr'P = i + Nr'# . g ! # . D . E ! B'P (S)

l-.*153*281.DI-:Pe2r .D.E!j5'P (9)

J-.(5).(8).(9).DI-.Prop

*204'481. h::P e Ser.D:.

E ! B'P . = : (gQ) . 3 ! Q . Nr'P = Nr'Q-f- i . v . Nr'P = 2,

[Proof as in *204"48]

*204'482. r :: a e N r"Ser . D :. a C d'5 : = :g!an (I '5-:

= : (3#) /S e NR - t'0r . a = i +0 . v . a= 2r
Dem.

r- . *1515 . *15513 . D I- :. Hp . D : a C d'B . = . g ! a n d'5 (1)

h . *204'23-48 . DI-::Hp.P € a.D:.

E!5'P.~:(a£)./3eNR-t'0r .a=i-r /?.v.a = 2
}
. (2)

I- . (1) . (2) . *202"52 . D H . Prop

*204483. r- :: a <?

N

r"Ser . D :. a C d'(B
|
Cnv) : = : 3 ! a n d'(5

]
Cnv)

:

= :(a£).£<?NR-t'0r .a=£ + i.v.a=2,
[Proof as in *204'482]

The following propositions are concerned with the application of relation-

arithmetic to series.

*204-5. h : P, Q e Ser . C'P n C'Q = A . = . P $. Q e Ser

[*200-4 . *201-401 . *202'401]

*204'51. h : P e Ser . m~ € C'P . = . P-f> #e Ser . = . oc M-P € Ser

[*200'41 . *201-41 . *202-412]

*204 52. h:Pe Rel2 excl n Ser . C'P C Ser . D . 2'P e Ser

Dem.
h . *200-42 . *202-62 . D I- : Hp . D . S'P G J (1)

1- . (1) . #20142 . *202-42 . D h . Prop

*204 53. \-:.Pe Rel2 excl . A~e C'P . D : S'P e Ser . = . P e Ser . C'P C Ser

Dem.

h . *200'423 . D h :. Hp . 2<P<= Ser . D : P G J: (1)

[*200-421] D i Q e C'P . D r Q = (S'P) £ C'Q

.

[*2044] D . Q € Ser (2)
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I- . #16213 . 1)

\-:.RV.2'PeSer.QPR.RPS.xeC'Q.yeC'R.zeC'S.D:a;(2'P)z: <3)

[#16213.*16311] D : (gif.iV) . MPN .xeC'M .zeC'N .M=Q . N= S . V .

(%M).MeC<P.(vMz.M=Q.M= lS;

[*13-22195] D:QPS.v.Q = S (4)

1- . (3) . #50-24 . #24-37 . D h : Hp(3) . D . C'Q n C'S=*A .

[#24-57.#30-37] D.Q + S (5)

I- . (4). (5). D h :. Hp . X'Pe Ser . D : QP.R . RPS.D . QPS (6)

h . #1621 . D h :. Hp . t'P e Ser . Q,ReC'P . % e C'P . yeC'Q . Q$R . D : #=}= y:

[#202-104] D:a)(2'P)y.v.y($'P)x:

[#162-13.*16311] D-.QPR.v.RPQ (7)

I- . (6) . (7) . D I- : Hp , 2'P e Ser . D . P e trans n connex (8)

h . (1) . (2) . (8) . #204-52 . D r . Prop

#20454. h?e Rels arithm n Ser . C'P C Ser . G'X'P C Ser . D . 2'2'P « Ser

Dem.
K #204-52.3 I- :Hp.D.£'Pe Ser (1)

K #174-3. DI-:Hp.D.2'PeRel3 excl (2)

I- . (1) . (2) . #204-52 .31-. Prop

#204-55. h:P,geSer.D.<3x PeSer

Dem.

r- . #165-27 . #204-22 . D r :. Hp . D : g ! P . D . P
J,
JQ e Ser (1)

I- . #165-26 . #20422 . D h : Hp . D . C'P
J,
K? C Ser (2)

l-.(l).(2).#165-21.*204-52.DI-:Hp.a!P.D
,

.2 fP
J
[r ^ 6 Ser.

[#1661] D.QxPeSer (3)

I-. #16613. #20424. D I- : P = A. D . Q x PeSer (4)

I- . (3) . (4) . D I- . Prop

#204*551. h :. g ! P . g ! Q . D : P x Q e Ser . = . P, £ e Ser

Dem.

I- . *165-21-212 . 1) I- :. Hp . D : P j, >Q e Rel2 excl . A~e C'P
J,
5Q :

[*204-53.*1661] D : P x Q e Ser . = . P
J,

J<3 e Ser . C"P Jt 5Q C Ser

.

[*165-27.*204-22] = . P, Q e Ser :. D r- . Prop

#204-56. hiG'PQ Rl<J . D . n'P G /
-Dem..

1-
. #17211 .31-: if(n'P)# . D . (a<2) .QeC'P. (M'Q) Q (N'Q) (1)

r-
. (1)

.

D I- :. Hp . D : M(WP) AT.1. (gQ) . M'Q* N'Q .

[#30-37.Transp] D . iff tf :. D 1- . Prop
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*204561. I- : P e Ser . C'P C Ser . D . WP e Rl</ n trans

Dem.

f- . #20043 . D I- :: Hp . D :. Z (II'P) if . M (WP) N.D:

(^Q,R).Q,ReC'P.(L'Q)Q(M'Q).(M'R)R(NiR).L^Q = M['p'Q.

M\-P'R = N[lp<R:
[#20412]

3 (aQ, R):Q =R.v. QPM . v . RPQ : (L'Q) Q (M'Q) . (M'R) R (N'M) .

LtP*Q = Mt~P'Q.Mt~P'R = Nt P'R (1)

r- .#204-1 . D h : Hp .L(U lP)M.M(U lP)N

.

Q = R.(L'Q)Q(M l Q).(M'R)R(N'R).L\'P iQ = M\~P<Q.

M\'p (R = N\'p'R.^.(L tQ)Q(N'Q).L\~P (Q = N\'p'Q (2)
f- . #204'33 . D
I- : Hp .L(U iP)M.M(U tP)N. QPR . (L'Q) Q (M'Q) . (M'R)R(N'R) .

L [
~P (Q=M \1p<Q . M T ~P'R = N \ P'-R . D .

ZfP'Q = iV7P<Q.Jlf<Q = i\r<Q.

[*13-1 2] Z) . Z f
P'Q = jy f P'Q . (Z'Q) Q (N'Q) (3)

1- . #20433 . D
!-:Hp.z;(n'P)Jif.j/(n'P)i\r.i2PQ.(z;'(3)Q(jf'Q).(Jf'i2)i2(^i2).

il^P'Q^MpP'Q.JIff P'i2 = J\r[
k P'i2.3.

[#1312] D . Z f P'P = JVf P'.R . (Z'.R) R (N'R) (4)

I- . (1) . (2) . (3) . (4) . #20043 . D

\-:.KV.D:L(n<P)M.M(WP)N.D.L(Tl<P)N (5)

h . (5) . #204*56 . D h . Prop

In order to prove that II
lP is connected, we require a further hypothesis,

namely that P is well-ordered, i.e. that every class contained in G CP and not

null has a first term.

#204-562, h :. C'P CSer : a C C'P. g ! a . X . g ! a -P"a : 3 . n'P econnex

Dem.

r- . #17211 . #33-45 . Transp . D

h :: Hp . D :. M, Ne CII'P . M$N. D : (gQ) . Qe C'P . M'Q^N'Q :

[Hp] D:(^Q):QeC'P.M'Q^N'Q:RPQ.DIt .M'R = N'R:

[*204121.*17212] D : (aQ) >.QeC'P: (M'Q) Q (N'Q) . v . (N'Q) Q (M'Q) :

RPQ.DB .M'R =WR:
[#17211] D:M(Tl'P)N.*.N(n<P)M (1)

K (1). #202-104. Dh. Prop

*20457. h:.Pt-Ser.C'PCSer:aCC<P.&la.Da .ftlct-P"a:D.IL'PeSer

[*204-561o62]
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#20458. I- :. P e Ser . G'P C Ser . C'2'P C Ser . P e Rel* excl

:

a C C'Z'P . g ! a . Da . a ! a - (Cnv'S'P)"a : D . II'2'P, nil JP e Ser

K #204-52. DI-:Hp.D.2<P e Ser (1)

K (1) . *204r57 . Dh-Hp.D.n'S'PeSer (2)

h . #174-25 . D h : Hp . D . W2<P smor WU 5P (3)

I- . (2) . (3) . #204-21 . D h : Hp . D . II '11 >P e Ser (4)

h . (2) . (4) . D h . Prop

#204-581. 1- : Hp #204-58 . S'P e Rel2 excl . D . Prod'ProdJP, Prod'2'P e Ser

[#174-461-43 . #204-58-21]

#204-59. h :. P, Q e Ser : a C C<Q . g ! a . D
ft

. g ! a - Q"a : D .

P«eSer.(PexpQ)eSer
Dm.

t- . #165-27-241 . #204-22-24 . D I- : Hp . D . P | >Q e Ser (1)

K #165-26. #204-22. D I- : Hp . D . C*P| 5^CSer (2)

h.*150-22.#71-47.Dh:
)8CC"P|JQ.a!/3.D.(a«).aCC^.a!a. /

S=P4"a:

[Hp] 3H:Hp.^CC*Pi5Q.a!^.3.(aa).a!a-g"o./8-Pi"o (3)

h . #37-45 . D V : a ! a - Q"a . = . a ! P
J,
"(a - Q"a) (4)

')

h. (4). #71-381. #165-22. D\-i<&lP.Rla-Q"a.3.<&lP l"a- P l"Q"ct (5)

h . #72-503 . #165-22 . DH:g IP. D . a = (Cnv'P| )"P| "a (6)

l-.(5).(6).Dh:a!P.a!o-Q"o.D.a!Pj
r
"o-P

>

|"Q"(Cnv'P
2
t)"P

:
t"a.

[#165-18] D.g!P4 "o-CCnv'P^Qypj, "a (7)

K(3).(7).Dh:.Hp.a!P.D:
iSCO'P^JQ.al/S.D.aliS-^nv'P^Q)"^ (8)

I- . (1) . (2) . (8) . #204-57 . D I- : Hp . a ! P . D . WP ^ JQ e Ser (9)

I- . (9) .
#176-182 . #204-21 . D h : Hp » a ! P 3 (

p exP Q) e Ser (10)

I-. #176-151. #204-24. D I- : P= A. D . (Pexp Q)eSer (11)

I- . (10) . (11) . D 1- : Hp . D . (Pexp Q) e Ser (12)

I- . (12) .#176-181 .#204*21 . D h ; Hp . D. P« e Ser (13)

h.(12).(13).DKProp

The two following propositions are lemmas for #204*62.

#204 6. I- : P e trans . D . a w P"a Cp'P"yP"a
Dem.

J- . #40-53 .Dhr.cc ejp'P"yP"a . s :. y ep<P«a . 3„ , yPx :.

[#40-51] ~i.ze*.^z .yPziDy..yPa> (1)
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1-
. *10'26 .Dh:.£cea:zett.Dz . yPz : 3 . yPx

:

[Exp.(l)] DI-:%ea.D.cc€p'P"p<Pt
'a (2)

1- . #10*1 . 3 h : . w e a . uPx : z e a . 3Z . yPz : 3 . yPu . uPx (*\

V . (3) . *2011 . 3 h :: Hp . 3 :. i* ea . uPx : ze ct .3z .yPz:3 . yPx :.

[*37-l05] 3 :. #eP"a : zea . 3Z . yP* : 3 . yPx :.

[Exp.(l)] 3:.#eP"a.3.#ep'P"#'P"a (4)
H . (2) . (4) . 3 h . Prop

*20461. 1- : P e Rl'J n connex . 3 . C'P n jo'P"p'P"(a n C'P) Cau P"a
Dew.

I- . *200-5 . 3 h : Hp . 3 . j»'P"(« n C'P) n p<P<<p<P"(a n C^P) = A .

[*24-311] 3 . p*P"p'P"(a n C'P) C -p'P"(a r. C'P)

.

[*2248] 3 . C'P n p'^'p'^'ia n C'P) C C'P - p'P"(a n C'P)

[*24-43.*202-505] C a u P"a : 3 h . Prop

*204-62. I- : Pe Ser . 3 . OfP np'*P"p'P"{a n C'P) = (em C'P) v, P"a

Dm.

I- . *204-6 . #37*265 . 3 I- : Hp . 3 . (a n C'P) u P''a Cp'P''p'P''(a n C'P) (1)

h.*37-16.*22-43. D\- .(an C<P)v P"aCC'P (2)

1-
. #204-61 . *22-43 . 3 h : Hp . 3 . C'Pnp<P"p'P"(an (?'P)C(auP"a) n C'P

.

[*3716] 3.C'Pn^P"p'P"(anC'P)C(anC'P)uP"a (3)

h . (1) . (2) . (3) . 3 h . Prop

#204-63. I- :'P eSer . g lp'P"a . 3 .p'P"p'P"ct = a w P"a

Dem.
1- . #40-65 . Transp . 3 h : Hp . 3 . a C C'P (1)

I- . #40-62

.

3 I- : Hp . 3 . p'*P'yP"a C C'P (2)

h . (1) . (2) . *204-62 . 3 I- . Prop

#204-64. \-:PeSer.xe D'P . 3 . p'P'^P'x =~P*'x

Bern.

h . *40'62 . 3 h : Hp . 3 . p^'P'x C C'P ( 1)

K #40-51. ^V:.zep'P"*P'x. = \xPy.^y .zPy (2)

I- . (2) . #50-11 . 3 I- :: Hp . 3 :. * ep'P'&x . DixPy .Dy .z$y.

[(1).*202103] 3:^P*.v.^ = « (3)

K#201'521. 3f-::Hp.3:.seP*'#.H:sP#.v.s = #: (4)

[*20M .#1312] 3 : xPy . 3 . sPy

:

[(2)] 3 : z ep'P"P'x (5)

I- . (3) . (4) . (5) . 3 h . Prop
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The following proposition is used in #234101.
y ^ \

#204 65. I- : P e Ser . x e G'P . D . p'P"P'x n G'P - P^'x

Bern.

I- . *402 . D I- : Hp

.

x~e~D'P . D ,p'P"P'x n G'P = G'P

[#20411] = P'xul'x

[*201-52l] =iy# (1)

h . #40'62 . #204-64 . D I- : Hp . x e D'P . D . p'JP''P'x n G'P » P*<# (2)

I- . (1) . (2) . D h . Prop

#2047. I- : P e Ser . D . Pt e 1- 1 [*201"63 . #202-7]

On this proposition, compare the remarks preceding #201*6.

*204-71. I- : P e Ser . xP,y . D . P'y = P<# w t<# [*202"72 . *201"63]

#20472. I- :: P e Ser . D :. xP^y . = : xPy : #Pz . z + y . D2 . yPz

Dem.

h.*201"63. DH.Hp.Dr^y.D.arPy (1)

I- .#204 71 .#121-26 . D I- :. Hp . xPlV . D : P'x = P'y u t'y :

[#24'43.*32181] D : xPz . z^y . 3z .yP* (2)

I- . #24"43 . *32'181 . D I- :. xPz . z + y . D* . yP^ : D . P<# C t'y \j P'y (3)

1- . (3) . #200'361 . D 1- :. Hp : #Ps. s=|=y . Dz . yPz :D*P'xnP'y = A.
[#3411] D.~(xP*y) (4)

J- . (4) . Fact , D t- :. Hp : #Py : xPz . s + y . Dz . yP^ : D . x{P-^P*)y .

[#201-63] D . #P,y (5)

l-.(l).(2).(5).DI-.Prop

The above proposition is used in #274-23.



#205. MAXIMUM AND MINIMUM POINTS

Summary q/"*205.

The minimum points of a class a with respect to a relation P are those

members of a which belong to the field of P but to which no members of a

have the relation P; that is, they are those members of a which belong to

GlP but have no predecessors in a. Similarly the maximum points of a are

those members of a which belong to C'P but have no successors in a. Both
these notions have been already defined in #93, but they were there only

used for the special purpose of studying generations. Their chief utility is

in connection with series, and it is in this connection that we shall now
consider them. Many of the properties of maxima and minima in series do

not demand the whole hypothesis "P e Ser," but only "P e connex." This is

the case, in particular, with the fundamental property of maxima and minima
in series, namely that each class has at most one maximum and one minimum.

The minimum of a class, if it exists, is the first term of the class, and the

maximum, if it exists, is the last term. The maxima with respect to P are

the minima with respect to P; hence properties of maxima result immediately

from the corresponding properties of minima, and will be set down without

proof in what follows.

It will be seen that the maxima and minima of a depend only upon a r\ C'P:

the part of a (if any) which is not contained in C'P is irrelevant.

In accordance with the definitions of #93, the class of minima of a is

denoted by min/a, where

min/a = (a n C'P) - P"a,
the definition being

minP 4a{«(an C'P) - P"a).

Thus minp is a relation contained in e. When P is connected, we have

minp'a eOwl, i.e. (by #71*12)

minp € 1 —» Cls.

It follows that, if k is a set of classes which all have minima, minp
f"
k is a

selective relation for k, i.e.

minp [zee e\'/e.

Owing to this fact, the existence of selections can sometimes be proved in

dealing with series (especially with well-ordered series), in cases where such

proof would be impossible if no serial arrangement were given.

The definition of minp is so chosen as to exclude from minp'a whatever

part of a is not contained in C'P, and to make miap'L'w — t'x, i.e. mm.p'i'% = x,
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provided oceC'P ,~{ooPx). For these two reasons we have to reject two

simpler definitions which might otherwise be thought preferable. One of

these would give
—-> ^
minp'a= a — P(t

a,

which might be obtained by putting

minP — e—e\P Df.

This agrees with our definition whenever a C OP, but not otherwise, since it

—>
, ,

includes in minP'a any part of a not contained in C'P, Hence it necessitates

the hypothesis a C OP in many propositions which, with our definition, do not

require this hypothesis, and in particular in the proposition
—

^

P e connex . D . miiip'a eOul,

so that instead of having (as with our definition)

P e connex . D . minP e 1 —> Cls

we should only have

P e connex . D . minP [ Cl'OP e 1 -> 01s.

For these reasons, this definition is less convenient than the one we have

adopted.

The other definition which suggests itself is one which will give
—> —

>

minP'a = 5'Pfc a.

If this definition were adopted, we might dispense with a special notation

altogether, using B*P[. a, B'P£ a in place of minp'or, minp'a. This definition,

however, has the drawback that, if a e 1 and PdJ,

so that we have

minp'a = A when a e 1 . a C C'P.

This necessitates the addition of the hypothesis a~el (as in #204*45 above,

for example) in cases where, with our definition, no such hypothesis is
—

>

—
required. If we take B'a^P, instead of B'P[.a, as the class of minimum

points, we secure minPVa? = % when P G.J and % e D'P, but not when a; e B'P
Thus we still have exceptions to provide against which do not arise with the

definition we have adopted.

The first few propositions of this number have already been proved in #93,

but are repeated here for convenience of reference.

The propositions of this number are numerous and much used. Among
the elementary properties of maxP and minP with which the number begins,

the following should be noted:

#20512. h .~B'P = mtip'D'P *=mm/OP
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—
*205123. I- : maxP'a = A. = .anCTC P"a

—

>

—

>

#205 14. r- . minP'a = ^(*eon C'P .anP (
it = A}

—

^

^

#20515. I- . minP'(a n C'P) = minP'a

#20516, I- . minP<A = A
#205*18. h :<^(xPx) . x e C'P . D , minPV# = maxPV# = x

—

>

—

>

**> — ^
#205*19. r- : P e trans . D . minP'a = minP'(a u P"a) = minP'P#"a

#205194. I- : # miDP a . D . ~(#P#)

Owing to this proposition, we can sometimes dispense with the hypothesis

P G J in propositions about minima which would otherwise require this

hypothesis.

#205 197. h.Pe R\<J n trans . D : x e C'P . = . x = maxP'(P<# u i<#)

Our next set of propositions (#205*2—'27) introduces the hypothesis that

P is connected, or transitive and connected. The chief of them are

#205 -21. r- : P e connex . E ! minP
(a .yean C'P — t'minP'a . D . minP'a Py

I.e. if the minimum of a exists, it precedes every other member of a n C'P.

*205"22. V : P e trans n connex . E ! min/cc . D . P"a = P'min/a

/.e. the terms which come after some part of a are those that come after

its minimum (when the minimum exists).

#205*25. r- . mmP'P'x = (P -^ P*)'x

We have next the fundamental proposition:
—

>

—
#205*3. V : P e connex . D . minP'a eOul. maxP ra e u 1

whence

#205*31. r- : P e connex . D . minP , maxP e 1 —> Cls

which leads to

#205*33. f- : P e connex . k C Q'minP . D . minP f*
* e e&'/e

This proposition is useful in the theory of well-ordered series. Observe

that "/eC(FminP " means that k consists of classes which have minima.

We have next a set of propositions (#205*4—*44) dealing with the

relations of minP'ct to B'P^ a and B'a^P; next we have propositions on the

relations of the minima of two different classes, of which the most useful is

#20555. V:Pe connex . B'P e a . D . B'P = minP'a
—

>

We have next various propositions on p'P"(a n C'P), of which the chief is

—* —>
#20565. hPe trans n connex . E ! minP'a . D . p'P"(a n ClP) = P'minP'a

I.e. the predecessors of the whole of a class contained in C'P are the

predecessors of its minimum (if it has one).
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A useful proposition is

*205-68. 1- : P"a C a . D . minP'a = min (Ppo)'a

I.e. if a is a hereditary class, its minima with respect to P are the same

as its minima with respect to Ppo .

We prove next that if P"a has a maximum, so has a (#205*7), and that

if P e connex, only a unit class can have its maximum identical with its

minimum (#205'73).

#205*8—"85 are concerned with relation-arithmetic. The chief proposition

here is

—

>

—> ^
#205*8. V : S e

P

smor Q.D . minP'a = S"mmQ'S"a

I.e. in any correlation, the minima of the correlates of a class are the

correlates of the minima.

We end with two propositions on relations with limited fields. The more

useful of these is

-> ->
#2059. \-:Pe connex . k C C'P ./c^el."}. min (P£ k)'ol = minima *./c)

#2051. V:%mmP a. = .%eanC*P-P"a [#9311]

#205101. I- : m maxp a. = .*ean C'P - P"a . = . x min (P) a [#93115]

#205102. KmaxP = min(P) [#93114]

#20511. V . muVa =anCP- P"a [#93111]

#205111. KmaxjP'a^anC"P-P"a [#93116]

#20512. I- . B'P = minp'D'P = min/C'P [#93112]

#205121. h.^P = max/a'P = max/C*P [#93117]

#205122. I- : minp'a = A. = .anO'PC P"a [#20511 . #243]

#205123. 1- : max/a= A . ~ . a n C'P C P"a

#205 13. I- . min/a u P"a = (a n G'P) v P"a [#2291 . #2051 1]

#205131. I- . maxp'a u P"a = (« ft C'P) w P"a

#20514, h . minp'a = ^{««n C'P . a n P^ = A} [#37*462 . #20511]
—> 4—

#205141. I- . maxp'a = £ {x e a n C'P .anP(* = A]
—

>

—J*

#20515. I- . minP'(a n G'P) = mnVa [#37265 . #2051 1]

#205151. h . maxp'(a n C'P) = maxp'a

#20516. r . minp'A = A [#20511 . *24'23]
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#205161. h. max/A = A
#20517. h :. x € (a * OP) . X .~{xpx) : a n C'P e 1 : D .

—

»

—

»

minp'a = maxj/a = a n C'P
Dew.

K#1314. Df-r.Hp.Ditfea.aPy.^.a + y (1)

K #52-16. Dhr.Hp.Di^yeanCP.D^.a^y (2)

K (1)
.
(2) . #3317 . D h : . Hp . D : a e a . xPy . D*, „ . y~ e a

:

[*37'1] D:P"aC-a:

[#22811] D:aC-P"a (3)

K (3). #20511. DK Prop

#20518. f- : r*j{xPos) . x e C'P . D . mmP'i'x = maxp'i'a; = x

Dem.
—

>

—>

h . #205-17 . D h : Hp . D . minPV;z = maxp'l'a = i'x (1)

K (1) . #53'4 . D I- . Prop

#205181. 1- : xPy .<^{xPx) . <^{yPx) . D . minP'(t'a; ui'y) = a;

X>em.

K #37 105 . D h : Hp . D . a?~eP"(i'a v t'y) .y € P"(i'x\j t'y) (1)

h. #33-17. Dh:Hp.:>.t'#vi'yCC'P (2)

K (1) . (2) . #205-11 . D h : Hp . D . minP'(t'ar u t'y) = i'# : D I- . Prop

#205-182. \-:P*GJ. xPy . D . minp'O'a? u t'y) = x

Dem.
h . #200-36 . #50-43 . D I- : Hp . D .~ (xPx) .~(yPz) (1)

I- . (1) . #205-181 . 3 h . Prop

#205183. \-:.P*<ZJ.Pe connex .^yeC'P.I:
minp'(i'# w i'y) = a; . v . minp'(i'# u t'y) = y

h . #202-103 .3r-:.Hp.D:£«y.v. *-Py • v • VPx CO
K #20518. 0\-:H.$.x = y.0.mmPt(i'xvi t

y) = x (2)

I- . #205-1 82 . D h : Hp . xPy . D . mmP'(i'x u t'y) = x (3)

h . #205-182 . D I- : Hp . yPx . 3 . mmp(i'x u i'y) = y (4)

K(l).(2).(3).(4).3l-.Prop

#20519. Y : P e trans . D . minP'a = minP'(a w P"a) = minp'P*"a

Dem.

V . #20511

.

D h . mrnP<(a u P"a) = (a uP"b) a C'P - P"(a u P"a) (1)

h . (1) . #201-55 . D h : Hp . D . minP'(a v P"a) = (a w P"a) rt C'P - P"a

[#22-9] =«ftC'P-?"a

[#205-11] = minP'a (2)

R&W II 36
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|- . #201-52 . #37-265 . D r : Hp . Z> . P#"a = (an C'P) u P"(a n C'P) .

—^ \j —
[(2)]

3) . min/P*"a = min/(a n G'P)

[*205-15] = minP'a (3)

h.(2).(3).Dh.Prop
-* —

>

—

>

#205191. hPe trans . 3 . maxP'a = max/(a w P"a) = max/P#"a

#205192. hPe trans .j3CP"a.D. min/(a u /3) = min/a

Bern.

K*20511.*201-56.3

I- : Hp . D . mInP'(a u £) = (a u /3) « C'P - P"a

[#22-68] = (a n C'P - P"a) u (# « C'P - P"a)

[#24-3] = ar>C'P-P"a
—

[#205-11] = minP'a Oh. Prop
—> —*

#205-193. I- : P e trans . £ C P"a . D . maxP'(a w £) « max/a

#205-194. I- : x minP a . D .~ (aPar)

Dem.

h. #37105. lY.xea.xPx.l.xeP"* (1)

I- . (1) . Transp . D h : # e a - P"a . 3 . ~{xPx) (2)

h . (2) . #205-1 . D f- . Prop

#205*195. f- : a; maxP a . D .~ (xPx)

#205196. I- :. P e Bl'J * trans .D:^C'P. = .a; = minP'(t'a u P'at)

Bern,

h . #20519 . D I- :. Hp . D : minP'(i'# u P'a:) = min/i'a

:

[#20518] D : x e C'P . D . minP<(t'ar uft) = a (1)

I- . #205-11 .31-: minP'(t'tf ufa) = x.D.xeC'P (2)

I- . (1) . (2) . D I- . Prop

#205-197. \-:.Pe Rl'J r\ trans . D : a? e C'P .= .x = maxP'(P'a? u i'«)

#2052. I- :.Peconnex. E!minP'a .yea r\C'P . D :minP'a= y. v . min/aPy

I- . #202103 . 3 I- :. Hp . Z> : i/Pmin/a . v . niin/a = y . v . minP'a Py (1)

h. #205-14. DI-iHp.D.^Pminp'a) (2)

h.(l).(2).Dh.Prop

In the remainder of the present number, when a proposition has been
proved for minP , we shall not state the corresponding proposition for maxP
unless it is specially important. When propositions concerning maxP are
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required for reference in the sequel, we shall refer to the corresponding

propositions for minP , in case no reference exists for maxp.

#205*21. r- : P e connex . E ! min/a .yean C'P - t'min/a . 3 . min/a Py
[#205'2]

#205211. V\Pe trans r» connex . E ! minP'a . y e P"a . 3 . min/a Py

Dem.

V . #37105 . 3 h : Hp . 3 . {<&x) .ccea. xPy (1)

h. #13-1 3. 3 V : x e a . xPy . x = min/a . 3 . min/a Py (2)

h . #205-21 .DhHp.icea. xPy . x =j= minP'a . 3 . min/a Px . «Pi/

.

[Hp.*2011] 3.minP'a Py (3)

K(l).(2).(3).3l-.Prop

#20522. I- : P e trans n connax . E ! min/a . 3 . P"a = P'min/a

[#205-211 .#37-181]
— »-<

#20523. \-:Pe connex . a? e D'P . # e B lP . 3 . aPy

Dem,.

I- . #93-101 . 3 I- : Hp . 3 . x ± #

.

~(yPx) .

[#202-103

j

3 . xPy : 3 K Prop

#205-24. l-:P e connex.3.~B-PCp'P"D'P [#20523]

#205-241. h : P e connex . 3 . 1?'P C;><P"a<P [Proof as in *205"24]

<-

#205-25. I- . minP'P'a = (P-P2)^

Dew.

I- . #205-1 1 . 3 V . rmn/P'a = P'a - P"P lx

[#37-301] = P'x-Pa'x

[#32-31-35] = (P-P*)'x .31-. Prop

The following proposition is used in the theory of well-ordered series

(#2502).

#205-251. I- : 3 ! min/P'a: . = . x e D'(P-P2

)
[#205-25]

3 ! nmxP'P'* . = . x e <J'(P -^-P2
)

P e connex . E ! P'P . 3 . d'P = P'P'P [#202524]

#205252. r-

#205 253. V

#205254. V

#205 255. V

Dem,

<-

P € connex . E ! P'P . 3 . minP'(I<P = P-P*B'P [*205'253'25]

3!mfnP ra rP.3.a!^ rP

I- . #931 01 . 3 I- : B'P = A . 3 . D'P C d'P .

[#37-271] 3.a'P = P"<I<P.

[#205 122] 3 . min/d'P = A (1)

h.(l).Transp.3l-.Prop
35—2
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*205 256. h:.PeSer.3:

E ! mmP<a'P . = . E ! P^B'P . = . minp'd'P = P^B'P
[*205'254255 . *20163 . *202'527]

*205 26. I- : Q G P . D . minP f Cl'O'Q G minQ

Dem.

V . *37201 . D h :. Hp . a C C'Q . : Q"a C P"a . a C C'Q . a C O'P :

[Transp.*22-621] D : a -P"aCa - $"a .a= a n C'Q = a n OP s

—

*

—
[*205'll] D : minp'a C minQ^a

:

[*3218] D : # minp a . D . # minQ a :. D h . Prop

*205-261. r- : P£ £ e connex . /3 a (7<P~e 1 . 3 . min (P £ /3)'a = minp'(a n £)

Dem.
I- . *20511 . *202-54 . *37413 . *36'34 . D

\- : Hp . D . min (P£ /3)<a =an^C'P-{^ P"(a a /3)\

[*22-93.*205'll] = minP'(a n £) : D h . Prop

—

>

*205'262. I- : P e trans a connex . x e a n OP . /3 = P'# kj t
lx . D .

minp'a = minp'(a a /3)

Dem.

V . *32-18 . D \- :. Hp . y e a . 2/P# . D : # € a a /3 :

[*37-105] D:yPz.0.zeP"(anl3) (1)

h .#5115 .31-:. Hp.^Z ea.y = x. Diyear\fti

O37-105] 3:yPz.0.zeP"(anj3) (2)

h . #51-15 . #20M . Z> I- : Hp . y e a . osPy . yPz . D . x e a . arPs .

[#37105] l.ze P"(a a £) (3)

!-.(l).(2).(3).*202-103.Dl-:.Hp.D:2/ea.3/P^.3.^6P"(aA/3):

[*37105-2] D:P"a = P"(an/3) (4)

I- . #37-181 . #202-101 . D h : Hp . D . P'a C P"a . Px = C'P-J3.

[#2282] Z>.(7'P-P"aC/3.

[#22 621 .(4)3 D.C'Pna-P"a=C'Pnan^- P"(a n £) .

[#205 11] D . minP
ra « minP'(a a £) : Z) f- . Prop

*205'27. I- : P e trans * connex .^ean d'P . £ - P'a u t'a . D .

-* —

»

->
minp'a =» min (P £ /3)'a = minp'(a a £)

r- . *5241 . 3 h : Hp . P'x =f t'a . D . /3~ e 1

.

[*205-26 1] D.mfn^ /8)
fa =* imn?'(a n ^) (1)
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f- . *202101 . D f- : Hp . ~P<X = i'x . D . C'P - i'x ~P'x . xPx .

[#37*105] D.C'PC P"(a a ft) .

[#205*122.*37*413] D .mmP'(an /3) = A. min(P£ /3)<a =* A (2)

r . (1) . (2)O h : Hp . D . mtn (P £ £)'« = imnP'(a « £) (3)
K(3).*205-262.:>t-.Prop

The above proposition is used in #250*7.

—

>

—
#205*3. f- : P e connex . D . minp'a e v 1 . maxp'a e w 1

Dew.
—

>

h . *20511 .D \- :. x, y e minP'a .0 : x,y ea r\ C'Pizea. Z .^(zPx) .r^(zPy)

:

[*10-1] 3 : x, y e a n C'P .~(yPx) .~(xPy) (1)

I- . (1) . #202*103 . D !- :. Hp . Z> : x, y e minP'a . 3 . a = y :

[#52*4] D : minP'a e u 1 (2)

Similarly h :. Hp . D : maxp'a e u 1 (3)

K(2).(3).DKProp
The above proposition is of great importance in the theory of maxima and

minima.

#205 31. \-:Pe connex . D , minP , maxP el-* Cls [#205*3 . #71*12]
—

>

#205*32. \- :.P e connex . 3 : g ! minp'a . = . E ! minp'a . = . a e G'minp
[#205*31. #71*163. #33-41]

#20533. \- : P

e

connex . k C Q'minp . D . minP [ k €€&'k

Bern. K #205*31. 3 h : Hp. D . minP^ el -Cls (1)

h. #205*1. DhiHp.D.minpftfGe (2)

h. #35*65. DI-:Hp.D.a'minP |

k
/c = /c (3)

h . (1) . (2) . (3) . #80-14 . D I- . Prop

#205-34. r- : P e connex . k C (Tramp . D . k e Cls2 mult [#205*33 . #88*2]

The following proposition is used in #260-17.

#20535. h::P2 G/.Peconnex.3:.
x = minp'a . = :*e«n C'P : y e a a C'P — i'x . Dy . xPy

Dem.

V .#205*31 .#71*36. D V :: Hp. D :.# = minp'a. = :#minpa:

[#2051.#37*265] s : x e a * C'P - P"(a n C'P) :

[#37*105] ^'.xeanC'P-.yeanC'P.Dy .~(yPx) :

[#51221]= -.csean C'P: y = x .Dy .~(yPx): y€ar>C'P-L (x.Dx.~(yPx) (1)

r . #200*36 . Z> r :. Hp . D : yPz . D
Zt y . y + z :

[Transp.#10*l ] D : y = a; . "Dy .~ (i/Pa) (2)

l-.(l).(2).3f-::Hp.D:.

x *= mmp'a . = : a e a n CP : 1/ e a r* C'P - i'x . Dj, .~ (yPx) :

[#202*5] = : xea n C'P : y e an C'P - i'a . V . aPy :: D h . Prop
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—
*205'36. hPe trans n connex . D . minP

fa C p'P*"(a r> C'P)

Bern.

h.*205-2.*20ri8.DI-:.Hp. ir=minp'a.3:2/e(aA(7<P).Dj
/
.^P^:.3l-.Prop

The above proposition is used in #230"53.

*205 37. r : P e trans . maxP'a = A . D . P#"a = P"a [*201'52 . *205-123]

The following proposition is used in #2 57*21.

*205 38. b-.P^CJ.D.fjLn p'P*"n C min (P^Yfi

Dem.

h . *200-381 . D h :: Hp . 3 :.^eM • 3x.yP*% : 3 : xep. Dx .^(xP^y) :.

[*40-51.*37'105] 3 •.•p'P*"t* C - Pp0'V (!)

I- . *40'62 . D I- : a ! /* . 3 . p'?*'V C C'P (2)

|-.*24-12.DI-:^a!^.3.^CC rP (3)

h.(l).(2).(3).DI-:Hp.D./*ftp'P#"/»C^n^P-PBO'V

[#20511.*91*504] C min (Ppo)V ' ^ I- . Prop

*205381. I- : P^ G J . intxp'^ = A . D . j>'iy '/* ~jt/Ppo'V
Dew.

I- . *20538 ~ . D I- : Hp . D .

^

n p'P 1

*"/* = A (1)

l-.(l).*40-53.*24-37.D

I- :: Hp . D :. xep'P^'/j, . = : y e /i . D„ . yP*x .y^x:
[*20O-38] = : y e /i . Dy . yP^x :

[*40'53] = : x e/>'Ppo> 3 ^ prop

The three following propositions lead up to #205*42, which is used in

*261'26.

*205'4. V : C'P el . D .~B'P = A .1?<P =A

r . «66'381 . *55-15 . D I- : Hp . D . (ga?) . D rP = e'a? . d'P = t<#

.

[*93-101] 3 .^P = A . B'P = A : D I- . Prop

#205-401. I- : a ! 5'Pi: a . D . a n C"P~e u 1 . C'P^ a~€ Owl
Dem.

I- . *205-4 . Transp . D r : Hp . D . C'Pfc a~e 1 (1)

l-.*93103. 3h:Hp.D.g!C'P^a (2)

h.(l).(2). 3h:Hp.D.C"PtQ~€0ul (3)

h. #37-41. Dr.C'PtaCanC'P (4)

V . (4) . *60'32-37l . Transp . D I- : C'P£ a~ e w 1 . D . a n C"P~e w 1 (5)

h. (3). (5). D!-. Prop
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The following proposition, besides being required for #205*42, is used in

#250-151.

#205-41. h : P e connex . o n C'P~ e 1 . 3 . minP'a = B'P £ a

Dem.

h. #202-54. 3h:Hp.3.C"Pl>=a*C"P (1)

K *3741. Dh.a'P^a = anP"a (2)

r . (1) . (2) . #93-103 . 3 f- : Hp . 3 . P<P £ a = a n C'P - (a n P"a)

[#22-93.#205-ll] = mmP'a : 3 I- . Prop

#205-42. I- : P e connex . E ! B'P t a . 3 . £'P £ a = minP'a

Dem. \- . #205-401 . 3 \- : Hp . 3 . a n C'P~e 1

.

[#205-41] 3 . ramp'a = P'P £ a (1)

K(l). #32*41.31-. Prop

The following proposition leads up to #205*44.

#205 43. \-:Pe connex .glan B'P . 3 . minP'a = B'a 1 P
Dem.

h . #205-11 . 3 I- . minp'a = (a n D'P - P"a) u (a n 5<P - P"a)

[*35'61.#37 4] =5'a1Pu(an£'P-P"a) (1)

h . #205-23 . 3 h : P e connex . x e a r. D'P . y e P'P . 3 . x e a . xPy .

[#37'1] D.yeP"a (2)

r- . (2) . #10-23 . 3 I- : Hp . 3 . B lP C P'*a .

[#243] 3.ar>i?P~P"a = A (3)

h . (1) . (3) . 3 I- . Prop

#20544. r:Peconnex.E!5'a >|P.3.minP'a = P<a'[P [#205*43 . #3241]

The following propositions deal with the circumstances under which the

minimum of one class is identical with, or earlier than, that of another.

#205*5. YzPe connex . a C /3 . minp r
/3 « a . 3 . E ! minP'a . min/a = minP'/3

Dem. V . #37-2 . Transp . 3 I- : Hp . 3 . - P"/3 C - P"a .

[#20511.Hp] 3.mmP'/3ea-P"a.

[#205*1] 3 . minP'/Se minP'a (1)

r- . (1) . #205*3 . 3 h . Prop
—

#205-501. h : P e connex . min/a = minP"73 .D./3C -p'P"a
Dem.

\- .#20511 . 3 H :. Hp . 3 : minP'a~eP"73 :

[#37*105] 3 : y e # . Dy . ~(,yP minP'a) :

[#205-11] D-.yejS.Dy. fax) .xea .~(yPx) :

[#4051] 3 : & C -^'P"a :. 3 I- . Prop
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#20551. I- : . P e connex . a C /S . E ! minP'a . E ! rainP '/3 . 3 :

minp'a = minp'/3 . v . minp'/3P minp'a

Bern.

r- . #221 . *205'1 . 3 r- : Hp . 3 . minP'a e # n OP (1)

h . (1) . *205-2 . 3 f- . Prop

—

>

#205*52. f- : P e trans n connex . g ! a n jt/P"/3

.

E ! minp'a . E ! minP'£ . 3 . minP'a P minP'/?

Item.

h . *40-5 1 . 3 I- :. Hp . 3 : fax) :xea:y€/3.Dy .xPy (1)

I- . #205*2 . 3 h :: Hp . 3 :. a e« n CP . 3„ : minp'a = a . v . minP'aPa- (2)

I- . (1). #205*1 . 3 !- :. Hp . 3 : fax) . a; e a . #PmmP'£ :

[#3317] Dzfax).xeae\CP.xPndnP'l3 (3)

I- . (2) . (3) . 3 h :. Hp . 3 : fax) : #P minp*/3 : minp'a = x . v . minP'a Pa;

:

[#2011.*13-195] 3 : minP'a P minP'/3 :. 3 h . Prop

—
#20553. h : P e connex n El'J.xeanCP . P lx = P"a . 3 . os = maxP'a

h . #50-24 . 3 h : Hp . 3 . x e a n C'P-P'x .

[Hp] D.ar6anO"P-P"a.

[#205-111] D.a;emaxp'a (1)

h. (1). #205-3. 3 K Prop

#205-54. h : . P e Ser . 3 : x e a n CP ,~P*x = P"a . = . m = maXp'a

[#205-53-22]

#205-55. h : P e connex . £'P e a . 3 . B'P = minp'a

Dew.

I- . #93-101 . #3716 . 3 I- : E ! B'P . 3 . B'P eCP - P"a (1)

I-
.
(1) . #2051

.

3h:P'Pea.3.£'Pminpa (2)

I- . (2) . #205-31 . 3 1- . Prop

—
#205*56. r- . tnaxp's'« C maxp"/e

Dem.

V . #205111 . #40-38 . 3 h . mtxp's'* C s'« a CP - s'P"'k

[#40-11] Q§ \faa) . ae k .y e a r> CP ;~faa) . a e k . y € P"a]

[#10'56] C p [faa) . a € « . y e a n (7'P - P"a}

[#205-1 11] C § {faa) .aex.ye maxP'a}
[#40*5] C maxp"« . 3 K Prop

#205-561. I- : K C ^d'maxp . 3 . s'*~e d'maxp [#205*56 . #37-26-29]

#205-6. h :. P € connex . 3 :~E ! minP'a . = . a n CP C P"a [*205'32'122]



SECTION A] MAXIMUM AND MINIMUM POINTS 553

#205601. hPe connex . a C C'P . D :~ E ! minP'a . = . a £ P"a [#205'6]

#20561. r- : P e connex ,3.C'P = {C'P n p'P"(a r> C'P)} u minP'a u P"a
[#202-505 . #205-13]

#205-62. I- : P e connex . g ! a n C'P . D . C'P=p'P"{a n C'P) u minP'auP"a
[#40-62 . #205*61]

#205-63. b:Pe connex . P2 G J. g ! (a n C'P) . D .

p'P"(a n C'P) = C'P - P"a - imnP'a
[#202-502 . #20513]

#20564. h : P e connex . g ! (a n C'P) . 3 .

mmp'a = C'P - P"a -p'P"(a n C'P)
Bern.

Y . #205-62 . D h : Hp . D .

C'P - P"a -p'~P"(a n C'P) = imnP'a - P"a - p'P"(a n C'P) (1)

h . #205-1 1 . D h . minP'a - P"a = minP'a (2)

h . #205 #14. D \- :.a:eminP
ra . D :y ea. Dy ,~(yPx) :

[*20511.*101] D i~(xPas) .xeanC'P:

[#40-51] D:ar~6jo'P"(anC'P) (3)

h . (3) . 3 h . minP'a -p'~P"{* n C'P) = ramP'a (4)

K(l).(2).(4).3h.Prop
—* —*

#205-65. h : P e trans a connex . E ! minP'a . D . p'P"(a r\ C'P) = P'minP'a

Bern.

Y . #205-2 . D r :: Hp . D :.xPmmP'a .DiyeanC'P.Dy.xPy;

[#4051] 3 : x ep^'ia a C'P) (1)

h . #2051 . #4012 . 3 h : Hp . 3 . p'~P"(a a C'P) C P'minP'a (2)

h . (1) . (2) . 3 V . Prop

#205*66. b : P e trans a connex . E ! minP'a . 3 .

p'P"(a a C'P) = P rrainP'a . P"a = P'rainP'a .

C'P =i)'P"(a a C'P) w t'rainP'a w P"a
[#205-65-22. #202-101]

#20567. I- :. P e Ser . 3 : x = minP'a . = . P'x =p'~P"(a a C'P) .xeC'P

Dem.

K #205-6511. 3

h :. Hp . 3 : x = minP'a . 3 ,~P'x = p'P"(a a C'P) .xeC'P (1)

h . #50-24 . 3 h : Hp .~P'x =p'P"(a a C'P) . 3 . x~ep'~P"(a a C'P) (2)
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I- . #200-5 . D V : Hp(2) . D . an P'x = A

.

[#37-462] 3.a~eP"a (3)

V . (2) . (3) . *202-505 . D \- : Hp (2) . x e C'P . D .x ea n C'P- P"a

.

[#205'3'1 1] 3 . # = minp'a (4)

h . (1) . (4) . 3 V . Prop

#20568. h : P"a Ca.D. minP'a = min (Pp0 )'a

I- . #91-711 . 3 I- : Hp . 3 . Ppo"a = P"a

.

—

*

—

>

[*205'11] 3 . min (Ppo)'a = minP'a : 3 V . Prop

#205-681. I- : PPo
e connex . P"a C a . 3 . minP'a eOul [#205 -683]

-* —

>

#2057. I- : g ! maxP'P"a . 3 . g ! maxP fa

Dem.

I- . #37-2-265 . 3 I- : a n C'P C P"a . 3 . P"a C P"P"a (1)

h . (1) . Transp . 3 I- : 3 ! P"a - P"P"a . 3 . 3 ! a n C'P - P"a (2)

K (2). #205-111.31-. Prop

—>
#20571. \-:Pe connex . g ! maxP'P"a . 3 . maxP'P"a (P -^P2

) maxP'o

I- . #205-7'3 . 3 I- : Hp . 3 . E ! maxP'P"a . E ! maxP'a

.

(1)

[#205101] 3.maxP'P"aeP"a (2)

h . (1) . #205-101 . 3 \- :. Hp . 3 : maxP'P"a~e P"P"a :

[#37-39] D-.yea.Dy . ~(maxP'P"aP2
y)

:

[(1)] 3:~(maxP'P"aP2 maxP'a): (3)

[#34- 5.Transp] D:zP maxP 'a . 3 .~(maxP'P"a Pz) :

[#205-21] 3:£ea-fc'maxP'a.3.~(maxP'P"aP*) (4)

h . (2) . #37-1 . 3 \- : Hp . 3 . (<&z) .^a. maxP'P"a P^ (5)

I- . (4) . (5) . 3 \- : Hp . 3 . maxP'P"a P maxP 'a (6)

h . (3) . (6) . 3 h . Prop

#20572. I- : P e connex . P C P2
. 3 .~a ! maxP'P"a [#2057 1 . Transp]

#205*73. I- : P e connex . minp'7= maxp'7 . 3 . 7 n C'P e 1 . 7 n C'P = t'min/7

Dew.

h . #205-21 . D\-:.Rp.D:x€yn C'P - t'min/7 . 3 . max/7 Px .

[#37-1] 3.maxP<

7 eP"7 (*)

K #205111 . 3h:Hp.3.maxP'7~eP"7 (2)

»- . (2) . (1) . Transp . 3 I- : Hp . 3 . 7 n C'P - t'minP'7 = A .

[#205-1 1] 3 . 7 n C'P = t'minP
'

7 : 3 h . Prop
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206731. H :. P e connex r\ Rl'J . D : min/7 = max/y . = .yr\ &P e I

[*2051773]

#205732. I- : P e connex . 7 n CP~e 1 . E ! minp'7 . E ! max/7 . D .

minp'ryPmaxp'y
Dem.

H . #20573 . Transp . D H : Hp . D . maxP'a + min/a

.

[*205'21] D . minp'uP maxP'ft : D H . Prop

The following propositions lead up to #205"7 5, which shows that the

minimum of a class belongs to D'P unless the part of the class contained in

C'P is i'B'P.

*20574. hanC'P C£'P . D . nnn/a = anC'P
Dem.

V . #93101 . D h : Hp . D . a a D'P - A .

[#37-261-29] D.P"ft = A.

[#2051 1] D . minP
r
ft = anC'P:DI-. Prop

#205741. h : P 6 connex . « n C'P~e 1 . D . mtnp'ft C D'P

Dem.

h . #205*21 . D h : P e connex . y = minP'a .zectn C'P — i'y ."5. yPz :

—

>

[#205-3] D h : P e connex . y e minp'a . z e a. r\ C'P - I'y . D . 2/P2 :

—

>

[#3313] DI-:Pe connex . y e minp'a . 3 ! a n C'P - I'y . D . y e D'P

:

[#52181] 3 V : P « connex . a n <7'P~ e 1 .^ . mTnP 'ft C D'P : D Y . Prop

#205742. I- :. P e connex . D : 3 ! mtn/a - D'P . = . a n C'P = i'B'P

Dem.

h . #20574 . D h : a n C'P == t'5'P . D . minp'a = i'B'P .

[#93101] D . 3 ! minp'a - D'P (1)

h . #205-741 , D h : Hp . a ! mrnp'a- D'P . D . ar» C'Pe 1 (2)

h . #205-11 . D h : 3 ! mtnP'a - D'P . D . 3 ! ft n C'P - D'P

.

[#93103] D.a!«n?'P
^

(3)

h . (2) . (3) . #202-52 . D h : Hp . g ! mTnP'ft-D'P . 3 . ft n C'P = i'B'P (4)

I- . (1) . (4) . D h . Prop

#20575. h :. P * connex . D : ~(a r> C'P= i'B'P) • = • min/a C D'P

[#205-742]

Observe that ~(a n C'P = i'B'P) is not in general equivalent to

an C'P ^ i'B'P, since the latter implies ElB'P, while the former does

not.
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The following proposition is important.

#2058. \-:SeP smor Q . D . min/a = S"mmQ'S"a

Bern.

Y . #205-1 1 . D I- . S"mtn«'S"a = S"{S"a n C'Q - Q"S"a] (1)

I- . *151"11 . D F : Hp . D . S"a C C'Q (2)

H . (1) . (2) . D h : Hp . D . S"wmQ
tS"a = #"{S"ft - #"£"<*}

[#71-381] = S"S"a - S"Q"8"a

[*72'5.*150-23] - ft n C'P - P"a
—

>

[#205-11] = min/a : D f- . Prop

#20581. ht.SeP smor Q . D : E ! minP'a . = . E ! mine'S"a

Dem.

I- . #205-8 . #73-22 . 3 I- :. Hp . 3 : min/a sm minQ'S"a :

—

>

—

>

v
[#73-44] D : minP ra el.5. min</£"a e 1

:

[#53-3] D : E ! min/a . = . E ! minc
f£"a :. D h . Prop

#205-82. \-:8eP smor Q . E ! minP
r
ft . D . min/a = S'mmQ'S"a

[#53-3 1. #205-8 -81]

The two following propositions are used in #251 '13.

#205-83. h : z~ e C'P . a ! CP r, a . D . minP'a = min (P 4» s)'a

f- . #1611 . D I- : Hp . D . {Cnv'(P 4^^)}"a= P"ft « t'* -

[*161-14-2.#24495] D . a r* C'(P -+»*)- {Cnv'(P -^ z)}"a = a n C'P - P"a

.

[#205-11] D . min (P -+ z)'a = minP
ra : D h . Prop

#205-831. h : z~ e C'P . Cr(P -f> s) n a = i'z . D . min (P 4» s)'a = t<*

Dem.

h. #16111. DI-:.Hp.D:area.D
a!
.^{ar(P-^«)«}:

[*37-l.Transp] D : *~e {Cnv'(P -b*)}"a (1)

I- . (1) . #22-621 . D I- : Hp . D . t's = Cf(P -t>z)nct- {Gnv'(P+ s)}"a

[#205-11] =mtn(P+>z)"a:DI-.Prop

The two following propositions are used in #251'14.
y y

#205832. h : 2~ € C'P . s~e a

.

D . maxP ra = max (P -+» s)
ra

Dem.

I-
. #205-111 . #161-2 . D I- : P = A . D . maxP'a = A . max(P +*)<« = A (1)

h. #205111. *1611114.D

I-
: Hp . 3 ! C'P n ft . D . mtx (P+ z)'a = a n (C'P u t's) -(P"a w i'*)

[*24*495.*205-lll] = maxP 'ft (2)
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h . *16M4 . *205'151-161 . D

I- : Hp . g ! P . CPP n a = A . D .i/o = A . max (P-b^'a = A (3)

I- . (1) . (2) . (3) . D h . Prop

—

>

*205"833. h : g ! P . 2~e CP . 2<?a . D . max (P -+» z)
1*= t'*

I- .*161-11 . D I- : Hp . D . (P-\>z)"u=C{P.

[*161'14.*205'111] D . max (P -+» s)'a = a n (C'P u t's) - O'P

[*22-621.Hp] =6:3K Prop

The following proposition is used in #251'25.

#20584. h : C'P r» O'Q =A . 3 ! O'P n a . 3 . mm (P£ #)'a- mrnP'a

I- .#160-11 . D I- : Hp . D . {Cnv'(P£#)}"a = P"a u 0'#.

[#205\L1.#16014] D . linn (P $ Q)'a = an (O'P u G'Q) - (P"a u O'Q)

[*24-495] = anO'P-P"a
—

>

[#20511] = minp'a : D h . Prop

#205-841. I- : O'P n a =A . 3 . min (P :£ Q)
{
ol = mine'a

Dem.

h . *16011 . D F : Hp . D .\Cnv'(P$ Q)}"a= Q"a

.

[*205-ll.*16014] D . min (P £ Q)'a = a n (O'P u O'Q) - Q"a

[Hp] = «r>0'#-Q"a

[*20511] = min</aOK Prop

The following proposition is used in #251 '2.

*205-85. h :.P eRela excl . D

:

x {min(X'P)} a = (gQ) Q min^O^'a) . x ming a

h . *162'12'23 . #2051 . D h :. a? [min (S'P)} a . ==

:

^ea:(3^).QeO'P.a;PQ:~(a^2/).QeO'P..y e a.2/Q*:

-(a^^2/).^Q-^P^^-yea:

[#37105] = : x € a : (gQ) .QeC'P. xFQ : xFQ. Q<-C'P.DQ . x~e Q«a :

xFQ. QeC'P.

1

Q .Q~eP"F"<x (1)

!- . (1) . #16312 . *14'26 . D h :: Hp . D :. x |min (2'P)} a . = :

(a0.^Q-QeO'P.a; € «-Q"a:a;^.QeO'P.DQ.Q e P"a-P"^"a:

[*163-12.*14'26] = : (3#) .xFQ. QeC'P .xea- Q"a . # e >"a - P"F"a :

[#205-1] = : (aQ) . Q minp (P"a) . a? mine cr : : 3 h . Prop
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—

»

—

>

*205'9. h : Pe connex . « C GfP . «~ e 1 . D . min (P £ «)
fa =* min^a n «)

[*205'261]

v —

>

*205'91. h : P"a C a . Pp0 £ a e connex . D . min/a eOul

Dem.

(- . *205'261 . 3 h : Hp . a n ClP~e 1 . 3 . inTn (P^fc a)'a = imn (PpJ'a

[*205*68] = minP'a.

[*2053] D . min/a e u 1 (1)

I- . *93"113 . *60'37l . D V : a r\ C'P e 1 . D . rnmP'a eO u 1 (2)

h . (1) . (2) . 3 h . Prop



*206. SEQUENT POINTS

Summary of #206.

A "sequent" of a class a is a minimum of the terms that come after the

whole of a n G'P; that is, we put

seq/a = minPyP"(a r> G'P),

Thus the sequents of a are its immediate successors. If a has a maximum,
the sequents are the immediate successors of the maximum; but if or has no

maximum, there will be no one term of a which is immediately succeeded by

a sequent of a; in this case, if a. has a single sequent, the sequent is the

"upper limit" of a. Whenever P is connected, and therefore whenever

P is serial, every class has one sequent or none with respect to P, by

#2053.

It will be seen that the sequents of a are the same as the sequents

of an G'P, and therefore that seqP'a depends only upon a r% G'P : if a has

terms not belonging to G'P, they are irrelevant.

For the immediate predecessors of a class a, we put
-» -* -»
prec/a = m&xP'p'P"(<x n G'P).

*_/

We have precP = seq (P), so that propositions about prec? result from those

about seqP by merely writing P in place of P; they will therefore not be

given in what follows.

Among the elementary properties of seqP with which this number begins,

the following are the most important:

#20613. I- . seq/a = minPyP"(a n G'P)

This merely embodies the definition.

#206131. I- . seqP'a = seqP'(a n G'P)

#206-134. I- . seqP'a = C'Pn£{oLn G'P QP'x . ~P'x C -p'^"(a n G'P)\

*20614. h : a r» G'P = A . D . seqP <« =&P
Thus if P has a first term, this is the sequent of the null class, or of any

other class which has no members in common with G'P.
—

>

#20616. h : P e connex . 3 . seqP'a eOul

This follows at once from #205'3. It leads to

#206*161. h : P e connex . D . seqP e 1 —> Cls
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Thus if P is a connected relation, no class has more than one sequent.

This is not in general the case with relations which are not connected, even

where the idea of sequents is quite naturally applicable. Take, e.g., the

relation of descendant to ancestor, and let a be the class of monarchs of
—>

England. Then seqP
fa will be such parents of monarchs as were not them-

selves monarchs.

#206171. \-:Pe connex . P* G J . D .

s~eqP'a = C'P n & {a n C'P CP'x TP'x C (a n C'P) u P"a)

This proposition states that # is a sequent of a if the whole of an C'P
precedes x, but every term that precedes x either belongs to a or precedes

some term of a. When P is a series and a has no maximum, we have

seq/a = C'P n $(P'x = P"a) (#206174),

ie. the sequent of a, if any, is a term whose predecessors are identical

with the predecessors of members of a. This is the case of a limit

(cf. #207).
—>

We have next a set ofpropositions (#206*211'28) concerned with P'seqP
fa

<—
and P rseqP'a. When P is transitive and connected, and a is an existent

class contained in C'P and having a sequent, we shall have
-* 4- 4—
P'seqp'a = «u P"a. . t*\seqP'a v P'seqP'a =p'P"a.

That is, the predecessors of the sequent are the members of « and the

predecessors of members, while the sequent and its successors are the

successors of the whole of a. The various parts of this statement require

various parts of the hypothesis. Thus we have

#206-211. h : E ! seq/a .0. an C'P C?'seqP'a

#206-213. I- : P e connex . E ! seqP'a . D . P'seqP<a C (a r» C'P) w P"ol

#206*22. h : P e trans r\ connex . E ! seqP
fa . D .

P'seqP'a= (a n C'P) u P"a = maxP'a u P"ct

#206*23. I- : P e trans n connex . E ! seqP
ra . D .

t
fseqP

fa u P<seq/a = p<I>"(a n C'P) r. C'P
—

>

If P is transitive, the value of seqP'a is unchanged if we add to a any set of
_ —> —

>

terms contained in P"a (#206'24); thus in particular, seqP'(a u P"a) = seqP
fa

(#206'25). Thus we can fill up any gaps in a, and take the whole series up
to the end of a, without altering the sequent.

We have next a set of propositions (#206*3— '38) on the sequent of P"ct,

i.e. of the segment defined by a. If P is a series, seqP
rP"a is the maximum

of a if a has a maximum, the sequent of a if a has a sequent but no maximum,
and non-existent if a has neither a maximum nor a sequent (#206"35*331*36).
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Our next set of propositions (#206"4
—

'52) concerns the sequents of unit

classes, especially of t'maxp'ct, and of classes of the form P'x. We have

#2064. h:PG/.*eO»P.D.«seqpP'«

#20642. 1- : x e C'P . D . seqP
fi'x= P^P*'x = miaP'P'x

whence the three following propositions:

—

*

4—
#20643. h : P e trans nRl'J.^e C'P . D . seqp'i 'x = Px 'x

#20645. I- :. P e Ser . x e C'P . D : E ! seq/i'tf . = . e D'PT

—

>

—> —

»

#206*46. I

-
: P e trans r» connex . E ! maxp'a . D . seqp'a = seqp*rmaxp'r

a

From the above propositions it results that, when Pis a series, any member

of C'P is the sequent of the class of its predecessors, P^x is the sequent

of i'x if either exists, and the sequent of a class which has a maximum is the

immediate successor (if any) of the maximum, i.e.

*206 5. I- : P etrans n connex . E ! maxp'a . E ! seqp'a . D . maxp'a (P -i-P2
) seqP'a

We then have a set of propositions (#206*53—"57) on the sequent of
—>

p'P"(a n C'P), i.e. the sequent of the predecessors of the whole of a r» C'P.

These propositions are specially useful in connection with "Dedekindian"

series, i.e. series in which every class has either a maximum or a sequent

(#214). These propositions all require the full hypothesis that P is a series.
—> —> —

>

In this case, seqp^)'P"(a a C'P) = minp'a, i.e. the sequent (if any) of the

predecessors of the whole of a n C'P is the minimum (if any) of a. Moreover

by definition the maximum of p'P"(a n C'P), if any, is the precedent of a.
—>

Hence a has either a minimum or a precedent if p'P"(a r\ C'P) has either

a sequent or a maximum (#206'54). Moreover the sequent and maximum
of a are respectively (if they exist) the sequent and maximum of the pre-

decessors of all the successors of the whole of a n C'P (#206*551). Hence

we arrive at the conclusion that the assumption that every class of the form

p'P"(a r\ C'P) has either a maximum or a sequent is equivalent both to the

assumption that every class has either a maximum or a sequent (#206*56)

and to the assumption that every class has either a minimum or a precedent

(#206*55). It follows that these two latter assumptions are equivalent

(#206*57), i.e. that a series is Dedekindian when, and only when, its converse

is Dedekindian (#214-14).

We deal next (#206"6—*63) with correlations, showing that if two

relations are correlated, the sequents of the correlates of any class are the

correlates of the sequents, i.e.

—

>

—> ^
#20661. h : S

€

P smor Q.D. seqP'a = S"seqQ'S"a

r & w H 36
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We end with a set of propositions (#206*7—732) showing that the

sequent of a class is unchanged if we remove from the class any term other

than its maximum (#20672); that if a class has terms in C'P, and has both

a precedent and a sequent, the precedent has the relation P2 to the sequent

(#20673), and that the precedent is not identical with the sequent (#206732).

These propositions are in the nature of lemmas, whose use is chiefly in the

theory of stretches (#215).

#206-01. seqP = &« [x minP p'P~"(a r. C'P)} Df

*20602. precp = $ci {x maxP p'P"(oi r, C'P)} Df

*2061. \-:xseqP a. = .xmmPp'P"(anC'P) [(#20601)]

*206101. h . precp = seq (P) [#32-241 . #33*22 . #205102]

We shall not enunciate any other propositions on precP (unless for some

special reason), since the above proposition enables them to be immediately

deduced from the corresponding propositions on seqp.

#206-11. h : x seqP a . = . x ep?P"{a r. C'P) n C'P - P"p^P"(a r, C'P)

[#206-1 . #205-1]
4—

Observe that when a r» C'P is not null, p'P"(oi n C'P) C C'P, so that the

factor C'P on the right is unnecessary ; but when a r\ C'P = A, we have

p'P"(ar\ C'P) = V, so that the factor C'P becomes relevant. Owing to this

factor, the sequents of A are B'P, so that if B'P exists, B'P is the sequent

of A.

#20612. h nnaJseqpd.EE :. y ear. C'P . 1y . yPx : xe C'P :.

yeanCP.3y.yPz: 3z .~(zPx) [#206-11 . #40'53 . #37-105]

#20613. h . seqp'a = minpyP"(a n C'P) [#206'1]

#206131. h . seqp'a = s7qP'(a r. C'P) [#206'13 . #2243621]

#206 132. I- . seqp'a = p'P"(a n C'P) n C'P - P"p'P~"(a n C'P) [#20611]

#206133. h : x seqP a . D .~ (xPx) [#205194 . #206'13]

#206134. \-
. seqp'a = C'P nx{an C'P CP'x .~P'x C -p?P"(a n C'P)}

Dent.

h. #20612. #32-18. D

P.seqp'a= C'P nx(an C'P Q~P'x)n$ {yean C'P. 1y .yPz :1Z .~(zPx)}

[#40-53] =C'Pnx(an C'P CP'x) n x {z ep?P"(* n C'P) . D2 .~(zPx)}
[Transp.*3218].

= C'Pnx{an C'P C~P'x) r. $ [P'x C - p?P"(a n C'P)} .Dr. Prop

This formula for seqp'a is usually more convenient than #206 -13-132.
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#20614. h : a n C'P = A . D . s~eqP<a = B'P

Dem.
—

>

—>
\-

. #20613 . #402 . D I- : Hp . . seqP'a = minP'V

[#20515.#24'26] = min/C'P
—>

[#2051 2]
= B'P : D h . Prop

#206141. I- : a ! a r> C'P . D . £qP'a=p'*P"(a n C'P) - P"^'P"(a n C'P)

Dem.

h . *4062 . D h : Hp . D . p'P"(a n C'P) C C'P (1)

H . (1) . #206132 . h . Prop

#206142. I- : g ! a r» C'P . D . seqP'a C P"a [*40'61 . #206-141]

#206 143. h : a C C'P . D . s?qP'a =j9'P"a n C'P - P"j/P"a

[#206132. #22-621]

#206 144. h : g ! s^qP'a . D . g !^"(a n C'P) [#206132]

#20615. h : a C C'P . g ! a . D . seq/a = p'P"a - P"p?P"a
[#206-141 . #22-621]

#206-16. . I- : P e connex . D . seqP'a e u 1 [#205"3 . #206-13]

#206-161. \-
: P e connex . D . seqP e 1 -> Cls [#2061 6 . #7112]

Thus in a series, or in any connected relation, no class has more than one

sequent.

#20617. h:.#seqP a. = : y e a n C'P . Dy . yPx : x e C'P :

yPx . D„ . (g^r) .zeanC'P .~{zPy)
Dem,.

K #37-462. #20611. D

f- :. seqP a . = : x ejp'P"(a n C'P) n C'P . P'a? C -;>'P""(a ^ C'P) :

[#40-53] = : y « a n C'P . D„ . yPx zxeC'P:

yPx . D„ . (a*) .seanC'P .~(zPy) : 3 I" Prop

—

>

The following propositions give simplified formulae for seqP'a in various

special cases.

#206171. h : P e connex .P*GJ.O.

seqP'a = C'P n x {a n C'P CP'a . P'# C (a « C'P) u P"«}

h. #206134. #33152. D

h . seqP'a= C'Pnx [a n C'P CP'x . ~P'x C C'P- p'P""(a r» C'P)} (1

)

I- . (1) . #202-503 . D h . Prop

36—2
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*206 172. h : P e connex . P2 G J . P"a C a . D .

seqP'a = C'P n $} (a n C'P = P'x) [#206171 . #22-62]

#206 173. h : P e connex . P2 G «/ . a n C'P C P"a . D .

s"eqp'a = CrP n $ {a n C'P C^'a . P'a C P"a}

[#206171 . #22*62]

#206174. I- : P e Ser . a r» C'P C P"a . D . seqP'a = C'Pn% {P'x = P"a)

Bern.

t- . #1312 . #22*42 . D h :. Hp . D :

P'a = P"a . D . a n C'P C P'a . P'x C P"a (1)
y y

H . #37-265 . DhranC'PCP'iB.D. P"a C P"P'#

:

y y

[*201'501] D h :. Hp . D : a n C'P C P<# . D . P"a C P'x :

[Fact] D : aftC'PCP'#.P'#CP"a.D.P"a=Tp<# (2)

H. (1). (2). #206-173. Dh. Prop

The propositions #206173174 deal with limits. When a class a has no

maximum, i.e. when a n C'P C P"a, its sequent (if any) is called its limit.

By the above propositions, the limit is a term x such that a r\ CP precedes

x, but every predecessor of x precedes some member of an C'P (#206173);

it is also a term x whose predecessors are identical with the predecessors of

a (#206*174). The subject of limits will be explicitly treated in #207.

18. \- . seqp'a C C'P [#206132]

#206181. I- : a ! a n C'P . D . seqP'a C (I'P [#206*142 . #3716]
—>

#206*2. I- . seqp'a C - a

Bern.

\- . #40*68 . Transp . D h . p'P"(a * C'P) - P"p^P"(a n C'P) C-(an C'P) (1)

h . (1) . #206-132 . D h . Prop

#20621. \- : P* G /. D . seaya C - P"a [#20053 . #206132]

#206-211. I- : E ! seq/a . D . a n C'P C P'seqp'a

Dem.
£ .#206*17 . D I- :. Hp . D : y ea n C'P . D„ . 2/P seqP'a :. D h . Prop

212. \- : P e trans . E ! seqp'a . D . P"a C P'seqP'a

Dem.

h . #206-211 . D h : Hp . D . P"a C P"P'seqP'a

[#201*501] C P'seqp'a : 3 h . Prop
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*206-213. H : P e connex . E ! seqP'a . D . P'seqp'a C (a n C'P) u P"a

Dem.

V . #206*17 . D 1- :: Hp . D :. yP seqr'a . Dy : i&z) .ze(an C'P) .~(zPy) :

[#202103] D„ : (rz) : zeanC'P :y = z .v . yPz :

[*13*195.*37*1] Oy-.yeanC'P.v.ye P"(a n C'P)

:

[#37-265] D„ : y e (a n C'P) v P"a -Oh. Prop

#206*22. h : P e trans n connex . E ! seqp'a . D .

—> —

>

P'seqp'a = («n C'P) u P"« = maxP'o v P"a
[#206*211-212-213 . #205131]

#20623. h:Pe trans n connex . E ! seqp'a . D .

t'seqP'a v P'seqp'a =p'P"(ct n OfP) n C'P
Dem,.

h. #205-22. #206-13. D

h : Hp . D . i'seqP'a u P'seqp'a = i'seqP'a u P"p'P"(a n O'P)

[#20613.*53*31] = minp*p*!p"(a n C7'P) u P"p'*P"(a n C'P)

[#205-13] = jt><P"(a n C'P) n C'P u P"p'*P"{a * C'P)

[#201-51.#37-16] =p'P"(a n C'P) n C'P : D I- . Prop

—

>

—

>

#20624. h:Pe trans . £ C P"a . D . seqr'(a v &)= seqp'a

i- . #201-56 . D H : Hp . D . p<P"{(a v £) n C'P} =p'P"(a n C'P) (1)

I- . (1) . #206-13 . D h , Prop

#206-25. \-:Pe trans . D . seqP'(a v P"a) = seqP'a [#206-24]

#206*26. h:Pe trans n connex ,g!an C'P . E ! seqp'a . D .

p'P"(a n C'P) = I'seqp'a u P'seqp'a

Dem.

i- . #40-62 . D h : Hp . D . |>'P"(a n C'P) C C'P (1)

I- . (1) . #206-23 . D h . Prop

#206*27. H : P e trans n connex . E ! seqP'a . E ! maxp'a . D .

— —*

P'seqp'a = P'maxp'a u t'maxp'a

.

P'maxp'a = P'seqp'a u i 'seqp'a

Dem.

I- . #206-22 . D I- : Hp . D . P'seqp'a = maxP'a v P"a—

>

[#205*22] = t'maxp'a u P'maxp'a (1)

t~ . #205-65 . D h : Hp . D .P'maxp'a =p lP"(a n C'P) (2)

I- . #205*151161 . D H : Hp . D . g ! (a n C'P) (3)
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I- . (3) . *206*26 . D I- : Hp . D . p<P<'(<x n C'P) = t'seqp'a w P'seqP'a (4)

I- . (2) . (4)

.

D I- : Hp , D . P<maxP<« = i'seq/a u P'seqP'a (5)

h . (1) . (5) . D h . Prop

*206-28. h:.PeSer.D:

x e C'P — a . Plx = P"a. = .x = seq/a .^K! maxP'«
Dem.

i-.*206-l74.*205-6.D

H :. Hp . D : x = seqP<« .~E ! maxP'a .D.xeC'P. P'x = P"a .

[*206-2] D.x € C'P-a.P'x = P"a (1)

h.*37'l. D\-:xPy.yea.'P'x= P"cL.D.xe~P'x (2)

h . (2) . Transp . D h : P G / . y e a . P'a = P"a . D .~ (aPy) (3)

K*13\L4. D\-:xeC'P-a.yecL.3.x$y (4)

i- . (3) . (4) . *202103 . D h :. Hp . D :

xeC'P-a.P'x = P"a.yeanC'P.D.yPx:

[*3218] }:xeCtP-airP<x = P"a.D.cLnC'PCP'x (5)

h . (5) . *20617116 . D h :. Hp . D :

xeC'P-a>
r
P'x=P"cL.3.x = 8eqp'a (6)

h.(5).*205'123. Dh:.Hp.D:

xeC'P-a.P'x = P"a.D.~Elm8i,xp<cL (7)

h . (1) . (6) . (7) . D h . Prop

*206-3. h:Pe trans n connex . a C C'P . P"a C a . E ! seq/a . D .

P'seqP'a = a [*206'22]

*206-31. h:Pe trans n connex . E ! seq/P"a . D . P'seqP'P"a = P"a
[*206-3 . *201-5]

*20632. \-:Pe trans n connex . E ! maxP'a . E ! seqP'P"a . D .

maxp'a = seqP'P"a
Dem.

h . *20631 . *205-22 . D h :. Hp . D : P<maxP<a= P'seq/P"a :

[*205-194.*206*133] D :~(seq/P"a P max/a) .~(max/aP seqP'P"a) :

[*202-103] D : max/a = seqP'P"a :. D h . Prop

In the hypothesis of *206*32, we have both E ! max/a and E ! seq/P"a.
So long as P is not contained in diversity, these are both necessary. For
example, suppose we take

P = af(au t'x), where x~ea . jj ! a.

Then P is transitive and connected, but not contained in diversity. We have

«uA = C'P . P"(a v i'x) = a = D'P.
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Also maxp'(a u i'x) = x,

seqp'P"(a u i'%) = xnmP {p'P"oL = minp'(a u i
lx) = A.

Thus in this case maxp'(a \j i'x) exists, but seqp'P"(a u i'x) does not exist.

When P is serial, i.e. when P is contained in diversity, in addition to being
transitive and connected, the existence of max/a involves that of seqp'P"^
and therefore the hypothesis E ! seqp fP"a, which appears in #206-32, becomes
unnecessary.

#206*33. V : P e trans n connex .~ E ! maxp'a . D . seqp'P' 'a = seqf
fa

Dm.
r. #205*6. Dh:Hp.D.anC'PCP"a.
[*22*62.*37-15] D .(a v P"a) n C'P = P"ol (1)

I- . #206*25 . D r- : Hp . D . s"eqp'a = seq/(a u P"«)

[#206*131] = seqP'{(a u P"a) n CPj

[(1)] = seqP'P"ctOK Prop

#206*331. \- : P e trans n connex .~ E ! maxf'a . E ! seqp'a . D . seqp'P(
'a. = seqp'a

[#206*33]

#206*34. 1- : P e Ser . D . maxp'a C seqp'P"«

Dem.

h. #205*101. #37*265. D

h :. y e raaxp'a . = : y e a n O'P : z e a n C'P . D* .<^>{yPz) (1)

r.(l). #202*103. Dh::.Hp.D::
—

3/ emaxp'a ."D i.ye an C'P :. 2r€a n C'P . Dz : 3 = 3/ . v . zPy (2)

h . (2) . #13*195 . #201*1 . D I- ::. Hp . D ::

—

»

3/ e maxpfa . D :. 3/ e a n C'P :. z e a n (7'P . wP^ . DW)Z . «Pi/ :.

[#37*1*265] D:.ue P"a . Dw . uPy :.

[#40*53] ^uyep^P"P"a (3)

i-.(l).*37*l. DI-:yemaxp<a.vP?/.:>.i>eP"a (4)

I- . #50*24

.

D 1- : Hp . D .~ (yPv) (5)

h . (4) . (5) . D i- :. Hp . D : 3/ e maxp'a . t?Pi/ . D . (gw) . w e P"a . ~(wPv) .

[#40*53] D . t;~ ep'P"P"a :

[#1051] D : y e maxp'a . D .~(gv) . t> ep'P"P"a . vPy .

[#37*105] D.y~eP"p?P"P"cL (6)

h.(3).(6).(l).Dr:.HPjO:
^_

y e maxp'a . D . y ep'P"P"a n C'P -P"p'P"P"a .

[#206*143] D.ye seqr'P"a : . D h . Prop
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#206-35. h : P e Ser . E ! maxP'a . D . maxP'a = seqP'P"a . E ! seqP'P"«

Dem.

b . #206*34 . D 1- : Hp . D . max/a e seqf<P"a (1)

K (1) . #206-16 . D V : Hp . D . maxP'a = seqP'P"« (2)

h. (2). #14-21. D h : Hp . D . E ! seqP'P"a (3)

I-
. (2) . (3) 3 I" Prop

#206-36. I- : : P e Ser . D : . E ! seq/P"a . = : E ! max/a . v . E ! seqP'a

Dem.

h . #206-35-331 . D h :. Hp : E ! maxP<« . v . E ! seq/a : D . E ! seq/P"a (1)

K #206-34. Dh:.Hp.D:~E!seqP'P"a.D.~E! max/a. (2)

[#206-33] D.~E!seq/a (3)

1- . (1) . (2) . (3) . D K Prop

The condition (a) : E I maxP*a . v . E ! seqP'a is the definition of what may
be called "Dedekindian" series, i.e. series in which, when any division of the

field into two parts is made in such a way that the first part wholly precedes

the second, then either the first part has a last term or the second part has

a first term. (When these alternatives are also mutually exclusive, the series

has "Dedekindian continuity.") If a is any class, P ila is the segment of

CP defined by a. In virtue of the above proposition, every segment of

a Dedekindian series has a sequent. The sequent of a class having no

maximum is what is commonly called a limit. Thus in a series having

Dedekindian continuity (in which segments never have maxima), every

segment has a limit.

#206-37. h : P e Ser . D . seqP'P"a = minP'(maxP'a u seqP'a)

Dem.

h . #20516 . D I- : maxP'a = A . seqP'a = A . D .

-* —

>

—>
minP'(maxP'a u seqP'a) = A (1)

I- . #506-36 . D h : Hp . Hp (1) . D . ~ E ! seqP'P"a

.

[#206-16] D . seqP'P"a = A (2)— —>

h . #24-24 . D h : Hp . max/a = A . g ! seqP'a . D .

minP*(maxP'a w seqP'a) = minP
fseqP'a

[#205-1 7.#206-1 6] = seqP'a

[#206-33] = seqP'P"« (3)

h . #20517-3 . D 1- : Hp . a ! mtx/a . ^eq/o = A . D .

minP'(maxP'a \j seqP*a) = maxP'a

[#206-35] = seqP'P"o (4)
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K*206'l 6. #2053.3
—

>

—
h : Hp . g ! max/a . g ! seqP

fa . D .

minp'(maxp'ct w seqp'a) = minp'(i'maxp'a v t'seqp'a)

[*206'27 .#205182] =t'maxf'a

t*206'35] = seqp'P"a (5)

H.(l).(2).(3).(4).(5).DI-.Prop

#20638. 1- : P e Ser . D . max/a = a n seqp'P"a

h. #206-35. *205\L 11. D

h : Hp . E ! rnaxp'a . D . maxp'a = seqp'P"a . maxp'a C « .

[#22-621] D . maxp'a = a n seqr'P"a (1)

I- . #2053 . D h : Hp .~ E ! maxP'a . D . max/a = A (2)

I- . *206"33 . D h : Hp .~ E ! maxp'a . D . seqp'P"a = seqp'a .

j>206-2] D . a n seqp'P"a = A

.

[(2)] D . max/a = a n seqP'P"a (3)

f (1) . (3) . D h . Prop

#2064. h-.PGJ.xeC'P.D.xaeqp'P'a;

Dem.
K #206-134. #22-43.3

1- : x seqP P'x. = .xe C'P .P'xC- p'P"P'x (1)

I- . #200-5 . D b : P G J . D . P'x C -p'P"P'x (2)

h . (1) . (2) . D 1- . Prop

#206-401. \-:Pe connex n Rl'J . x e C'P . D . x = seqP'P'x [*206'4'161]

*206'41. \-.mmP?P<x = P-^P*'x [#205-25]

#20642. h:xe C'P . D . seqp'l'x = P^P*'x = minP'P'x

Dem.

h . #5301-31 . D I- . p^P"i'x =%x (1)

1- . (1) . *206'41'143 . D I- . Prop

-» «-
#20643. H : P e trans n Rl<J . a? e C'P . D . seq/ t'a? = P/a;

[#206*42 . #201-63]

#20644. h : . P e trans n Rl<J . a; e C'P . D :

E ! seqp't'a; . = . E ! P-fx : E ! seqpVa; . D . seqpVar = P^x
[#206-43]
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*20645. I- : . P e Ser . x e C'P . : E ! seq/t'x . = .xe D iP
1

[#206*44 . #2047 . #71165]

— —>

#206'451. 1- : P e Ser . E ! seqP'a . D . maxP'a = P/seq/a

Dem.

V . #206-41 . D t : Hp . D . P/seqp'a = max/P'seq/a

[#206-22] = max/{(a n C (P) v P"«}

[#205-191] = maxP'a : D 1- . Prop

#206*46. h : P e trans n connex . E ! maxp'a . D . seqp'a = seqp'maxp'a

Dem.
—> —

>

—* 4—
\- . #206'42 . D f- : Hp . D . seqp'rnaxp'a = minp*-P'maxp*-a

[#205-65] = ^nnP'ptp"(a n C'P)
—

*

[#206-13] = seqp'a Oh. Prop

—

>

#206*47. h :P € trans . E ! seqp'a . D . seqp'a = maxp'(a u seqp'a)

Dem.

h . #206-134 . D 1- : Hp . D . a n C'P C P'seq/a

.

[#205193151] D . maxp f(a v seqp'a) = maxp'seqp'ct

[#206133.*20518] = t'seqp'a Oh. Prop

#206*48. h : Pe trans n connex . E ! seqp'a . D . seqp'seqp'a = seqp f(a w seqp'a)

Dem.

h . #206-47 . D h : Hp . D .

seqp'seqp'a = seqp'maxp*f
(a w seqp'a) . E ! maxp'(a u seqp'a)

.

[#206*46] D . seqpfseqp'a = seqp^a u seqp'a) : D h . Prop

#206*5. h : P e trans n connex . E ! maxp'a . E ! seqp'a . D .

maxp'-a (P—P2

) seqp'a

Dem.

h . #206*46 Oh: Hp . D . seqp'a = seqpVmaxp'a

[#206*42] = P^-P^maxp'a Oh. Prop

#206 51. 1- : g ! maxp'P'a; . D . x seqP P'x

Dem.

h. #205161. DhiHpO.aSP'a.
[#33-42] D.a-eC'P (1>

1-
. (1) . #206-134 . D h :. Hp . D : x seqpP'a; . = .?<« C P'a . ~P'x C -p^'P'x

.

[#22*42] = . P<# C -fPiTP lx (2)
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b . #205 101 .Ob:, ye max/P'a; . : yPx . y~ 6 P"P'x :

[*37'1] : yPa; : zPx . Z .~(yPz) :

[*3218.*5-31] :

^

.0z .y e~P'x .~ (yPz) .

[*40'53] Oz .z~ep'P"P'x:

[#32-18] D : P-te C - jr)<P»P<# (g)

i- . (2) . (3) . D i- : Hp . y enmx/P'a; . . #seqP P<#OK Prop

#20652. b:P € trans n connex . E ! maxP'P"a . .

E ! seqP'P"a . seqP'P"a = maxP'a
Dew. K #205-7. D I- : Hp . . E ! maxP'a . (1)

[#205-22] . P"a = P'maxP'a (2)

I- . (2) . #206-51 . D I- : Hp . D . max/a seqPP"a .

[#206*161] . maxp'a = seqP'P"a (3)

h . (1) . (3) . D h . Prop

#206-53. b : P e Ser . D . seqP'p'P"(a n C'P) = m inP'a

Dew.

h . #206-13 . D H . seqP*p<P"(a n <7'P)= rmnPyP"[p'P''(a n CfP) n C'P}

[*205-15-16.*206-18.#200-54] = imnP'{CPnp'*P"p'P"(anC'P)} (1)

h - (1) . #204-62 . 1- : Hp . . seqP'p'P"(a n <7
fP) = minP'{(a n C fP) u P"a]

[#205-19.#201'52] = min/a : D h . Prop

#206-531. h:PeSer.D.

C lP n x [p'P"(a n C'P) = P'x} = seqP'p'P"(a n C fP) = minP'a
Dewi.

h. #206172. #201 -51. D

H : Hp . D . seqP<p'P"(a n C fP) = C'P nx fjr>'P"(« n C'P) n C'P = P'#} (1)

1- . (1) . #40-62 . D H : Hp . g ! (a n C'P) . .

s"eqP<p'P"(a n C fP) ^C'Pnx {p'~P"(a n C'P) = P'a} (2)

1- . #205-16 . #206*53 . b : Hp . a n C'P = A . . seqP'£>'P"(a n C'P) =A (3)

h.#40'2. Ob: an C'P = A. 0.

C'P n & {j9'P"(« n C'P) = ?'#} = C'P n & (V =^P'tf) (4)

h . #50-24 . b : Hp . . (x) . x~e P'x

.

[#24-104] . (x) .~P'x 4= V (5)

h . (4) . (5) . b : Hp . a n C'P = A . . C'P n w {jd'P"(« n C'P)=~P'x] = A

[(3)] = seqP<p'P"(a n C'P) (6)

K (2). (6). #206-53. D h . Prop
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*206*54. H :. P e Ser . D : E ! seqP'p'P"(a n C'P) . = . E ! min/a :

E ! maxPyP"(a n C'P) . = . E ! precP'a

Dem,.

h . *206'53 . D h : . Hp . D : E ! seqPy'P"(a n C'P) . = . E ! minP'a (1)

f- . *206-13'101 . D 1- : E ! maxP'p<P"{a n C'P) . = . E ! precP'« (2)

h.(l).(2).DI-.Prop

*206'55. f- :. P e Ser . D : (a) . a e (J'minP w (J'precP . = .

(a) .p'P"(a rx C'P) e d'maxP u d'seqP [*206'54'161 . *20532]

y . .jfc v ^—
*206'551. h : P e Ser . D . seqP'a = seqPyP"jo'P"(a n C'P) .

maxP'a = maxPyP'yP"(a n C'P)
Dem.

h . *206"13 . D h . seqp'a = m?nPyP"(a n C'P) (1)

I- . (1) . *20653 . D I- : Hp . D . s"e^/a =^PyP»{p'P"(a n C'P) n C'P} (2)

h . (2) . *200-54 .DHHp.gSP.D. seq/a = seqP'p'P"p'P"(a n C'P) (3)

1- . *20618 . D I- : P = A . D . seqP'a = A . s"eqP'j9'P"p<P"(a n C'P)=

A

(4)

K (3) . (4) . D 1- : Hp . D . s?qP'a - ^eqP'p'P"jo'P"(a n C'P) (5)

1- . *206-53 . D I- : Hp . D . rnlTxP'a = precP'p'P"(a n C'P)

[*20613-101.*200-54] = maxP'p'P'yP"(a n C'P) (6)

1-
. (5) . (6) . D h . Prop

*206'56. h : . P e Ser . D : (a) . p'P"(a n C'P) € d'maxP u a'seqP . = .

(«) . « e G'maxP w G'seqp

I- . *10-ril . D h : (a) . a e a'maxP u a'seqP . D .

(a) . p'~P"(a n C'P) e d'maxP u a'seqP (1)

1-
. *101 . Dh(a). p'~P"(a n C'P) e a'maxP v a'seqP . D .

p'P"p'P"(j3 n C'P) e a'maxP u a'seqP .

[*206"551] D . & e (PmaxP u d'seqP (2)

1-
. (1) . (2) . D h . Prop

*20657. I- :. P e Ser . D : (a) . a e <J'minP u a'precP . = .

(a).ae a'maxP v a'seqP [*206-55-56]

This proposition is important, since it shows that when a serial relation

satisfies Dedekind's axiom, so does its converse. Thus if all classes which
have no maximum have an upper limit, then all classes which have no
minimum have a lower limit, and vice versa.
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#2066. b-.SeP smor Q . D .^P"(o n <7<P) = S"j3<Q"3"«

Dem.

I- . *15111 . D h : Hp . D . j)'P"(a n C'P) =p'£"'Q"'S"(a n D'S)

[#7 2-341] = £"3>'Q"'£"(« n D'S)

[*7l-613] = S"p?Q"S"a :Dh. Prop

#206-61. hzSeP smor Q . D . seq/a = £"seqc'S"a

Dew.

1- . #205'8 . #206-613 . D I- : Hp . D . seqp'a = 8"mw<i
'S"S"ptQ"S"a

[*72-501.*151-ll] = S"wmQ'(p'Q"S"a rx C'Q)

[*206'13.*205-15] = £"seq<2'£"a : D h . Prop

*206'62. hi.SeP smor Q . D : E ! seqP'a . = . E ! seq</£"a

[*20661. #73-22-44. #53-3]

*20663. hzSeP smor Q . E ! seqf'a . D . seqP'a = £'seqe'S"a

[#206-61 '62. #53-31]

#2067. 1- : P e trans ./3CC'P.~ (yPy) . y~ e niaxP<£ . D .

Dera.

h. #51-222. 0\-:y~e{3.D.p<*P"/3 = p<P"(l3-i t

y) (1)

1- . #205-111 . D H :. Hp . y e . D : y e P"/3 . ~(yPy)

:

[#37-1] Oz{<&x).xe$-i'y.yPx\

[*10-56.Hp] : zep?P"(l3 - t'y) .D.yPz:

[#53-14.#51-221] D : j/P"(j8 - I'y) Cp'P"P :

[#40-16] D : i>'P"(/3 - I'y) =i>'P"/3 (2)

I- . (1) . (2) . D I- . Prop

#20671. h:Petran8.y8CO<P.~(2/P2/).y~emax//S.D.seqp'i
8=seqp f(^-i^)

.Dm.
—

>

—>

h. #51-222. Dt-:y~e/S.D.seqP
'

i
8 = seqp f

( /
S-t^) (1)

h . #205-111 .DH:Hp.ye/3.D.ye P"/3 .~(yPy)

[#37-1] D:(a*).*e/3-i'y.yP* (
2 )

I- . (2) . #10-56 . #201-1 . D 1- : Hp . y e /3 . £ - i'y C P'a? . D . yPoc .

[#32-18] D./3CP^ (3)

h.(3).#206-7.DI-:.Hp(2).D:

/3 C P'ff . P'a C -p<P"/3 . = ./3-t'jfCP'a; . P'<e C - p'P"(/3 - i'y) :

[#206'134] D : a; seqP £ . = . a? seqP OS - i'y) (4)

I- . (1) . (4) . D h . Prop
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—

«. —> —>
#20672. \-:Pe trans .~(yPy) . y~ e max//3 . D . seqp',3 = seqp'(# - i'y)

Dem.

b . #20671-131 . #205-151 . D h : Hp . D .^P<£ = s?qp<(£ n C'P - I'y)

[#206-131] = se^p'09 - i'y) : D I- . Prop

#20673. h : g ! 7 n C'P . E ! precP
'

7 . E ! seq/7 . D . precp'7 P2 seqr
<

7
Dem.

b . #206-211 . D h : Hp . D . 7 n C'P C P'seq/7 n P'precp'7 . g ! 7 n Q'P .

[#341 1] D . precP
'

7 P2 seqP
<

7 : D b . Prop

#206731. h :. g ! 7 n C'P : P e trans .v.PGJO . ~(precp'7 = seqr
'

7)

Dem.

b. #20673. D

J- : a ! 7 n C'P . E ! precP
'

7 . E ! seqP
'

7 . P e trans , D . precp'7 P seqP
'

7 .

[#206'133] . precp'7 =|= seqP
'

7 (1)

I- . #20673 . D

I- : g ! 7 n C'P . E ! prec/7 . E ! seqP
'

7 .P*GJ.D. precP
'

7 =f=
seqP

'

7 (2)

b . #14-21 . D I- : ~(E ! precP
'

7 . E ! seqP
'

7) . D . ~(precr
'

7 - seqp'7) (3)

h.(l).(2).(3).Dh.Prop

Note that "precp'7 =f seqp'7 " is not the same proposition as ~(precp'7 = seqp'7).

The former involves E ! precP
'

7 . E ! seqP
'

7 , while the latter does not, in virtue
of the conventions as to descriptive symbols explained in #14.

#206-732. bi.Pe trans . v . P2 G / : D . ~ (prec/7 = seqP
'

7)

Dem.

b . #206-14 . D h : 7 n C'P = A . D . precP
'

7 = ~B'P . seqp'7 = P'P

.

[#93-101] ^ . precp'7 n seqp'7 = A .

[*53-4] D .^ (precP
f

7 = seqP
'

7) (1)
I- . (1) . #206-731 .31-. Prop



*207. LIMITS

Summary of #207'.

A term x is said to be the "upper limit" of a in P if a has no maximum
and x is the sequent of a. In this case, x immediately follows the class a,

though there is no one member of a which x immediately follows. Sequents

which are limits have special importance, and it is convenient to have a

special notation for them. We write "ltp'a" for the upper limit of «; or,

if it is more convenient, "lt(P)'a." (This is more convenient when P is

replaced by an expression consisting of several letters, or by a letter with

a suffix.) The lower limit of a will be the immediate predecessor of a when
a has no minimum ; this we denote by tlp'a.

The following propositions on limits for the most part follow immediately

from the propositions of #206 on sequents.

Our definition is so framed that the limit of the null-class is the first

member of our series (if any). This departure from usage is convenient in

order that, whenever our series contains any limiting point in the ordinary

sense, the series of limiting points may exist, i.e. in order that P£ D'ltp may
exist whenever there are existent parts of C'P which have upper limits. The

series Pi Dltp is the "first derivative" of P. The definition of a limit is

ltp = seqp f (— G'maxp) Df.

Besides the limit, we require, for many purposes, a single notation for the

" limit or maximum." This we denote by "limaxp," putting

limaxp = maxp u ltp Df.

Similarly for the lower limit or minimum we use "liminp," putting

liminp = minp u tip Df.

We have tlP = lt(P) (#207*101) and liminP = limax (P; (#207 -401). Hence
it is unnecessary to prove propositions concerning lower limits, since they

result immediately from propositions concerning upper limits.

In virtue of our definition of a limit, x limits a if x is a sequent of a

and « has no maximum (#207*1). Thus if a has a maximum, it has no limit

(#207\ll), but if it has no maximum, the class of its limits is the class of

its sequents (*207*12). Thus the existence of the class of limits is equivalent

to the existence of the class of sequents combined with the non-existence

of the class of maxima, i.e.

#20713. h : a ! ltp'a . = .~g ! maxPfa . 3 ! seqp'a
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#207 '2
—*232 consist of various formulae for ltP'a. We have

#207-2. h:Pe connex . x ltP a . D . a a C'P C P'x . P'x C P"a

I.e. the whole of a n ClP precedes x, but any predecessor of x precedes

some member of a.

#207-231. h : P e Ser . g ! It*'a . D . ltP'a =C'Pnti (P'x =* P"a)

/.e. the limit of a, if it exists, is the term whose predecessors are identical

with the predecessors of some part of a.

We have also

#207-232. b :. P eSer .3 : x = \tP'a . = . x € C'P - a . P'x= P"a

This proposition should be compared with #205*54, which (slightly

re-written) is

h : . P e Ser . D : x = maxP<« . = . x e G lP r>a.P'x = P"a

From the two together we arrive at

#207-51. h :. P e Ser . D : x = IimaxP'a . = .x € C'P .~P'x = P"a

which serves to illustrate the utility of "limaxP ."

We have

#207-24. V : P e connex . D . ItP'a e u 1 . ltP « 1 -* Cls

I.e. if P is connected, a class cannot have more than one limit; also

#207-25. h : P e trans . /3 C P"ct . D . ltP'(a u 0) = It/a

I.e. any terms which have some a's beyond them may be added to o without

altering the limit.

We next have a set of propositions (#207'251

—

-

27) proving that if a

class has a limit, any single term of the class may be removed without

altering the limit (#207 261), and that in any case, provided the class is

not a unit class, its minimum (if any) may be removed without altering the

limit (#207-27). We then prove (#207-291) that if P is a series, and a is

a class which has a limit, the predecessors of the limit are the class P% l
a-

We then have a set of propositions (#207'3—*36) on the limit of P'x and

kindred matters. If x has no immediate predecessor, the limit of P'x is x,

and vice versa (#207 '32-33). Hence

#207-35. h : P e U\'J a connex . D . D'ltP = C'P - d'(P-P2

)

I.e. the limit-points of P are those which have no immediate predecessors.

We next turn our attention to "limaxP ." This again is one-many,

provided P is connected (#207 41). We have by the definition

#207'42. f
-

: a ! maxP'a . D . limaxP'a = maxP'a
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#20743. h : max/a = A . D . limaxp'a = seqP'a = ltp'a

*207'44. (- . (Tlimaxp = (I'maxp w (Tltp = d'maxp u d'seqp

#207'45. h . limaxp'a = maxp'a u ltp'a

Also we have

#207'46. h :. a: = limaxp'a . = : # — maxp'a . v . x = ltp'a

which is a very useful proposition, as is also #207 '51 (given above).

A useful proposition in dealing with classes of classes contained in a

series is

—

>

—

>

—

*

#20754. V : P e Ser . k C (I'ltp . D . Hmaxp'ltp"* = IimaxPV* = ltpV*

I.e. if every member of k has a limit, the limit or maximum (if any) of

the limits is the limit or maximum, and in fact the limit, of s'k.

We have next a set of propositions (#207 '6

—

'66) on correlations, proving

that the limit, or the Umax, of the correlates is the correlate of the limit

or limax, i.e.

*207'6. r : S e P smor Q . D .ltp'a = S''hQ<S"a
—

*

—> ^
#20764. h : S e P smor Q . D . limaxp'a = Sflimaxg'tf"a

The last three propositions (#207*7—'72) are lemmas for use in the theory

of stretches (#215"5 ,

51).

#207 01. ltp = It (P) = seqP |* (- (I'maxp) Df

#207-02. tlp = tl(P) = precp|
k (-a 4minP) Df

*207 ,

03. limaxp = maxP \y ltp Df

#20704 liminp = minP u tlP Df

*207'1. h:icltpa. = .irseqpa.^almaxp'a [(#207-01)]

#207-101. h . tip = It (P) [#205102 . #206-101 . (#207-02)]

We shall not give further propositions on lower limits, unless for some

special reason, since all of them result from propositions on upper limits by

means of #207 101.

#20711. h : a ! maxp'a . D . ltp'a =A [#2071]

#20712. h : maxp'a = A . D . Itp'a = seqP'a [#207'1]

#207121. honC'PC P"a . D ."itp'a = seV« [#20712 . #205-123]
—

>

—

>

—

>

#207-13. h : a ! ltP'a . = .~a ! maxP '« . a ! seqP'a [#2071]

#207-14. b :. a ! maxp'a . v . a ! seqP'a : = : a ! maxP'a . v . a ! Itp'a

[#207-13 . #5-63]

R&w II 37
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The above proposition is important because
—

>

—

*

(a) : a ! maxP'a . v . g ! ltp'a

is the characteristic of " Dedekindian " series, i.e. of such as fulfil Dedekind's

axiom.

*20715. h :x ltP « . = . * e C'P . a a C'P C P"ol a ~P'x TP'x C - p'P"(a a C'P)

[#2071 . #205123 . #206134]

#207 16. I" . ltp'a =Ttp'(a a C'P) [#20715 . #37-265]

#20717. h . ltP 'A = £'P [#20712 . #205161 . #20614]

#20718. I- : a cP C D'ltP . = . C'P = D'ltP

Dem.

h . #20717 . D h : d'P C D'ltP . = . CI'P u1?'P C D'ltP .

[#93103] = . C'P C D'ltp .

[#20715] = . C'P = D'ltp Oh. Prop

#207-2. h : P e connex . x ltP aO . « a C'P C P'x . P lx C P"a

[#2071 5. #202503]

#20721. h : P2 G J". * e C'P . a a C'P C ~P lx .~P'x C P"aO . * ltP «

h . #20053O h : P2 G J"0 . P"« C -£>'P"(a a C'P) (1)

h . (1)

.

D h : HpO . a* C'P. a n C'P CP'#

.

~P'xC -p'"P"(« a C'P) .

[#206134] D.aseqpa (2)

h. #22-44. Dh:HpO.«ftC'PCP"a.

[#205-123] D.maxP'a = A (3)

h. (2). (3). #207-1 Oh. Prop

#207-22. h : P econnex .P2 G/O .ltp'a= C'P a $(a a C'PCP'x.'P<xCP"a)

[#207-2-21]
—

>

This is very often the most convenient form for ltp'a. It states that

a limit of a is a member x of C'P such that a a C'P wholly precedes x, but

every predecessor of x precedes some member of a.

#207-23. h : P e SerO . ltp'a = C'P a £ (P'x = P"a . a a C'P C P"a)

Z)ew.

h . #1312 . #2242 . D

h : P'x = P"« . a n C'P C P"aO . a a C'P CP'x . ~P'x C P"a (1)

h . #201-501 . #37-265O h :. P e transO : a a C'P CP'x . D . P"« CP'«

:

[Fact] D : a a C'P C?'«

.

~P'x C P"a . D ."P'x = P"a (2)
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h . *22"44 .Dh«nC'?C A.P'«CP"« .D.anO'PC P"a (3)

h.(l).(2).(3)0

(-:.P6trans.D:a^C'fPCP <it;.P^CP<<a. = .P^=P"a.aAC'<PCP"a (4)

h . (4) . #207-22 . D h . Prop

*207'231. h : P e Ser . g lltp'a . D .ltP'a = GlP n £ (P<# = P"«) [#207'23]

#207232. h :. P e Ser . D : x = ltP'a . = . x e C'P - a . P<#= P"a
[*206'28 . #207*1]

#207-24. h : P e connex . D . ltP'a e u 1 . ltP e 1 -> Cls

Bern.

Y . #206-161 . #71-26 . (#207-01) . D h : Hp . D . ltP e 1 - CLs . (1)

[#7112] D.ltp'aeOul (2)

h.(l).(2).Dh.Prop

#207-25. h : P e trans . ft C P"et . D . ltP '(ct u /3) = ltP 'a

Bern.

h. #205193. D h : Hp . a ! maxp'a . D . a ! raaxP'(a u £) (1)

h . (1) . #207-11 . D h : Hp . g ! mxP'a . D . ItP'a = A . ItP'(a u 0) = A (2)

h. #205-193. #207-12. D
—

>

—»—»—> —»•

h : Hp . maxp'a = A . D . ltP'a = seqP'a . ltP'(a u ft) = seqP'(a u ft) .

[#20624] D

.

Ttp'a = hP <(a u ft) (3)

h . (2) . (3) . D h . Prop

#207-251. h : P £ trans . y 6 P"(/3 - l'y) . D . ltP</3 = \tP\ft - l'y)

Dew.

(-.#51-222. Dh:y~ e /3.Z).ltP'/3=ltP'(/3-i-'y) (1)

h . #207-25 . D h : Hp . D .ItP'{(/3 - l'y) « l'y) ~ li*'(£ - l'y) (2)

h . (2). #51-221 . D h : Hp . y eft . D .7tp'£ = ltP'(£- l'y) (3)

h.(l).(3).Dh.Prop

#207-26. h : P e trans .~(yPy) . a ! 1V/3 . D . ltP</3 = ItP'(/3 - l'y)

[#207*13-12. #206-72]
—

*

> —> --*

#207-261. h:Pe trans . y e minP</3 . a ! hP'ft 3 ltP'ft = ltP '(/Sf - l'y)

[#207-26. #205-194]

#207-262. h : P e trans n connex . a ! \tP'ft D • HP'# - ltP'(/3 - minP'#)

[#207-261 . #205*3]

#207263. b :Pe trans n connex . D . \tP'ft C ltP'(# - minp'/?)

[#207 262. #24*12]

37—2
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*20727. h : P e trans a connex . /3 a C'P~ e 1 . D . ltP'/3 = ltP'(£ - minP'/3)

Dew.

h . *24-26'101 . D h : imdp'£ = A . D . ltP'# = ltP<(# - minP</3) (1)

h . *52"181 . Z)

h : Hp . g ! minP<£ . D . (gy) . y e/3 a C'P . y + minP'£ .

[*205'2] D . (gy) . y € 09 a C'P) - i'minj>'£ . minP</3 Py

.

[*371] D . minP</3 e P"(/8 - t'minP'/3)

.

[*207'251] D . V/3 = ltP'(/3 - i'minr'13) (2)

h . (1) . (2) . D h . Prop

*207'28. h : P e trans . D . ltP'(a u P"a) = ltP'a [*207"25]

*207 281. h : P e trans .~g ! maxP'a . D . ltP'P"a = ItP'a

[*207-2816 . *205123]
—

*

—

>

—> —
*207282. h:Pe trans.~a!maxP'a.~a!maxP'/3.P"a=P" /

9.D.lV«=ltP <
y8

[*207'281]

*207-29. b:Pe trans . D . ltP'a = ItP'P*"a

Bern.

h . *207-16-28 . D h : Hp . D . ij'a =Itp'{(a u P"a) a C"P}

[*201-52] = ltP'P#"a Oh. Prop

*207 291. h : P e trans n connex . E ! ltP'« . D . P'ltP'a = P#"a
Dem.

h . *207-29 . D h : Hp . D . P'lt/a = P'lt/P^'a (1)

h.*9014\L72. Dh.P/aCO'P.?"P#"aCPfu« (2)

h . *207iri2 . D h : Hp . D . seqP'P*"a = ltP'P*"a (3)

h . (2) . (3) . *206*3 . D h : Hp . D . P'seqP'P*"a =\P*"ol (4)

h . (1) . (3) . (4) . D h . Prop

*207-3. V : « a GlP = A . D .ItP'a = 5*P
i)em.

h . *205151-161 . D h : Hp . D . maxP'a = A (1)

h . *206'14 . D h : Hp . D . seq/a ="fi'P (2)

h . (1) . (2) . *20712 . D (- , Prop

*207-3l. h : P < J . x e C'P - a i(P-^P*) .3.x ltP~P'x

Dem.

h . *206-41 . D h : Hp . D . maxp'P'x = A (1)

h.*206'4. Dh:Hp.D.«seqPP^ (2)

h . (1) . (2) . *2071 . D h . Prop
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*207 32. h : P e Rl'J a connex . «= C'P

-

d'(P-

P

2
) . D . = ltP'P'#

[*207*31-24]

*20733. h:0ea%PiP»)O.TtyP'«-A [*205'252.*207\L1]

*207 34. h : P e connex . ltP a . D . x ItP P'a . ic~e (I^P-^P2
)

Dem.

h . *207"15 .Dh:Hp.D <!E eO'P.anO'PC P"a .anO'PC P^

.

~P'xC-p'P"(anC<P) (1)

h . *4016 . Dh:«n C'P CP'x.3. p'P"P'x C p'P"(a a C'P)

.

[*22-81] D . -p«P"(o a C'P) C - p?P"~P'x (2)

h . (1) . (2) . D h : Hp . D . € C'P Tp'x C - p^Pi7P lx

.

[*22-42] D.«eC"P.P'icCP'0.P'a;C-^'P"P'0 (3)

h . (1) . *202'505 . D h : Hp . D . ~P'x C (a a C'P) u P"a . a a C'P C P"a

.

022-62] D.P'#CP"a (4)

1-
. (1) . *37-2-265 . D h : Hp . D . P"o C P"P'0 (5)

K(4).(5). Dh:Hp.D.P'0CP"P'ar (6)

h . (3) . (6) . *207-15 . D h . Prop

*207'35. h : P e Rl'/ a connex . D . D'ltP = C'P - d'(P^P2
)

Dem. h.*207'34.Dh:Hp.D.D'ItP C-a'(P-i.P 2

) (1)

h. *207 -15. D h.D'ltpC C'P (2)

h . *207-32 . D h : Hp . D . C'P - d'(P~P2
) C D'ltP (3)

h.(l).(2).(3).Dh.Prop

*20736. b : P e Rl'J a connex . D .

D'ltp = itP"P^'{CP - a'CP^P2
)} = itP"P"CP

Dem.

h .*207-32 . D h : Hp. D . C'P- d'(P-^P2
) = ltP""P" {C'P- d^P-^P*)} (1)

h . (1) . *207-35 . D h : Hp . D . D'ltP = ltP"P"{C'P - d'(P^P2

)} (2)

h.*207-33. Dh.ltP"P"{C'PAd'(P-^P2
)} = A (3)

h . (2) . (3)

.

D h : Hp . D . D'ItP » ltP"P"C'P (4)

h . (2) . (4) . D h . Prop

In virtue of this proposition, all limits are limits of classes of the form

P'x. In this respect, limits (in general) differ from segments. If we call

P"a the segment denned by a, there will in general be segments not of the

form P'x. These, however, will be the segments which have no sequents,

and therefore no limits; thus their existence does not introduce limits not
—

*

derivable from classes of the form Ptx.
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*2074. I- :. x limaxp a . = : x maxp a . v . x ltP a :

= : x rnaxp a . v .~g ! maxp'a . x seqP a [(#207"03)}

*207'401. h.Hminp = limax(P) [(*207'04)]

*207'41. h : P e connex . D . limaxP , liminP e 1 —* Cls

[*71'24 . #205-31 . #20724 . (#207-03-04)]

#207 42. h : 3 ! maxp'ct . D . limaxP'a = maxP'« [*207'4]

#20743. h : maxP'a = A . D . limaxp'a = seqP 'a = ltP'a [#207'4]

#20744. h . G'limaxp = Q. 1maxP u (Tltp = (I'maxp u (Pseqp

[*207'14 . (#207-03)]

#20745. h . Hmaxp'a = maxP'a u ltP'a [(*207'03)]

*207'46. h :. «= limaxp'a . = : # = maxp'a . v . # = ltp'a

Dew.

h . *207'4511 . D h :. g ! maxp'a . D : # = limaxp'a . = . x = maxP'a (1)

h . *207-45'12 . D h :, maxP'a = A . D : a; = limaxp'a . = . x = ltP'a (2)

h.(l).(2).*5-32.D

h :. g ! maxp'a . a? = limaxp'a . v . maxp'a = A . x — limaxp'a : = :

g ! maxp'a . x = maxp'a . v . maxp'a = A . x = Itp'a (3)

K (3) . #4-42 . D
—

>

—
\- :.x = limaxp'a . = : g ! maxp'a . x = maxp'a . v . maxp'a = A . x = ltp'a :

—

>

[#3032] = : x = maxp'a . v . maxp'a = A . x= ltP'a :

[#20713] = : x = maxP'a . v . x = ltp'ct :. D V . Prop———>
#207'47. h : g ! ltp'a . = . g ! limaxp'a .~3 ! maxp'a

Dem.

h . *207-45'll . D h : g; ! ltp'ct 3 H ! limaxP'a .~^ ! maxP'a. (1)——»—
h . #207-45 . D h : g ! limaxp'a .~g ! maxp'a . D . g ! ltP'a (2)

h.(l).(2).Dh.Prop

*207'48. h . limaxp'a = limaxp<(« n C'P) [#207-45 . #205-151 . #207-16]
—

*

—

>

#207481. h : P e trans . D . limaxp<«= HmaxP'P^"a

[*207-45 . #205-191 . #207-29]

*207'482. h : P « Ser . a C C'P . a = limaxp'a . D . a C ~P*<a

Dem.

h.*205-22.*90-151. D h : Hp. a = maxP'a. D . aCP^'a (1)

r- . *207-291 . *90'151 . D h : Hp . a = ltP 'a . 3 . P*"« C ~P^a .

[#90-21] D.aC?#'a (2)

H . (1) . (2) . *207-46 . D h . Prop
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*2075. h : P e Ser . D . IimaxP'a = seqP'P"ci = minP'(maxP'a u seqP'a)

[*206-33-35-37]

*207 51. h :. P e Ser . D : x = IimaxP'a . = .xeC'P . P lx = P"a
[*205'54 . *207-232'46]

*207 52. h:.PeSer.a!P"«.D:^ = Iimax/a. = .P'a: = P"a [*207'51]

*207-521. h :. P e Ser . D : x = \tP'a . = x e C'P . P<# = P"a .~E ! max/a

Z)em.

h.*207'51.Dh:.Hp.D:

ic e C"P . P lx = P"a . ~E ! maxP'a . = . x = limaxP'a .<^E ! maxp'a

.

[*207"46] = . x = lt/a :. D h . Prop

*207'53. h : P e Ser . « C G'IimaxP . D . limaxP'limaxP"«r = limaxPV«
Dem.

h . *207'51 . D h :. Hp . D : a e * . Da . P'limaxP'a = P"a :

[*3768] D : P"IimaxP"« = P<"« :

[*40'5-38] D : P"limaxP"* = P'V* :

[#207'51] D : x — IimaxP'IimaxP">t . = . x = limaxPVA: :. D h . Prop

*207'54. h : P e Ser . * C (I'ltP . D . limaxP'ltP"* = limaxPV* = ltP 's
lK

Dem.
h . *205-561 . *20713 . D h : Hp . D . *'*~e <FmaxP .

[*207-43] D . limaxp'fi'K =ItpV* (1)

h . *20713'43 . D h : Hp . D . ltP"« = limaxP"*

.

[*207-53] D . limaxP 'ltP"* = limaxPV* (2)

h . (1) . (2) . D h . Prop

*20755. h : P e Ser . « C (TltP . *'* 6 <3'ItP . D . limaxP'ttP "«: = ItPV*
[*207-54]

*207'6. h : S e P smor Q . D . lt/a = #<%',§"«

h . *205-8 . *37-43 . D h :. Hp . D : g ! max/a . = . g ! maxe'S"« : (1)

[*20711] D:a!n^xP
<a.D.l^/« = A.^S"a=A (2)

K(l).Transp.*20712.D

h :. Hp . maxP'a = A . D : ltp'a = seqP'a . lte'$"a — seq</>S"a :

[*206'61] D:ltP'« = #"lvS"a (3)

h . (2) . (3) . *37-29 . D h . Prop

*207'61. h :. S e P slnor Q . D : E ! ltP'a . = . E ! ltg'S"a [*207*6 . *53'3]
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*207'62. h:SeP£moiQ.Rl\tI>
(a.3.ltp'a=S<hQ<S"a [*207'6 .*53'31]

*20763. h : S e P smor Q . D . It/'* = £"1V<S"<*
Bern.

h . *207-6 . *405 . D h : Hp . D . It/'* = s'S'"hy<£<"*

[*40-38-5] = S"\tQ"S"'fc :Db. Prop

*207'64. \--.SeP smor Q . D . limaxp'a = £' 1imaxg'i5"a

[*205-8 . *207-6-45]

*207-65. hz.SeP smor Q . D : E ! limax/a . = . E ! Umax^'a
[*207-64]

*207"66. \-:SeP smof Q . E ! limax/a . D . IimaxP'a = £'limaxQ'£"a

[*207'64]

*2077. h:.Petrans. v. P2 GJ:D:
Iiminp'7 = limaxp'7 . D , liminp'7 = minp'7 = maxp'7

Dem.

V . *207'42-43 . D h : E ! minp'7 . E I limaxp'7 .~E ! maxp'7 . D .

liminp'7 = minp'7 . limaxp'7 = seqp'7 .

[#2051 1 .#2062] D . liminp'7 e 7 . limaxp r7~ e 7 .

[*13*14] D . Hminp'7 4= limaxp'7 (1)

Similarly

h : E ! maxp'7 . E ! liminp'7 .~E ! minp'7 . D . liminp'7 4s Umaxp'7 (2)

h.*20(J-732.*207-43*12.D

h : Hp .~E ! mirip'7 . ~ E I maxp'7 . D .~ {liminp'7 = limaxp'7} (3)

K (1) . (2) . (3) . D h : Hp . liminp'7 = limaxp'7 . D . E ! minp'7 . E I maxp'7

.

[*207'42] D . liminp*7 = minp'7= maxp'7 : D h . Prop

*207'71. h : . P e connex : P e trans . v . P2 G «7"
: liminp'7 = limaxp'7 : D .

7 a C'P e 1 . 7 a C'P = t'limaxp'7
[*207-7 . *205-73]

*20772. h : . P e connex . P2 G / . D : Hminp'7 = limaxp'7 . = . 7 a C'P e 1

[*207-7l . *205-73117 . *207"42]



*208. THE CORRELATION OF SERIES

Summary of #208.

The propositions of this number are chiefly important on account of their

consequences in the theory of well-ordered series (#250 ff.) and in the theory

of vector-families (#330 ff.). When two well-ordered series are ordinally

similar, they have only one correlator; and a well-ordered series is not ordinally

similar to any of its segments. Of these two propositions, the first is an

immediate consequence of *208"41, and the second is an immediate con-

sequence of *208'47.

Propositions concerning correlators of two relations P and Q are obtained

from propositions concerning correlators of P with itself, by means of the

fact that, if 8, T are two correlators of P and Q, 8 |
T is a correlator of P

with itself. Again, correlators of P with itself are considered, in this

number, as a special case of correlators of P with parts of itself. This

latter is a notion which will prove important for other reasons than those for

which it is used in our present context. If P is connected, and 8 correlates

P with part of itself (so that 8>P G P), C'P will contain terms of three

kinds, (1) those for which S'x = x, (2) those for which (S'x)Px, (3) those

for which xP(S'x). Our propositions result from the non-existence (under

certain circumstances) of maxima or minima of classes (2) and (3).

The following definition defines "correlations of P with parts (or the

whole) of itself." The letters "cror" stand for "ordinal correlation." For

a cardinal correlation, should occasion arise, we should use "cr," i.e. we

should put
cr'a = s'sma"Cl'a Df,

so that S e cr'a . = . S e 1 -> 1 . <J'8 = a . D'S C a.

For the present, we are concerned with the corresponding ordinal notion;

thus we require

8 e cror'P . = . 8 e 1- 1 . <I<£ = C'P . S'>P G P.

This is secured by putting

cror'P = s'smof P"R1<P Df.

It will be observed that if a is what we called a "non-reflexive" class

(cf. *124), cr'a= i
lI\a, and Se cr'a . D . D<S= a. When C'P is non-reflexive,

the same is true of P; and when C'P is reflexive, P is also reflexive, in the

sense that it contains proper parts similar to itself, though if P is well-

ordered, such proper parts cannot be segments of P, but must extend to the

end of C'P.
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The class of correlators of P with the whole of itself, i.e. P smor P, is

a sub-class of cror'P, and is specially important. This class differs widely

in its properties from the corresponding cardinal class. If a has more than

one member, the class asm a (which is the "permutations" of a in the usual

elementary sense) always has more than one member. But the class P smor P
(which consists of such permutations of C'P as keep the order unchanged)

will consist of the single term I [C'P, unless C'P contains classes which have

neither a minimum nor a maximum, in which case there will be many corre-

lators of P with itself. As a simple illustration, take the series of negative

and positive integers in their natural order. Then if v is any one of these

integers, + v is a correlator of the whole series with itself. If we take only

the positive integers, + v is no longer a correlator of the whole series with

itself, since all integers less than v are omitted from the correlate.

The first important use of the propositions of this number is in the

beginning of the theory of well-ordered series (*250). The propositions there

used are

*20841. h:Pe connex . P 2 G J . CI ex'C'P C (I'minp w CFmaxp .

P smor Q . D . (P smof Q) e 1

I.e. if P is connected and asymmetrical, and every existent sub-class of C'P

has either a minimum or a maximum, P and Q cannot have more than one

correlator.

*20842. In the same circumstances, P smor P = i'(I[C'P)

*208'43. h : CI ex'C'P C d'minp . 8 e cror'P . D .~(3#) . (S'cc) Pec

I.e. if every exisoent sub-class of C'P has a minimum, a correlator of P with

part of itself can never move terms backwards. Thus for example, to take

a simple instance, an infinite series consisting of some of the natural numbers

in order of magnitude cannot have its /xth term less than /a.

*20845. h : P 6 connex . CI ex'C'P C (Tramp n CI'maxp . D . Rl'P n Nr'P = i'P

I.e. ifP is connected and every existent sub-class of C'P has both a maximum
and a minimum, no proper part of P is similar to P. This proposition is

important in the theory of finite series and finite ordinals.

*208-46. r : CI ex'C'P C (I'minp . 8 e cror'P .D.C'Pn p'^'D'S = A
I.e. if every existent sub-class of C'P has a minimum, a part of P which is

similar to P must go up to the end of P, i.e. must not wholly precede any

member of C'P.

*208-47. I- : CI ex'C'P Cd'minp . QGP .RlC'Pr>p'*P"C'Q.3.~(Q8morP)

This is an immediate consequence of #208' 46.

The proof of the above propositions proceeds simply by showing that

if £ e cror'P and (S'w) Px, then {8'8'x) P (S'x), so that x is not the earliest
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term for which (S'x) Px, since S'x is an earlier term for which the same
thing holds. Hence & {(S'x) Px} can have no minimum ; and similarly

& [xP (8
lx)} can have no maximum (#208'14). So far we require no hypothesis

as to P. Assuming now P e connex .P*(LJ, we show similarly that if S
correlates the whole of P with itself, fc{(S'x)Piv} can have no maximum and
x {xP(S'x)} can have no minimum.

Propositions about correlators of P with Q follow from the above by
taking two correlators S and T, and applying the above propositions to

S
|
T, which is a correlator of P with the whole of itself.

#20801. cror'P = s'smor P"R1'P Df

#2081. I- : Secror'P . = . Se 1 -> 1 . <!<£= G'P . S'>P dP
Dem.

h . *40-4 . (*208'01) . *15ril . D

\-;SecTor<P. = .(ftQ).QGP.S€l->l.a<S = C<P.Q = S'>P.

[#13-195] = . Se 1 -> 1 . CL'S = C'P . S">P G P : D h . Prop

#20811. r : S e cror'P . D . S>P G P £ D'S

Dem.
\-

. #150-203 . D (- :. Hp . D : x (S~>P) y.D.x.yeWS (1)

I- . #208-1 . D h :. Hp . D : a? (#P)y .D.xPy (2)

!-.(l).(2). Dr. Prop

#208111. h : /Se cror*P . D . D'£= C'S'>P = £"<7<P . T>'S C d<£
[*150-22"23 . #2081 . #33265]

#208-12. h : S

e

cror'P . D . &#P = P.PQS'yP [#151-252-26 . #208*1]

#208-13. h : S e cror-P . (£'«) P# . D . (£<£<(z) P (£•#)

r- . #208-12 . D I- : Hp . D . (S'x) <J3>P) x

.

[#150'41] D . (S'S'x) P (S(x) : D I- . Prop

#208-131. h:Se cror'P . xP (S'x) . D . (S'x) P (S'S'x) [Proof as in #208-13]

#208-14. h : S e cror'P . D . minP<£ {(S'x) Px} = A . maxP'x {xP (S(x)} = A
Dem.

h . #208-13 . #20-3 . D I- :. Hp . 0:xe${(S'x)Px} . O.S'xex{(S'x)Px} .(S'x)Px.

[#37-105] ^.xeP"^{(S'x)Px} (1)

I- . (1) . #24-3 . D r : Hp . D . x {(S'x) Px} - P"x [(S(x) Px} = A.

[#205-11] D . mmP'$ [(S'x) Px) = A (2)

Similarly h : Hp . D . maxP^ {xP (S'x)} = A (3)

r- . (2) . (3) . D r . Prop
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Thus the proof that & {(S'x) Px\ has no minimum, and & {xP (S'x)} no

maximum, requires no hypothesis as to P. The proof that & {($'#) Px}

has no maximum, and & {xP (S'x)} no minimum, requires the hypothesis

P e connex . P*G.J. This proof results from the following propositions.

#2082. \-:Pe connex .P'CJ.Se cror'P . D . P = S">P . S>P = Pt D'S

Dem.

h . *150'41 . D h :. Hp . 3 : a; (&P) y . = . (&<#) P (#'y)

.

[#50-43*45] D . S'x * S'y .~ [(fif'y) P (£'*)} .

[*30-37.*150-41] D.x^y.~{y(S>P)x\

.

[*208l2.Transp] D . x + y .

~

(yPx) (1)

h. #150203

.

Dh:fl;(S;P)y.D.a;,yea'*Sf (2)

I- . (2) . #208*1

.

Dh:.Hp.D:tf(S»P)y.3.a;,ye<7'P (3)

h . (1) . (3) . #202-103 . D h :. Hp . D : a (5>P) y . D . #Py (4)

h . (4) . #208-12

.

Dh:Hp.D.P = SjP (5)

h . (5)

.

D (- : Hp . D . S~>P = S>$P
[#150-38] = P£DSSf (6)

I- . (5) . (6) . D h . Prop

#208-21. \-;Pe connex .P*GJ.Se cror'P . (&'«) Px .xeD'S ,D .xP (S'x)

Dem,
I- . #33-43 . D I- : Hp . D . (S'x) (P £ D'S) x

.

[#208-2] D.(S'x)(S'>P)x.

[#1 50-4 1

J

D . (S'S'aO P (&c)

.

[#72-24] .#3343] D . #P (£'#)OK Prop

#208-211. (-
: P e connex .P*GJ.Se cror'P . «P (S'a;) .a;eD^.D. (£'*) Pa;

[Proof as in #208*21]

#208-22. h : P e connex .P*GJ.Se cror'P . <P& CD'S.D.

maxP<& {(S'ar) Pa;} = A . mia/ifc {a;P (£<#)} = A
Dem.

I- . #33-43

.

D K. HpO : (S'x)Px . D . xe D'S. x e <1'S

.

[#208-21] 0.xP(S'x).xea'S.

[#72-241] D . xp (S'x) .S'x ex {(S'x) Px)

.

[*3M] D.xeP"£{(S'x)Px} (1)

h . (1) . #205-123O K HpO . mtxP<& {(#*) Pa;} = A (2)

Similarly K HpO . min/£ \xP (S'x)} = A (3)

H.(2).(3)OKProp
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Observe that, in virtue of *208'111, the above hypothesis gives
D'S= <T#= C'P, so that SeP smor P. Hence we are led to *208*3.

*208'3. hiPeconnex.psGJ.SePsmorP.D.
—>

~3 ! mmP^ {(S'x) Px) . ~g[ ! maxp<£ {(S'x) Par} .—>

~g[ ! minp'& \xP (S'x)} . <*->g ! maxP'& {xP(S'x)}
Dem.

H.*151'll.*150'23.DI-:Hp.D.-Sel->l.a^ = G(P.^P=P.D^=CP.
[*2081] D.Se cror'P . d'&- D'S (l)

I- . (1) . *208-14-22 . D h . Prop

*208'3l. h^^ePsmorQ.D.SII'ePsmorP [*151131141]

*20832. h : Peconnex .P*GJ.S, TePsTnor Q . D .

~3 ! miV& {(S'T'x) Px] . ~g ! maxP'& {(£'?'#) Ps}

.

~3 ! minP'£ fa?P (S'T'a;)} . ~g ! maxj/d (#P (&'?'#)}

[*208-3-31 . *34-41]

*208-4. h : P e connex . P* G </ . CI ex'C'P C d'minp u d'maxp

.

S,TeP&miQ.O.S**T
Dew.

I- . *208-32 . D r : Hp . D . £ {(£'?'«) Px] = A . £ {#P (£'2*«)} = A (1)

I- . *208-31 . *3441 . D I- ;. Hp . D : x e C'P . D . S'T'a; e OP (2)

I- . (1) . (2) . *202 103. D r :, Hp . D : #e C'P . D . &'T'a? = a:

.

[*72-241] 3.T'x = S'x:

[*150-23] IzxeD'SvD'T.l.T'x^S'xi

[*33'46] D:£=T:.Di-.Prop

*208'41. h : P e connex . P* G J . CI ex'C'P C d'minp v d'maxp

.

P smor Q . D . (P smor Q) e 1

[*208-4.*15ri2.*52-16]

The above proposition is of great importance in the theory of well-ordered

series.

*20842. h : P e connex . P2 G J . CI ex'C'P C d'minp w d'maxP . D .

PslnorP^t'C/^'P)
[*208-4 . *51141 . *151-121]

*208'43. I- : CI ex'C'P C d'minp . S e cror'P . D . ~(;p;) . (S'a?) Pa; [*20814]

*208431. h : CI ex'C'P C d'maxp . 8 e cror'P . D . ~(aa:) . xP (S'x) [*208'14]
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#20844 h : P e connex . CI ex'C"P C a'minP r» a'maxP . 8 e cror'P . D .

S= I[C'P
Dem.

h . #208-43-431 . #202103 . D 1- :. Hp . D : a? e C'P .D.S<x = x.

[*50-14.*357] D .£'# = (/ f C*-P)*« :

[*208-l.*50'5-52] D : a; e CL'S u <I<(I [ C'P) .l.S'x=(I[ ClP)'x :

[*33-45] 3 : 8 = I[ C'P :. D h . Prop

In virtue of this proposition, if P is a finite series, no proper part of P is

ordinally similar to P. (It will be shown later that a finite series is one

in which every existent contained class has both a maximum and a minimum.)

The following proposition gives a more explicit form of the above result.

#208 45. h : P e connex . CI ex'C'P C CPmmP n (Pmaxj, . D . Rl'P n Nr'P= t'P

Dem.

K #208-441. Dr:.Hp.D:Sel->l.a^=CuP.S;PGP. D.S = JfC'P.
[#150534] I).,SSP = P (1)

h.(l).*l312.Dh:.Hp.D:QGP.>Sf e l^l.a^=C"P.Q=^P.D.Q=P:
[#1511] ^ : Q G P . Q smor P . D . Q = P :

[*152l] D : Rl'P n Nr'P C t'P (2)

(-
. #61-34 . #1523 . D h . t'P C Rl'P « Nr'P (3)

r
.
(2) . (3) . D I- . Prop

The following propositions are useful in the theory of segments of well-

ordered series, since they show that a well-ordered series is never ordinally

similar to any of its segments.

#208*46. h : CI ex'C'P C CT'minp . S e cror'P . D . C'P n p^P"D f8 = A

Dem.

1- . #208-1 . D h :. 8 e cror'P . D : x e C'P r» p?P"D'S . D . (&'#) Px :

{Transp] D :

~

{(S'x) Px\.D. #~e C'P nj»'P""D'S (1)

h . (1) . #208-43 . D (- : Hp . D . (a;) . #~ e C'P n jt>'P"D'S : D 1- . Prop

#208-461. I- : CI ex'C'P C CI'minj, . 8 e cror'P . 3 ! P . D . p<*P"D'S = A
[#208-46-1 . #40-62]

#208-47. r : CI ex'C'P CCI'minp . Q G P .g ! C'P n jo<P"CQ. D.~(QsmorP)
Dem.

h . #208-46 . (#208-01) . D

r :. Hp . D : Q G P . £e Q s~mor P.D.C'P np'*P"D'8 = A (1)

I- . (1) . Transp . #15111 . #15023 . D

¥ :. Hp . D - Q G P . a ! C'P np'^'CQ .3.(S).S~eQ smor P .

[#151-12] D. ~(Q smor P):.DK Prop



SECTION B

ON SECTIONS, SEGMENTS, STRETCHES, AND DERIVATIVES

Summary of Section B.

In this section, our chief topic will be sections and segments. This topic

will occupy #211, #212 and #213, and #210 will consist of propositions whose
chief utility lies in their application to segments. In #214, we shall consider

Dedekindian series, which are intimately connected with segments, owing to

the fact that one of the chief propositions in the subject is that the series of

segments of a series is Dedekindian. In #215, we shall consider "stretches,"

which consist of any consecutive piece of a series, and are constituted by the

product of an upper and lower section. Finally, in #216, we shall consider

the derivative of a series, or of a class a contained in a series : the former

is the series of limit-points of the series, i.e. P£ D'ltp, the latter is the class

of limits of existent sub-classes of an C'P, i.e. lt/'Cl ex'(ar» CFP).

A class is called a section of P when it is contained in G'P, and contains

all the predecessors of its members, i.e. a is a section of P if a C C'P . P(ta C a.

Thus a section consists of all the field up to a certain point. It may consist—>

of all the predecessors of x, i.e. it may be of the form P'x\ or again, it may
—

consist of these together with x, in which case it is of the form P'x \j l'x; or

again, it may be not definable by means of a single sequent or maximum,

but be of the form P"a, where a is a class without a limit or maximum.

The class of sections of P is denoted by sect'P. A section of P will be

called an "upper section" of P.

The idea of a segment is slightly less general than that of a section. We
define a segment of P as any class of the form P"a, i.e. as any member of

D'Pe. Provided P is transitive, segments are contained among sections.

But even in a series sections are not, in general, contained among segments:

if P is a series, and if x is a member of C'P which has no immediate
—>

successor, P'x w t'x will be a section but not a segment.

If a segment has a maximum, it must also have a sequent. Segments

which have no maximum form a specially important class of segments : these

are classes a such that a = P"a; they form the class D'(P€ r\ I).

The properties of sections and segments considered as classes of classes

are many and various: they are considered in #211. In #212, we pass to

the consideration of the series of sections and segments. These series are
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P
lo 1 sect'P and Pi ^D'Pe (cf. #170). The series of such segments as have

no maximum is Plc £D'(Pe A /). We put

S<P = Pic[;D<Pe Df,

sgm<P = Plc [;D<(Peni-) Df.

It then appears that

S<P* = sgm<P*=Plc |;
sect'P,

so that it is unnecessary to introduce a special notation for the series of

sections.

Whenever P is connected and transitive, Plc £D'Pe turns out to be

equivalent to logical inclusion combined with diversity (with the field

limited to D'Pe ). That is to say (#212-23),

h:Petransr>connex.D.s'P = a/§{a,£eD'Pe . a C/3 . a=f/3}.

Hence it follows (#212-24) that

h : P# econnex . D . s'P# = aft {a, #e sect'P . a Cft . a^ft}.

We have also (#21 1-6-17)

\- :.P%€ connex .a, fie sect'P .D :aCf3 . v . /3 C a.

Hence it easily follows that whenever P^ is connected, $'P# is a series.

Similarly s'P will be a series if P is transitive and connected.

The fact of connection, which is required in order that s'P or 9'P# may

be a series, results from

a, ft e sect'P .D:«C/3.v./3Ca

or a,/3eD'Pe . D : a C/3 . v . #Ca.

In order to deal with such cases generally, we study, in a preliminary

number (#210), the consequences to be deduced from the hypothesis

a, ft e k . D„
t
p : a C ft . v . ft C a.

We find that, with this hypothesis, putting

Q = $Lft(cL,fte,c. aCft.a^ft),

Q=* Pid tcif kC OVG'P (#210'13), and thus in the same circumstances P
lc £ k

is a series (#210'14).

The interesting point about such series is their behaviour with regard to

limits. Assuming that k is not a unit class (so as to insure g ! Q), if \ is any

sub-class of k, the logical product p'X is the minimum of X if it is a member
of X (#210-21), and the lower limit of X if it is a member of « but not of X
(#210 -

23). Similarly s'X is the maximum of X if it is a member of X
(#210'211), and the upper limit of X if it is not a member of X but is a

member of k (#210-231). Thus if k is such that, whenever X C k, we have

s'X etc, it follows that every sub-class of k has either a maximum or a limit,

i.e. the series Plc £/e is Dedekindian. Now each of the three classes sect'P,

D'Pe, D'(Pe n/) verifies this condition, i.e. the sum of any sub-class of any
one of these classes belongs to the class in question (*211'63-64-65). (This
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holds without any hypothesis as to P.) Hence we arrive at the result that

9*P# (i.e. the series of sections) is a Dedekindian series whenever P^ is

connected and P is not null (*214'32), while s*P (i.e. the series of segments)

is a Dedekindian series whenever P is transitive and connected and not null

(#214"33), and sgm'P (the series of segments having no maximum) is a

Dedekindian series whenever it exists and P is connected (#214 "34). These
propositions are important, and are the source of much of the utility of

sections and segments.

For many purposes, especially in ordinal arithmetic, it is necessary to

consider sections not as classes, but as series. That is to say, if a is a

member of sect'P, we want to deal with P\,a rather than with a. The
series of all such terms as P£a might be supposed to be Pl">s

fP%. But
here a limitation is necessary owing to the fact that, if B lP exists, A and

i'B'P are both sections, and P£ A and P\f
i
lB iP are both A, so that

P£>S (P%. will be a relation which A will have to itself. In order to avoid

this, we first exclude A from the sections to be considered, and thus put

P, = Pti(«*P»)C(-t'A) Df.

Then P s is the series of sections considered as series. Provided Pp0 is a

series, the relation P s holds between any two members Q and R of its field

when, and only when, QQ.R .Q^R. The subject of P s is considered in

#213; the utility of the propositions of this number will not appear until we

come to ordinal arithmetic.

The subject of Dedekindian relations is next considered (#214). We
define a Dedekindian relation as one such that every class has either a

maximum or a sequent. A Dedekindian series must have a first and a last

term, since the first term must be the sequent of A, and the last must be

the maximum of the field. A Dedekindian series may be discrete, or compact

(i.e. such that there is a term between any two, i.e. such that P2 — P), or

partly one and partly the other. A finite series must be Dedekindian: a

well-ordered series is Dedekindian if it has a last term. But the chief

importance of the Dedekindian property is in connection with compact

series. A compact Dedekindian series is said to possess "Dedekindian

continuity"; such series have many important properties. They are a

wider class than series possessing Cantorian continuity; these latter will

be considered in Section F of this Part.

b&w ii 38



*210. ON SERIES OF CLASSES GENERATED BY THE
RELATION OF INCLUSION

Summary of #210.

In the theory of series it frequently happens that we have to deal with

a class of classes such that, of any two, one is contained in the other. I.e.

if k is the class of classes, we have

a, fi e k . Daj p : a C /3 . v . ft C a.

Instances of this are afforded by the various classes of sections, to be

considered in #211. When k fulfils the above condition, the classes com-

posing k can be arranged in a series by the relation of inclusion (combined

with inequality), i.e. by the relation

a£(a,/3e«.aC/3.a4=/3),

or, what comes to the same,

0/§(a,/3eK. a !j9-a).

If P is any relation such that « C Cl'C'P, the above relation of inclusion is

equal to

(For the definition of P
lc , see #170.) Thus under the above circumstances,

Plc [. k is a series, whatever P may be.

The importance of such relations of inclusion, as generators of series, is in

connection with the existence of maxima and minima or limits. If we put

Q = 6£(a,/3e*. a !£-a),

where k satisfies the above condition, then if X C «, and if s'X e k, s(X is the

maximum or the upper limit of X with respect to Q, according as s'X is a

member of \ or not. Similarly if p'X e k, p
eX is the minimum or lower limit

of X, according as p
c\ is a member of X or not. Hence if « is such that the

sum of any sub-class of k is a member of «, every sub-class of « has either

a maximum or an upper limit; and if the product of every sub-class of k is

a member of k, every sub-class of k has either a minimum or a lower limit.

In order that every sub-class of « should have a minimum or a lower

limit, it is sufficient that the sum of every sub-class of /c should be a member

of k. For, if \ is any sub-class of k, consider those members of k which are

contained in p
e
\, i.e.

K P. Cl'jt/X.

Ifp f\e«, the sum of these classes =p'^> an^ ^s ^e l°wer limit or minimum
of k. But if p

l\~ e k, then every member of k which is not contained in

s\k r\ Cl'p'X) is also not contained in p'X, and is therefore not contained in

some member of X. Hence s'(/c r» Cl'p'X) is the lower limit of X.
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It is owing to these propositions that segments of series are of such great
importance in connection with limits.

The hypothesis that if X C k, p'X is a member of /c, will usually fail to be
verified in the case when X = A, since in this case p'X = V. But all the

results desired can be obtained from the hypothesis that, if \ C k, (p'X n s'k) e tc.

This hypothesis is equivalent to the other except in the case of A, in which

case it requires s'k e k, which is much more often verified than Ve«, which

was required by the other hypothesis.

The principal propositions of this number are the following:

*2101. \-::a
> fteK.DatP :ttCft.v.ftCa:.D:.a)fteK.D:aCft.a^ft. = .^lft-a

#21011. h:Q = a,§(a,j8e*.aC£.« + £)O.QetransnRK/

#21012. h:Hp*210*ril.3.QeSer

#21013. h : Hp #21012 . k C QYC'P . D . Q =*

P

lc £ «
—

>

*2102. h : Hp #210-12 . «~e 1 . 3 . min</X = X n « n i'p'(X n *)

*210'21. h : Hp #2102 . X C k . p'X e X . 3 . min</X =p'X

#210211 gives an analogous proposition for s'X and max . We shall not

here mention such analogues, unless for some special reason.

*210'23. h : Hp #2102 . X C * . p'X e * - X . D . p'X = prec</X = tl</X

#210 232. h : Hp #2102 . X C k . p'X e * . D . p'X = liminP'X

#210-251. h :. Hp #210-2 : X C k . D*

.

s<\e/c:D:XC/c.'D.s tXe(ma,XQ tXsJseqQ tX)

#210-252. h :. Hp #2102 : X

C

k . DA . p'X a s'k e k : 3 :

—* —

*

X C k . D . p'X n s'k e (min^X u prec</X) . p'X n s'k = limin</X

#210-254. h : Hp #210-251 . D . (X) . X e (Tmax u d'seq^

#21026. h : Hp #2102 . X C k . p'X~ e X . s'(k a Ciyx) e k . D .

s'(*nCiyX) = precox

#21028. h : Hp #210-2 . s"G\'k Ck.D.
(X) . X e (d'maxQ u <I'seq )n ((Pmin^ u (I

(prec )

Thus if k is a class of not less than two classes such that, of any two of

its members, one must be contained in the other, and if Q is the relation

a C ft . a 4= ft confined to members of k, then Q is a series (#210'12) in which,

provided the sums of sub-classes of k are always members of k, every class

has either a maximum or an upper limit, and every class has either a

minimum or a lower limit (#210'28).

The reader will observe that, if a, ft e k . Da
_ p : a C ft . v . ft C a, any finite

sub-class of k must contain its own sum and product as members. For

example, if we have two classes a and ft, if aCyS, then a=p'(L'av t'ft) and

ft=*s'(i'a ut'/S); if we have three classes a, ft, 7, and aC£.j8Cy, then

38—2
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a=2?'(t'aut r
/S w t'y) and 7 = s

(
(i

(avi (/3ui'7); and so on. Thus the

hypothesis s"CI'/cCac is only required in order to enable us to deal with

infinite snb-classes of «.

#2101. h::«
li8e*.D«,p:aCi8.v. /

8Ca:.D:.a,/8e*0:aCjS.a+i9.s.a!^-a

h.#24-6. Dh:aC/?.a + /3.:>.a!/?-a (1)

K*24-55. Dr:g!/3-a.D.~(/3Ca). (2)

[#22-42] D.a=j=0 (3)

h.#2-53. Dr-:.Hp.a,£€K.~(£Ca).D.aC0 (4)

h.(2).(3).(4).Dh:.Hp.a,/?f*.D: a !/3-a.D.aC/3.a=t=/3 (5)

h.(l).(5).Dh.Prop

#210-11. r:Q = a/?(a,#e*.aC/3.a + /3).:>.Qe trans n Rl<J
Dew.

h . #50-11

.

D h : Hp . D . Q e Rl'J (1)

h . #22-44 . D h : . Hp . D : «Q/9 . /?Q7 . D . a C 7 (2)

h . #24-6 . #21-33 . D h :. Hp . D : ctQ@ . /3Qy .D.gl/S-a./SCy.
[#24-58] D.g! 7 -a.
[#24-21] D.a + 7 (3)

h . (2) . (3)

.

D h : . Hp . D : aQ/3 . /3Qy . D . aQ7 (4)

h . (1) . (4) . D> . Prop

#21012. h:Hp #210-111. D.QeSer
Bern.

h . #10-1 . Dh:.Hp.a^e«.D:aC/9.v.^Ca:
[#5-62] D:aC/3.a^/?.v./3Ca.£+«-v.a=/3 (1)

h . #2133 . D h :. Hp . D : aQ/3 . Da^ . a, £ e « :

[#33-352] D:C"QC«' (2)

h . (1) . (2) . D h :: Hp . D :. a, (3 e O'Q . D : aQ/3 . v . j3Qa . v . a = £ (3)

h . #210-11 . (3) . #204-12 . D h . Prop

#210121. r : Hp #21012 . D . D'Q - * - tV* . CTQ = K - L'p'x

Bern.

h . #21-33 . D h :: Hp . D : . a e D'Q . = : a e « : (g/3) .j3eic.ttC^.a^:
[#210-1] = : a e k : (g£) . £ e « . g ! /3 - a :

[#40-151.Transp] = : a e « . g ! s'tc — a :

[#24-55] =:«eK.~(* (*Ca):
[#22-41.#40-13] =:a€K.a^s cK (1)

h . #21-33 . D h :: Hp . D :. a e a'Q . = : a e * : (g/3) .£e*./?Ca./34=a:
[*210'1] =:oe«:(a/9).

i
Se*.a!a-/8:

[*40-15.Transp] = : a e k . g ! a -p'* :

[#24-55] =:ae*.~(aCp'«):
[*22-41.#40-12] =

: a e « . a ^p'/c (2)

H.(l).(2)Oh.Prop
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*210122. h : Hp #210*12 . *~ e 1 . D . C'Q = k

Bern.

h . #52181 . D h : : Hp . D :. « e * . D : (g/3) . j3 e k . + a :

[Hp.#101] D : (g/9) :/9e«./9=Ha:aC/9.v.y8Ca:

[*21-33] D : (g/3) : /3 e k: aQ{3 .v . (3Qat

[#33-132] l-.aeC'Q (1)

h . #21-33 . D h :. Hp . I) : «Q£ . Da
,

. a, £ e * :

[*33352] D : C'Q C

«

(2)

h . (1) . (2) . D h . Prop

#210123. h : Hp #21012 .*e0vl.D.Q = A
Dew.

h . #52-41 . Transp . D h : Hp . D .~(a«, #) . a, £ e « . «4=/3 ..

[#21-33] D.~(a«,£).aQ£Oh.Prop

#210-124. h:.Hp#210-12.D:aQ/3.=E.a,/3e*.g!/3-a [*2101]

#21013. h : Hp #21012 . * C GVC'P . D . Q = Plc £ *

Dem.

h. #170-102. Dh:.Hp.D:a(Plc ^)/9. = .a )
/3e/c. a !^-a-P"(a- y3). <1)

[#210-124] D . aQ/3 (2)

h . *210-1'124 . D h : . Hp . D : aQ/9 .D.a^e^.gl/S-a.aCyS.
[#37-29] D.a,/3e«.g!/3-a. P"(a - £) - A

.

[*24-23-313] D.a,/9e«-a!y8-a- P"(a - £)

.

[(1)] D.«(Plc |»/3 (3)

h.(2).(3).Dh.Prop

Thus under the hypothesis of #210-1, P,c £ k does not depend upon P, so

long as tc C Cl'C'P. Also we have

#21014. h : Hp #210-1 . k C CVC'P . D . P
lc £ « e Ser

[#210-1213]

#21015. h :. Hp #210-12 . a, /3e « . D :~(aQ/3) . = ./3Ca

[#210-124 . #24-55]

#21016. h::Hp #210-1. Di-

es e k . \ C tc . D : a C p'X . v . p'\ C a : a C s'\ . v . s'X C a

2)em.

h . #101 .Dh::Hp.a€tf.\Ctf-3:.£eX.30:aC£.v.£Ca:. (1)

[#10-57] ^:./3eX.Op.aC/3:v: (g/9) . /3 e X . £ C a :

.

[#40-15'12] Dz.aCp'X.v.p'XCa (2)

h . (1) . #10-57 . D
h::Hp.ae«.XC«.D:./3eX.^./3Ca:v: (3/8) . £ e « . a C £ :•

[#40-151-13] Dr.s'XCa.v.aCs'X (3)

h . (2) . (3) . D h . Prop
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*21017. h : Hp *210'12 . X C k . D .

K - Q"\ = « n Cl'p'X . « - Q"X = ac n 7 (VX C 7)

h . *37'105 .Transp . D r :. ae k- Q"\ . = : a e k : £ eX . Dp .~(£Qa) (1)

h.(l).*21015.D

h ::Hp.D:« ae*:-Q"X.= : ae/c:/8eX.D^.aC/8:

[*40"15] = : a e ac n Cl'p'X (2)

Similarly h :. Hp . D : a e k - Q"X . = . a e k n $ (s'X C 7) (3)

h. (2). (3). Dr. Prop

#210'2. h : Hp *21012 . ac~ e 1 . D . ming^X = X r\ ac n t'p'(X n ac)

Dm,

h . *205"15 . *210122 . D h : Hp . D . minQ
rX = min</(X n *)

[*2051 1]
= X n * - £"(X n ac)

[*210'17] = Xn K n C\*p<(X r\ tc) (1)

r.*40*12.Dr:.tteXn*. D :p'(Xn ac) C a :

[*22'41] 3 : aCp'(X n K). = . a = p<(\ r\ k) (2)

h . (2) .*5-32 . D h .Xn «n Ciy(X r\ K) = Xr\icr\ i'p'(X n ac) (3)

h . (1) . (3) . D h . Prop

Observe that X a ac n t'p'(X n ac) is either t'p'fa n ac) or A, according as

p'(X r\ k) is or is not a member of X n k,

—

>

*210'201. h : Hp *2102 . X C k . D . minQ
(X= X r> t^'X

[*210*2 . *22-621]

#210202. h : Hp #210"2 . D . max</X = Xr\icr\ iV(X n k)

[Proof as in *210'2]
—>

*210'203. h : Hp *210'2 . X C ac . D . max</X = X n i's'X

[*210'202.*22'621]

*21021. h : Hp *210'2 . X

C

k . p'X e X . D . minQ'\ = p'X

[*2 10-201 . *51'31]

#210*211. r : Hp *2102 . X

C

k . s'X e X . D . max</X = s'X

[*210-203.*51-31]

*210*22. h : Hp*21012 . X C k .p<X~eX . D .~g ! minQ
fX

[*210-201-123.*51-211]

*210'221. h : Hp*210'12 . X C k . s'X~eX. D .~g ! max</X

[*210203123 . *5121i]

*210 222. r :. Hp*2102 . X C * . D : p'X e X . = . E ! min^X
[210-21-22]
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*210223. h :. Hp #210*2 .XC*.D:s'XeX. = .E! max</X

[#210-211-221]

*210'23. h : Hp #210-2 . X C k . p'X e k - X . . p'X = prec</X = tlg'X

Bern.

h . #21022 . D h : Hp . D . minQ ' A, = A

.

(1)

[#205-122.#210122] D.XCQ"X (2)

h . (2) . #210*12 . #206-174 . D

h : Hp . . precox- O'Q n&(tya = Q"X)

[#210122] = K na(Q'a= Q"X) (3)

h. #37105. #210*124.3

h:.Hp.D:
y
8 e Q"X. = .(a7).7eX.a!y8- 7 .y8 e /e.

[#40-15 .Transp] = . a ! /? - p'X . £ e k .

[#210124] = .(p'X)Qi3 (4)

h . (4) . D h : Hp . D . p'X e k . Q*p<\= Q"X

.

—

>

[(3)] D. p'X e prec</X (5)

h . (5) . #210'12 . #206*16 . 3 h : Up . D .p'X « precox (6)

h . (1) . (6) . #207-12 . D h : Hp . •}.p'X = t\Q'X (7)

h . (6) . (7) . D h . Prop

#210-231. h : Hp #2102 . X

C

k . s'X e k - X . D

.

s'X = seq</X = \tQ'X

[Proof as in #210*23]

In virtue of #210-21*23, every class which is contained in k, and whose

product is a member of /c, has either a minimum or a lower limit; and in

virtue of #210-211*231, every class which is contained in k, and whose sum is

a member of k, has either a maximum or an upper limit.

*210'232. h : Hp #2102 . X C k . p'X e tc . 3 . p'X = limin
Q'X [*210'21'23]

#210-233. h : Hp #2102 . X

C

k . s'X

e

k . D . s'X = limax
g
'X [*210-211'231]

*21024. h : Hp #2102 . D . k n t'p'ic =~B'Q . « n i's'k = B'Q

[#20512121 .*210-20l*203122]

#210-241. h : Hp #210-2. p'/cetc. D.p'ic = B'Q [#210-24]

#210-242. h : Hp *2102 . s'k e k . D . s'k = B'Q [#21024]

#210-25. h :. Hp #2102 : X C k . DA . p'X e k : D :

X C k . D . p'X e (min^'X w precox)
Bern.

h. #210-21. Dhr.Hp.DiXCtf.p'XeX.D.p'XemnVX (I)

I- . #210-23 . D h :. Hp . D : X C k . p'X~ e X . D ._p'X e precQ'X (2)

h.(l).(2).Dh.Prop
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#210-251. h :. Hp*210'2 : X C k . D* . s'Xe k : D :

—

>

—>
X C « . D . s'X e (max^'X u seq^'X)

[Proof as in #210-25]

#210-252. h :. Hp #2102 :XCit.Dx .|)^ns(«e«:D:

X C «r . D . £>'\ n s'k e (min^X u precox) . p'X r\ s'tc — limin^X,

Dem.

V . #40-23-161 . D V : X C K . 3 ! X . 3 . p'X C s'k .

[#22-621] D.^Xrt S
(«r=_p'X (1)—> —

>

f- . (1) . #210'21-23 .SI-: Hp.XC*.g!X. 3.p<\ns tiee(minQ
t\ uprec</X) (2)

h.#40-2. Dh:~g!X.D.|) (Xrts (^s (« (3)

I- - (3) . #24-12 . D h : Hp . D . s'ie e k .

[#210-242] D.s'k=B<Q.

[#206-14] D . s
ck = prec</A (4)

h . (3) . (4) . D f- : Hp .~g ! X . D .^'X n a'« e (min</X u prec</X) (5)

r . (2) . (5) . Z) h . Prop

This proposition is more useful than #210-25, because its hypothesis is

much oftener verified. In order that the hypothesis of #210"25 may be

verified, we must have V e/c, since A C « ._p'A = V; hence we must also have

s'tc = V. But the hypothesis of #210'252 only requires, as far as A is con-

cerned, that we should have s'k e k.

#210-253. f- : Hp #210-252 . D . (X) . X. e (I'min^ u (PprecQ

[#210-252 . #20515 . #206131]

#210 254. h : Hp #210251 . D . (X) . X e Cl'max^ u d'seq^

[Proof as in #210253]

#210-26. h : Hp #210"2 . X C k . p'\~e X . s'(k n Cl'p'X) e k , D .

s\k r\ OYp'X) = precox.

Dem.

h . #21022 . D I- : Hp . Z) .~g ! min</X

.

[#205-122] D.XCQ"X (1)

h.#60-2. Dhi^e/cnCiyx.D.^C^X:
[#40-151] D h : &\k n Cl'p'X) Cp<\ (2)

h . (2) . D h : Hp . D . s'(k a CYp'X) e k n CVp'X . (3)

[#210-211] D . b\k n CYp'X) = maxQ'(« n Cl'p'X)

[#210-17] = max</(* - Q< <X)

[(1)] = maxc
c(«-\-Q"\)

[#210-122.#202-502.(3)] = m&xQ
t

p
t~Qte\

[*206-l-101] = precox, : D h . Prop
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*210'261. h : Hp #210*2 . X C « . s'X~e X . p'a (a e * . s'X C a) e « . D .

p'S. (a e k . s'X C a) = seqe'X [Proof as in #210-26]

#210-262. h : Hp *210'2 . X C k . s'X~ e X . s'/c np'a{a e k . s'X C a) e k . D .

s'« n 2?'a (a e « . s'X C a) = seq^'X
Dem.

h . *40-23161 . D
h : Hp . g ! a (a e k . s'X C a) . D .

^'a (a e k . s'X C a) C s'k .

[#22-621] D . s'« n /a (ae/c.s'K a) =p (a(«e*. s'X C a)

.

[#210-261] D. s'*r^'a (a e*. s'X C a) = seq</X (1)

h. #10-51. Dh:.a(ae*.s (XCa) = A.D:a£«.Da .~(s'X-Ca) (2)

h . (2) . #210-16 . D h :. Hp . a (a e k . s'X C a) = A . D : a e k . Da . a C s'X :

[#40'151] D:s'*Cs'X:

[#40-161] D:s'k = s'X (3)

h . #40-2 . D h : Hp(3) . D . s'* np fft(ae k . s'X C a) = s'/c

.

(4)

[Hp.(3)] 0. s'X etc.

[*210'231] D.s'X^seqQ'X.

[(3).(4)] D.s^np f«(ae«.s f\Ca)=seqQ
tX (5)

h . (1) . (5) . D h . Prop

The same remark applies to this proposition as to #210'252.

#210-27. h :. Hp #2102 :XC«.^.Ae«:D:
—> —> —

>

—

>

X C k . Da . a ! (max 'X u seq</X) . g ! (min 'X w precQ
rX)

Bern.
—> -

h . #210-251 . D h :. Hp . D : X C * . Da . g ! (max 'X u seqQ'X) (1)

h . #210-222 . D h : Hp. XC* .^'XeX. D . g !min fX (2)

h . #10-1 . D h :. Hp . D : s'(« n Cl'p'X) e* :

[#210-26] D : X C k . p'\~e X . D . g ! precP'X (3)

h.(2).(3). Dh:.Hp.D:XC«. D . g ! (mhVX w prec 'X) (4)

h . (1) . (4) . D h . Prop

#210-271. h :. Hp #210-2 :XC«.D,.p (A,e«:D:

X C « . Da . g ! (max</X w seq</\) . g ! (min^X u precox)

[Proof as in #210-27]

#210-272. h :. Hp #2102 : X C « . Da p'X n a'«

e

k : D :

X C «r . Da . g ! (maxQ'X u seqQ'X) . g ! (min</X u precg X)

[Proof as in #21027, using #210'262]

#210-28. h : Hp #2102 . s"Cl'*

C

« . D .

(X) . X e(Q'maxQ v G'seq^) r\ (d'ming w Q'precQ)
Dem.

h . #37-61 . D h :. Hp . D : X C k . Da . s'X e « :

[#21027] D : X C * . Da . g ! (max^'X u seqQ'X) . g ! (min^X u precQ'X) (1)
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h.(l).*22-43.D
-> ->

h : Hp . D . (X) . a ! (max '(\ n k) u seq^'X r\ *)} .

—* —>
g ! {minQ*(\ r\/c)v prec</(X n «)}

.

[*210'122] D . (X) . a ! [max</(X n C<Q) u seqo'(X n C'Q)}

.

g ! {min</(X n C'Q) u prec</(\ n C'Q)}

.

—

>

—

*

— —

>

[*205-l5-151.*206*131] D . (X) . a i {max</X vj seq</X} . a I {min</\ w prec</\}

.

[#33'41] D . (X) . X e G'maxg v G.
(aeqQ . X e Gaming u G'prece : D h . Prop

*210'281. h : Hp*2102 .p"Cl'« C « . D

.

(X) . X e (G'max<j w G'seqQ) n (G'ming u (Pprec^)

*210282. h :. Hp*2102 : X C k . DK . p'\ n s'tc e * : D .

(X) . X e (G'max<j v CE'seq^) n (G'minQ u G'prec )

Thus when either of the hypotheses of #2 10-281 -282 is fulfilled, the series

Q is Dedekindian both upwards and downwards.

*210'29. h : Hp*210'251 . D .(A.).Xea<limaxP na<liminp [*21Q-28.*207-44]

*210291. h : Hp *210252 . D . (X) . X e d'limaxp n (Tliminp

[*210'282.*207'44]



*211. ON SECTIONS AND SEGMENTS

Summary of #21 1,

The theory of the modes of separation of a series into two classes, one of
which wholly precedes the other, and which together make up the whole
series, is of fundamental importance. When one out of a pair of such classes

is given, the other is the rest of the series; we may therefore, for most
purposes, confine our attention to that one of the two classes which comes
first in the serial order. Any class which can be the first of such a pair we
shall call a section of our series. If P is the series, we shall denote the class

of its sections by "sect'P." If a is a section of P, we shall call OP — a

(which is the second class of our pair) the complement of cu The class of

complements of sections is

(C"P-)"sect'P,

which is identical with sect'P (#211-75).

In order that a class may be a section of P, it is necessary and sufficient

that it should be contained in C'P and should contain all its own pre-

decessors; thus we put

sect'P= a(aC C'P .P«aCa) Df.

We have also, by #90 -

23,

sect'P = a (a = P*"a) (#211-13).

Among sections, a specially important class consists of classes which are

composed of all the predecessors of some class, i.e. classes of the form P"0,
i.e. classes which are members of D cPe . Whenever P is transitive,
ptcpccg c P"y3; hence P<(

/3 is a section according to the above definition.

When P is a series, the complement of P"£ (when /3 exists and is con-

tained in C'P) is

maxP'/9u^P"/3.

The members of T>'P€ are called segments of the series generated by P.

In a series in which every sub-class has a maximum or a sequent,
—

>

D fPe = P"0'P (#211 '38), i.e. the predecessors of a class are always the pre-

decessors of a single term, namely the maximum of the class if it exists,

or the sequent if no maximum exists. But if there are classes which have

neither a maximum nor a sequent, the predecessors of such classes are not

coextensive with the predecessors of any single term. Thus in general the

series of segments will be larger than the original series. For example, if

our original series is of the type of the series of rationals in order of

magnitude, the series of segments is of the type of the series of real numbers
(

i.e. the type of the continuum.
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Among segments, a specially important class consists of those which

have no maximum. In this case, if a is such a segment, we have aCP"a;
and since (provided P is transitive) we also have, for all segments, P tca C a,

the segments having no maximum are those for which a = P"a, i.e. they are

the class T>'(Pe r» I). In compact series, all segments belong to this latter

class, but in general only those segments belong to it which correspond to a

" Haufungsstelle." In all cases in which the existence of a limit is not

known, the segment fulfils the functions of a limit; that is to say, in those

places in the series where a limit might be expected, we have a segment

having no limit or maximum, which takes the same place in the series

of segments as would be taken by the limit in the original series if the limit

existed. Segments having no limit or maximum are limiting points in the

series of segments, and every class of segments which has no maximum in

the series of segments has a limit in that series.

We have thus three classes to deal with, namely

(1) sect'P,

(2) D'Pe,

(3) D'(PeAi).

Of these the second is contained in the first when P is transitive

(#211*15), and the third is contained in the first and second (#211-14). The

second consists of those members of the first which have either a sequent

or no maximum (#211
-

32); the third consists of those members of the first

which have no maximum (#211*41). If every member of the third class has

a limit, i.e. if

D'(Pe A/)C(Tseqp,

then every class has either a sequent or a maximum, i.e. the series is Dede-

kindian; and the converse also holds (#211-47).

When P is connected, of any two sections one must be contained in the

other (#211
-

6). Moreover, if X is contained in any one of the three classes

sect'P, D'Pe, D'(Pe fxI), then s'\ is a member of that class (*211-63-64*65).

Hence the propositions of #210 become available. It is thus that the

existence of limits in series of segments or sections is proved: the maximum
or upper limit of any class X consisting of segments or sections is s

l
X, and the

minimum or lower limit is the sum of the segments that are contained in

every X.

We begin, in this number, with elementary properties of sect'P. The
sections of P are the segments of P* (#211-13) and the sections of Pva

(#211-17). We have

*21126. h . O'P € sect'P . s'sect'P « G lP
We then proceed to the elementary properties of segments, i.e. of D (P€

(#211-3—-38). We have
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#211-3. KP"C"PCD'Pe

#211-301. f-.D'PeD'Pe

*211302. h : P e Ser . D . P"C'P = sect'P a d'seqP

*211351. r : P e Ser . D . sect'P - D'Pe ^P^C'P - D'P,)

We then proceed to elementary properties of segments having no maximum,
t'.e. of D'(P£ A I) (*211 -4—-47). We have

#211-42. V:Pe trans . D . D'(Pe A I) « D'Pe - d'maxP

#211-44. H . A e D'(Pe a J) . A e D'Pe . A e sect'P

#211-451. r :P^eD f(Pe a/). D .«~ea'(P-P0

Our next set of propositions (#2 11 '5
—

'553) is concerned with compact

series, i.e. with the hypothesis P2 = P. We have

#211-51. h : P2 = P . D . D'Pe = D'(Pe a J)

#211-551. H : . P e Ser . D : d'maxp a d'seqP = A . = . P = P2

/.e. a series is compact when, and only when, no class has both a maximum
and a sequent.

We come next to the application of the propositions of #210 (#211*56

—

'692). These propositions proceed from

#211'56. H :. P e connex . a, fi e sect'P . D : a C £ . v . /3 C P"a

(Here "Ppo e connex" may be substituted in the hypothesis: cf. #211'561.)

The propositions of this set, which are very important, have been already

mentioned.

Our next set of propositions (#211-7—"762) are concerned with the

complements of sections and segments. Some of these propositions have

been already mentioned; others of importance are:

#211-7. H : a e sect'P . D . C'P - a e sect'P

#211-703. h : P e connex . a e sect'P - i'C'P . D . a !_p'P"a

#211726. H : P e connex a Rl'/ . a e sect'P . D .

—

>

—

>

—

>

—

>

maxP 'a = precP'(C'P — a) . seqP'a = minp'((7'P — a)

#211-727. t- :. P e connex a El'/ . a e sect'P . D :

E ! limaxp'a . = . E ! liminP'((7'P - a)

#211-728. r :. P e connex a Rl'J" . a e sect'P :~ E ! max/a . v .

~ E ! minP'((7'P - a) : D . limaxP'a = liminP'(C'P - a)
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The remaining propositions are mainly occupied with relation-arithmetic.

The most important of them is

#211-82. h :: P <= Ser . Q e D'P £ . D :.

C'Q e sect'P . = : (aP) .P=Q$R.v. (rx) . P = Q +> a :

= :(%R).P=Q$R.v.P=Q-frB'P
That is, given any series contained in P, if something can be added to

make it into P, its field is a section of P, and vice versa.

#211-01. sect'P = a (a C C'P . P"a C a) Df

#2111. h : a e sect'P . = . a C C'P . P"a C a [(*211"01)]

#21111. h : a e D'P6 . = . (a£) . a = P"/S [*37101]

#211-12. h : a e D'(Pe A7). = .a = P"a
Bern.

h . #37-101 . #501 . D h : a e D'(Pe h I) . = . (g/3) . a = P"£ . a = £ .

[#13195] ee . a = P"a : D h . Prop

#211-13. h : a e sect'P . = . a = P*"a . = . a e D'{(P#)e A 1} . = . a e D'(P#)e

Dem.
h. #211-1. #90-23. D h:ae sect'P. = . a = P*"a (1)

h. #90-17. Dh.P*"P*"£ = P*"/3.

[*1312] D h : a = P*"/3 . D . P#"a = a

:

[#211-11] 3h:aeD'(P#)€ .:>.a = P*"a (2)

h. #10-24 . #211-11 . D I- : a = P#"a . D . aeD'(P#)£ (3)

h . (1) . (2) . (3) . #211-12 . D h . Prop

In virtue of the above proposition, the properties of sect'P can be deduced

from those of D'Pe or D'(Pe f\ I) by substituting P^ for P.

#211131. h : a e sect'P . D . P"a = Pp0
"«

Dem.
h . #211-13 . D h : Hp . D . P"a = P"P*"a
[#91-52] =Ppo"o:Dh.Prop

#211-132. h : a e sect'P . D . D'(P£ a) = D'(Pp0 £ «) . a'(P^ a) = a'(Ppo £ a)

.

C'(Pt;a) = C"(Ppo I:a)
Dem.

h . #37-41 . #211-131 . D h : Hp . D . D'(Pp0 £ a) = a r, P"a
[#37-41] = D'(P£a) (1)

h. #91-502. Dh.a'(Pt;a)Ca'(Ppo t;a) (2)

h. #37-41. Dh:.
2/

e a'(Ppo [;a), = : 2/ e or,Ppo"a:

[*91'57] = :ye(anP"a)w(anP"Ppo"a) (3)

h . #211-1 . D h : Hp . y e a n P"Ppo"a . D . (;js) .zPy.zea.

[#37-105] D.2/eP"o (4)
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h.(3).(4).Dh:Hp.D.a'(Pp0D«)CanP"«.
[*37'41] D.a*(Ppo t:a)Ca

f
(Pt;a) (5)

M2).(5).Dh:Hp.D.a<(Ppo D«) = a<(Pfca) (6)

h.(l).(6).Dh.Prop

#211133. h:P^e connex . a <= sect'P - 1 . D . C'(P£ a) - a

h . #202-55 . D h : Hp . D . C'(P» t a) = a .

[#211-132] D . C"(P£ a) =a : D h . Prop

#21114. h . D'(Pe r,/)C D'Pe . D'(Pe A 2) C sect'P

h . #33-263 . D I- . D'(Pe A 7) C D'Pe (l)

h . #211-12 . #22-42 . D h : a e D'(Pe A J) . D . P"a C a (2)

h . #21112 . #3715 . 3 h : a e D'(Pe A 7) . D . a C C'P (3)

h.(2).(3).*211-l. Z>t-:aeD<(P€ n/).D.aesect'P (4)

h . (1) . (4) . D h . Prop

#211-15. h:Petrans.D.D'Pe C sect'P

Bern.

h . #211-11 . #3715 . D h : a e D'Pe . D . a C C'P (1)

h . #211-11 . #201-5 . D h : P e trans . o e D'Pe . D . P"a C a (2)

h . (1) . (2) . D h . Prop

#21116. h.Ppo"a<= sect'P

Bern.

h . #91-504 . #37-15 . D h . Pw"a C C'P (1)

h . #91-51-511

.

D h . P"Ppo"a C Ppo"a (2)

h. (1). (2). #211-1. Dh. Prop

#211-17. h . sect'P = sect'P^ = sect'P*

[#21113. #90-4. #91-602]

The following propositions are useful in dealing with sectional relations,

i.e. relations of the form P£a, where a e sect'P. Unit sections often need

special treatment, owing to the fact that for them we do not have C'P^ a= a.

#211-18. h : Ppo G J . 3 . sect'P n 1 = i"B'P

Dem.

h . #21113 . D h : a e sect'P n 1 . = . a = P*"a . a e 1

.

—
[#52-1.#53'301] = . (ga) . a = t'# . P#<# = t'#

.

[*91-54.*9012] = .(g^).a=*t'«..^'«Ci'«.fl;e(7'P (1)

h . (1) . D h :. Hp . D : ae sect'P n 1 . = . (gp?) . a= i'x . ~PV0'x = k .xeC'P.

[#91-504] = . (aa?) . a = t'a; . ar~e d'P . x e C'P .

[#93103] ==.aet"i?P:.Dh.Prop
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#211181. h : Ppo e Ser . a ! B (P . D . sect'P n 1 = ( 'l'B'P

Dem.

\- . #20213-523 . D h : Hp . D . ~B'P el (1)

h . (1) . #21118 . *53"3 . D h . Prop

#211182. h : Ppo e Ser . B'P = A . D . sect'P a1 = A [#21118]

#211'2. H : aesect'P. 3 . a=cmC"P=a uP"a=(anC'P) uP"a=P"a wmax/a

I- . #2111 . *22-621-62 .Dh:Hp.D.a = anC"P.a = av P"a . (1)

[#1312] 3.a = (anCT)uP"« (2)

[#205131] = P"a u maxP'a (3)

h . (1) . (2) . (3) . D h . Prop

—

>

#211-21. h : . a e sect'P . D :~g ! maxP'a . = . a e D'(Pe f\ I)

Bern.

h. #211-212. Dh:oeaect'P.~a!maxp'a.D.aeD'(Pc A7) (1)

h . #211-12 . #205111 . D I- : a e D'(Pe n I) . D ,~a ! maxP'a (2)

h . (1) . (2) . D h . Prop

#211*22. f- : P e connex . a e sect'P . D . a w seqP'a e sect'P

Dem.
—

>

—

>

h . #24-24 . #13-12 . D h : Hp . seqP'a = A . D . a u seqP'a e sect'P (1)

h . #20616 . *53-331 . D h : Hp . g ! seq/a . D . P"(a w seq/a) = P"a u P'seqP'a

[#206213] C P"a u (a n C'P) u P"«
[*211'2] Ca (2)

h. #211-1. #206-18. D I- : Hp . D . a u seq/a C O'P (3)

l-.(l). (2). (3). #2111.31-. Prop

—* —

>

#211-23. h : P e connex . a e sect'P . E ! seqP'a. D . a=P"(a u seqP'a)=P'seqP'a

Pern,

h . #206-211 . #211-2 . D I- : Hp . D . a C P'seqP'a (1)

h . #206-213 . #211-2 . D h : Hp . D . P'seqP'a C a (2)

h.(l).(2). 3h:Hp.D.o = P'seqP'a (3)

h . *53-3-31

.

D h : Hp . 3 . P"(a u seqP'a) = P"a u P'seqP'a

[(3)] =P"aua
[#211-2] = a (4)

h.(3).(4).Dh.Prop
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#211-24. h : P e connex . a e sect'P r. (d'seqP u - G'maxP) . D . a e D'PC

Dem.

h . #211-2311 . D H : P e connex . a e sect'P a d'seqP . D . a e D'Pe (1)

h . #211-21-14 . D h : a e sect'P - d'maxP . D . a e D'P€ (2)
I-

. (1) . (2) . D h . Prop

#211 26. h . C'P e sect'P . s'sect'P = C'P
Dem.

h . #22-42 . #3715 . 3 h . C'P C C'P . P"C lP C C'P

.

[*21 l'l] D h . C'P e sect'P (1)

h . (1) . #40-13 . D h . C'P C s'sect'P (2)

h . #40-151 . #211-1 . D h . s'sect'P C C'P (3)

h . (2) . (3)

.

D h . s'sect'P = C (P (4)

H . (1) . (4) . D h , Prop

#21127. h : P e trans . D . (a n C'P) u P"a e sect'P

Dem.

f- . #22-43 . #37-15 . D h . (a ^ C'P) w P"a C C'P (1)

h . #37-22-265 . D h . P"{(o n C'P) u P"a} = P"a u P"P"a (2)

h . (2) . #201-5 . Dh:Hp.D.P"{(onC'P)uP"a} = P"a (3)

h.(l).(3).*211-l.Dh.Prop

#211-271. h : P e trans . D . (g/3) . /3 e sect'P. maxP'a= maxP'/3 . seqP'a=seqP '/9

Dem.
h. #205-15-19. D

h : Hp . D . maxP'a= maxP '{(a n C'P) u P"a} (1)

h. #206131-25. D

h : Hp . D . ^eqP'a = seqP'{(o n C'P) u P"a] (2)

h . (1) . (2) . #211-27 . D h . Prop

#211-272. h :. P e trans. D:

(a) . a e d'maxP u d'seqP . = . sect'P C d'maxP y G'seqP
Dem.

h . #2411 -14 . D h : (a) . ae^maxp u a'seqP . D. sect'P Cd'maxP ud'seqP (1)

h . #33-41 . D h :. sect'P C d'maxP u d'seqP . Z> :

/3 e sect'P . D^ . a ! (maxP'/3 u seq P'yS) :

—

>

—>—»—*
[#13-12] D : /3 e sect'P . maxP'a = maxP'/3 . seqP'a = seqP'/3 . Da> $ .

—

>

—

g; ! (maxP'o w seqP'a) :

[#10-23] D : (g/3) . /3 e sect'P . maxP'o = maxP'£ . seqP'a = seqP'/3 . Da .

—

>

—

>

3 ! (maxp'a w seqP'a) (2)
h. (2). #211-271. D

—

*

—

»

t- :. Hp . D : sect'P C (TmaxP v G'seqP . D . (ot) . g ! (maxP'a u seqP'a)

.

[#33-41] D . (a) . a e d'maxP w d'seqP (3)

h . (1) . (3) . D t- . Prop

B&w II 39
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#211-28. h:.PeSer.aCC"P.a~el.(C"P-a)~el.D:
a e sect'P > = . P = P£ a£P£ (C^P ~ «)

Bern.

h .#204-45 . D h : Hp . aesect'P. D . P = P£ a£P£(C"P-a) (1)

h .#160-1 .#202-55 . D h :. Hp .P = Pta$Pt (C'P - a). D :

xea.y e C'P — a . D . xPy

:

[Transp.#204'3] D : x e a . yPx . D . y e a :

[#2111] D:aesect'P (2)

h.(l).(2).Dh.Prop

#211-281. \-:PeSer.C*QnC'R~A.P = Q$R.3.C'Qesect'P

Dem.
b.*lW-l.D\-:.K-p.0:xeC<Q.yeC'R.3.xPy:

[Transp.*2043] D-.xeC'Q. yPx .D.yeC'Q:

[#211-1] D-.C'Qe sect'P : . D h . Prop

#211-282. h :. PeSer. QeD'Pfc .C'P-C'Q~el . D :

C'Q e sect'P . = . (g;P) . C'QnC'R = A . P = Q£P
[*211'28-281. #20012]

#211-283. h:PGJ.P = Q$R.D.C'QnC'R = A
Dem.

h . #160-1 . D h : Hp . D . C"# t G'R G J"

.

[#200*32] Z> . C'Q p. C'P = A : D h . Prop

The following propositions are concerned with D'P€ . This is to be

compared with two other classes, namely sect'P and P"C (P. The members

of sect'P which do not belong to D'Pe are those which have a maximum but

no sequent, i.e. (if P is a series), those classes which consist of a term x

together with all its predecessors, where x has no immediate successor. In

series in which every term except the last has an immediate successor, C'P
will be the only member of sect'P — D'Pe , if the series has a last term; if

the series has no last term, sect'P = D'Pe .

—

>

The members of D'Pe which are not members of P{iC'P are those that

have no sequent, i.e. those that have no upper limit (for a member of D'Pe

which has no sequent has also no maximum). These are the members of

D'Pe corresponding to a "gap," i.e. to a Dedekind section in which neither

the earlier terms have a maximum nor the later terms a minimum. Hence
^ -> -*

in a Dedekindian series, D'Pe = P"C'P; and conversely, if D'Pe = P"C'P,
the series is Dedekindian. These properties of D'P€ are proved in the

following propositions.

#211-3. 1- . P"C<P C D'Pe [*53'301 . #211-11]

#211-301. h.D'PeD'Pe [#37-25 .#211-11]
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#211-302. h : P e Ser . 3 . P"C'P = sect'P * (FseqP

Dem.

h . *206"4 . D h : Hp . D . ~P"C'P C (PseqP (i)

h . *211-315 . D h : Hp . D . ~P"C'P C sect'P
(2)

h. #211-23. D h : Hp . D . sect'P n (FseqP C P'^'P (3)

h.(l).(2).(3).Dh.Prop

#211*31. h :. P e trans n connex . a e D'Pe . D : E ! seq/a . v .~E ! max/a
[*206'52 . #21111]

—

>

#211-311. h : P € trans n connex . a e D'Pe . E ! seq/a . D . a = P'seqP'a

[#206-31. #21111]

#211-312. h : P e trans n connex . a e T)<Pe . D . a = P"(a u seqP'a)

h . *211-15-23 . D h : Hp . E ! seq/a . D . a = P"(a u seqP'a) (1)

h . #211-31 . Z> h : Hp .~E ! seq/a . D .~E ! max/o

.

[*211-21-15-12] D.a = P"a.

[*24'24.Hp] D . a = P"(a w seqP<a) (2)

f-.(l).(2).Dh.Prop

#211-313. h : a e sect'P n D<Pe . D . (a/3) . £ e sect'P . a = P"/3

Dew.

r-.*2iri'll.Dh:.Hp.D

[#37-265] D
[#22-62] D
[#22-58] D

[#37-15] D
[#211-1] D

:P"aCo:(ayS).a^P"^:

:P"aCa:(a
J
8).^CW1 .a = P"£

:

: (a#) . £ C C'P . a = P"(o u £) :

(H#) ./3CCP. P"(o u/3)Cau^ . o=P"(a w/8):

:(g; /
8).au

/
gCC<P.P <((au

i
S)Cauy3.a=P"(au

/
S):

: (a/9) . a v /3 e sect'P . a = P"(a u £) : . D h . Prop

#211-314. h : P e Kl'Jn connex . a e sect'P r. D'P6 . E ! maxP'a . D . E ! seqP'a

Dem.
h. #211-313. #205-7, D

h : Hp . D . (a/3) . £ e sect'P . a = P"/3 . E ! maxP<£ (1)

h . #37-18 . D

h : /3 e sect'P . a = P"/3 . E ! max/,3 . D . P*maxP</3 C a (2)

h. #2111. #205111. D

h : Hp(2) . P e connex .yeP"/3 . D
.
y e£ - t'maxp'/S .

[#205-21] D . 2/P maxP</3 (3)

h . (2) . (3) . D I- : Hp(2) . Pe connex . 3 . a = P'maxP'/3 .

[#206-4] D . maxP'y3 seqP a (4)

H.(l).(4).Dh.Prop
39—2
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The above proposition and the two following propositions enable us

in certain cases to prove propositions concerning the relations of sect'P

and D'Pe without assuming that P is transitive. An example of the use

of these propositions occurs in #211-754, where the hypothesis assumes

PeRl'/n connex. If we used #211'31 and its consequences instead of

#211-314 and its consequences, the hypothesis of #211 '754 would have to

assume P e Ser.

#211-315. (- :. P e Ul'Jn connex . a e sect'P . D :

a e D'Pe . = . a e G'seqP w — CE'maxp

Dem.
h . #211-314 . D h :. Hp . D : a e D'Pe . D . a e d'seqp w - (TmaxP (1)

h. (1). #211-24. Dh. Prop

#211-316. h -.PeUVJn connex. D ,sect'P-D'Pe = sector. a'maxP-a<seqP
[#211-315 . TranspJ

#211-317. hiPe trans . D . D'Pe = Pe"sect'P

Dem.
\-

. #211-15-313 . D h : Hp . D . D'Pe C Pe"sect'P (1)

h. (1). #37-15. Dh. Prop

#211*32. h : P <? trans r> connex . D . D'Pe « sect'P n (G'seqP u — G'maxP)
[*211-2415-31]

#211-321. h : P e trans r» connex . D . sect'P - D'Pe= sect'P n Q'maxP— (I 'seqP

[#211-32]

#211-33. h : . P e Ser . a e sect'P . D :

a~eD'Pe . 3 . E ! seqP'P"a .~E ! seqP'seqP'P"a
Dem.

h. #211-321. D h :Hp. a~ e D'Pe. D. El max/a. (1)

[#206-35] D.E!seqP'P"a.seqP'P"a=maxP'a (2)

h . (1) . #206-46 . D h : Hp . a~eD'Pe . D . seqP'a= seqP'maxP'a

[(2)] = seqP'seqP'P"a (3)

H . #211-321 . D h : Hp . a~eD'Pe . D .~E !seqP'a

.

[(3)] D .~ E ! seqP'seqP'P"a (4)

K(2).(4). Dt-:Hp.a~ e D'Pe .D.

E ! seqP'P"a .~E ! seqP'seqP'P"a : D h . Prop

#211-34. H :. P 6 Ser . D : a e sect'P - D'P< . = .

—

>

a = P"a u t'seqP'P"a .~E ! seqP'seqP'P"a

h . #211-321 . D h : Hp . a e sect'P - D'Pe . D . E ! maxP'o

.

[#206-35] D . maxP'a =- seqP'P"o

.

(1)

[*211-2] D . a = p«a u t'seqP'P"a (2)
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h . #211-321 . D h : Hp . a € sect'P - D'Pe . D .~E ! seqP'a

.

[#206"46.(1>] D.~E!seqP'seqP'P"a (3.)

h . #20621 . #205-111 . D h : Hp . a = P«a u t'seqP'P"a . D .

seqP'P"a = maxP'a (4.)
—

*

V . (4) . #206-46 . D h : Hp . a = P"a w t'seqP'P"a .~E ! seqP'seqP'P"a . D .

~E ! seqp'a (5)

h . #20618 . #22-58 . D h : a = P"a w t'seqP'P"a . D . a C C'P , P"a C a (6)

h. (4). (5). (6). #211-321. D

h : Hp . a = P"a w t'seqP'P"a .~E ! seqP'seqP
'P"a . D . a € sect'P - D'Pe (7)

h . (2) . (3) . (7) . D h . Prop

#211-35. h : . P e Ser . D : a e sect'P - D'Pe . = .

fax) .xeC'P.a^P'xv i'x.~K I P^x
Dem.

h. #211-34. Dh:.Hp.D:
a e sect'P - D'Pe . = . fax) . x - seqP'P"a . a = P"a ul (^.~E! seqP 'i

lx

[#206-21.#205-lll] = . fax) . x = seqP'P"a . x = maxP'a

.

a = P"a u^.~El aeqp't'x

.

[#206*35] = . fax) . x = maxP'a . a = P"a wi'^.^El seqP't'#

.

—

*

[#205-22] = . fax) . x = maxP'a . a = P'x ul'«.~E! seqP
'
i'od .

[#205-197] = . fax) . x e C'P .a =P^u^.~El seq/t'a;

.

[#20644] = . fax) . x e C'P . a = P'x u t'a .~E ! P/a :. D h . Prop

#211-351. h : P e Ser . D . sect'P - D'Pe = P*"(C'P - D'PO

Dem.

h . #204-7 . #211-35 . D

h :. Hp . D : e sect'P - D'Pe . = . fax) . a <? C'P- D'^ . a = P's u t'#

.

[#201-521] 5 . fax) .xtC'P- D'Pj . = P*'x .

[#37-7] = . a € P*"(C'P - D'P,) :. D h . Prop

#211-36. h:.PeSer.D'P1
= D tfP.D:a € 8ect

fP-D'Pe. = .a=C rP.E!B <P
Dem.

h . #211-351 . D h : Hp . D . sect'P - D'Pf = P#"J3'P (1)

h.(l). #202-52. Dh:.Hp.Di

ae sect'P - D'Pe . = . fax) .x = B<P .ol^^x .

[*204-ll.*201'521] = . face) . x - B'P . a = C'P

.

[#14-204] = . a ~ C'P . E ! B'P :. D h . Prop
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#211-361. h : P e Ser . B'P, = C'P.D. sect'P = D'Pe

Bern.

h . *201-63 . Z> H : Hp . D . B'P, C D'P .

[#93-103] D.i?<P = A (1)

h . (1) . #211-36 . D h : Hp . 3 . sect'P - D'Pe = A (2)

K (2). #211-15. Dh. Prop

#211-371. h :. P e trans n connex : (a) . a e G'maxP u d'seqP : D . D'Pe C G'seqP

[#211-32]

#211-372. h :. P e trans n connex : (a) . a e (FmaxP w d<seqP : D

.

D'Pe = P"ClP
Dem.

V . #211-371 . D h :. Hp . 3 : a e D'Pe . D . E ! seqP'a

.

[*206'3.*211-1-15] D.a = P^seqP<a.

[#206-18] D.aeP"C'P (1)

h. (1). #211-3. Dh. Prop

#211-38. h :. P e Ser . 3 : (a) . a e <I<maxP u d'seqP . = . T>'P€ = P"C"P
Dm.

h . #211-11 . D h :. D'Pe = P"C"P . = : (#) : (^) . P"# = ?# . a eC'P (1)

h. #206-174. #205-111. D

h : P <= Ser .

~

3 ! max/# . D . seqP</3 = C lP nx (P"£ = PV) (2)

h . (1) . (2) . D h :. P e Ser . D'Pe = P"C'P . D :~a ! nmx/yS . D . a ! seq/yS :

[#33-41] D : £ e (TmaxP u d'seqP (3)

h . (3) . #211-372 . D V . Prop

The following propositions are concerned with D*(Pe n J), i.e. with those

sections of P which have no maximum. If P is compact (i.e. if P* = P),

D'(P£ rt/) = D'P€ . If P is also a Dedekindian series, D'(Pe nl) = P" ClP.

This is the mark of Dedekindian continuity, since it states that, if P(ta has
—*

no maximum, there is an x for which P"a = P'oc, and this x is the upper
—

>

limit of P"a; while conversely, if cc is any term of C'P, P'x has no

maximum, so that the series is compact.

#211-4. h . D'(Pe a /) C - (TmaxP
Dem.

h . #211-12 . D h : a e D'(Pe r^I).^.a- P"a = A .

—

>

[#205-111] D . maxP'a = A : D h . Prop

#211-41. h . D'(P€ n I) = sect'P - d'maxP
Dem.

h. #2111. #205-111. D
h : o e sect'P - d'maxP . ~ . a C C'P . P"a C a . a C P"a

.

[#22-41] =.aCC*P.a = P"a.
[*37-l5.*211-12] = . a e D'(Pe A 7) : D h . Prop
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#211-411. H : P e trans . a = P"/3 . a C P"a . 3 . a = P"a

Z)em.

h . #30-37 . D h : Hp . D . P"a = P" P"/3

[*201'5] CP"/S

[Hp] Ca (1)

K (1) . *22'41 . D h : Hp . 3 . a = P"a Oh. Prop

*21142. h : P e trans . D . D'(Pe n 7) = D'PC - (FmaxP

Dem.

K #21114-4. :>h.D'(P 6 n7)CD fPe -(FmaxP (1)

h . *211-411-11 . #205-111 . D h : Hp . a e D'Pe - (FmaxP . D . a eD'(Pe n 7) (2)

h . (1) . (2) . D h . Prop

#211-43. h : P e trans n connex . 3 . D'Pe - CI fseqP C D f(Pe A 7)

Dem.

h . #211*312 . D h :. Hp . D : a

e

D'Pe . seqP'a = A . D . a = P"a

.

[#211-12] D.aeD'(P e rS7):.Dh.Prop

#211*431. h : P e trans n connex . D .

D'Pe - D'(Pe n 7) = sect'P n (FmaxP a (PseqP
[*211'32-41]

#211-44. h . A e D f(Pe A 7) . A e D'Pe . A e sect'P

[#37-29. *211-12-14]

#211-45. h : P e trans . #~e <I<(P-P2
) . D . P*x e D'(Pe n 7)

h . #201-501

.

D h : Hp . D . P<<P<x C P'a (1)

r . #33-41 . #32-3-34 . D h : Hp . D . P'a - P"~P cx = A (2)

K(l).(2). Dh:Hp. D.pWP"P<a (3)

h.(3V*211-12.Dh.Prop

#211451. h : P<x € D'(Pe n 7) . D . a~<- d<(P---P2

)

7)em.

h . #21112 . D t- :. Hp . D : P'a = P»P<#

:

[#37-3] D : yP# .
=
y . yP*x :

[#10-51] 3 : ~(ay) . 2/P#

.

~(yP*x) :. 3 h . Prop

#211-452. h :. Pe trans . 3 : P'x

e

D'(Pe A 7) . = . a~ea<(P^P2
)

[*21145-451]
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*211'46. h : . P e trans n connex : (a) . a e d smaxp v-» (Fseqp : D .

D'(Pe rx I) = P"{6?'P - (I'CP^P2
)}

7)em.

h . *211-452 . D h : Hp . D . P"{(7<P- <3'(P-^P2
)} CD'(Pe A 7) (1)

h.*211-37214.D

h :. Hp . D : a e D'(Pe A 7) . D . (a#) . x e C'P . a = ~?<x . P<£ e D'(P, A 7) .

[*211-452] D . (a#) . a e <7<P . a- P<#

.

oc~e a^P-^-P2
)

.

[*377] D.aeP"{(7<P-<I<(P^P2

)} (2)

h . (1) . (2) . 3 r . Prop

*211'47. h :. P e trans . D : (a) . « e (FmaxP w (Fseqp . = . D'(Pe n 7) C d'seqp

Dem.

h.*211272.*24'43.3

h : . Hp . D : (a) . a e (FmaxP w G'seqp . = . sect'P — G'maxp C (Fseqp

.

[*211-41] = . D f(Pe n 7) C (Pseqp :. D h . Prop

The following propositions are concerned with certain consequences of the

hypothesis P2 = P. This hypothesis is important because it is the defining

characteristic of compact series.

*211-5. h:P2 = P.a=P"/S.D.a = P"a
Dem.

h . *37'33 . D h : Hp . D . P"/9 = P"P"&

.

[Hp.*13-12] 3 . a = Pa« Oh. Prop

*211-51. h:P2=P.D.D fPe = D <(Pe n7) 02115-1M2]

Thus in compact series there is no distinction between the two sorts

of segments.

*211*52. h : . P2 = P . P € connex . D : E ! maxPfa . D .~E ! seqP
fa

Dem.

r . *206-5 . D h : P2 C P . P e connex . E ! maxP'a . E ! seqP'a. D . g ! (P-t-P*) (1)

h . (1) . Transp . D h : P*2 =P . P <= connex . E ! maxp'a . D .~E ! seqP'a

:

D h . Prop

*211-53. h :: P*= P . P e connex . D :. E ! maxP'a . v . E ! seqP'a : s :

E ! maxp'a . = .~E ! seqp'a

Dem.

h . *4-64 . D h :. E ! maxP'a . v . E ! seqP'a : = :~E ! seqP'a . D . E ! maxP'a (1)

K*4-73.*211-52.D
h :: Hp . D :.~E ! seqP'a . D . E ! maxPfa : = : E ! maxP'a . = .~E ! seqP'a (2)

h.(l).(2).Dr.Prop

The condition (a) : E ! max/a. = .~E Iseqp'a is the Dedekindian defini-

tion of continuity. In virtue of the above proposition, this is equivalent, in

a series, to compactness combined with Dedekind's axiom, namely

(a) : E ! maxp'a . v . E ! seqP
f
a.
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#211-54. h :. P G J : a ! max/a . Da .~a ! seqP'a O.PGP2

—

>

h . *10'1 . D h : . Hp . 3 : a ! maxPft*x . D .~a ! seq/i'a :

[#205-18] D:#eC"P.:>.~3!8eqp<t<a:.

[#206*42] D.~a!P-^P2f
ic.

[#33-4] D.«-~eD'(P-LP2

) (1)

h . #33-263 . D h : x~eC'P . 3 . a~eD'(P-P2
) (2)

h . (1) . (2) . D h : Hp . D . D'(P-P2
) = A

.

[#33-241.#25-3] D .P GP2
: D h . Prop

—

>

-*
#211-541. h : . P e Rl'J" n trans : 3 ! maxP'a . Da .~a ! seq/a :D.P = P2

Dem.
h. #201-1. Dh:Hp. D.P*GP (1)

h.#211*54.3h:Hp. 3. PGP2
(2)

h . (1) . (2) . D h . Prop

#211-55. h :: P 6 Ser . D :. g ! mtx/a . Da .~a ! seq/a : = .P = P*

[*211'52*541]

#211-551. h :. P € Ser . D : <PmaxP n (PseqP = A . = . P =P2

[#211-55. #33*41]

#211-552. h :: P e Ser . D :. E ! max/ec . =a .~E ! seqP'a : =

:

P = P2
: (a) : E ! maxP<a . v . E ! seqP'«

[#211-55]

#211-553. h :: P e Ser . D :. <3<maxP = - <I<seqP . = :

P = P2
: (a) . are (PmaxP w (FseqP

[#211-552 . #71-163]

The following propositions are concerned in showing that sect'P, D'Pe,

and D f(Pe r\ I) all verify the hypotheses of #210, if taken as the k of that

number.

#211-56. h : . P € connex . a, c sect'P . 3 : a C j3 . v . C P"a

h . #211-2 . D h :. Hp . a ! a -£ . 3 . a ! a * C'P-p- P"/3 .

[#202-501] D . a ! « r\p?P"$ .

[#40-682] D.|8CP"a (1)

h . (1) . #24-55 . D h . Prop

#211*561. h :. Ppo e connex . a, € sect'P . 3 : a C £ . v . /3 C P"a
[#211-56-17*131]

#211*562. h:.Ppo econnex.a,£esect'P.D:aC/3.v.£Ca [*2ir56M]

#211-6. h:.Peconnex.a,£esect'P.D:aC£.v./3Ca [#211*56-1]
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#211*61. h :. P * trans n connex . a, e D'Pe ."):aC^.v./3C«

[*21 1-15-6]

*21162. h:.P € connex.a,/3 e D'(P€ n/).:>:aC/3.v.£C a [*211\L4-6]

In the hypothesis of #211-61, it is necessary that P should be transitive

as well as connected. Take, for example,

P = x],ywy\
f
zwz],x (x^y .x^ z .y^z).

Then P is connected, but not transitive; also we have

P'y = i
(x . P (z = t'y.

Hence i'x, i'ye D'Pe .~(t'£cC t'y).~(fc (
y C l

f
x).

Thus connection is not sufficient in the hypothesis of #211-61.

#211-63. h:XC sect'P .D.s'Xe sect'P

Dem.
h . #2111 . D h :. Hp . D : aeX . Da . a CC'P :

[#40151] Dzs'XCC'P (1)

h . #2111 . D h :. Hp . D : a e X . D tt
. P"a C a :

[#40-8] D : P"s'X C s'X (2)

h. (1). (2). #211*1. Dh. Prop

This proposition shows that sect'P verifies the hypothesis of #210-251,

with the exception of seet'P~el, which requires g ! P.

#211-631. h : X C sect'P . "D .f>'X r> C'P e sect'P

Dem.
h. #22*43. Dh.p'X n C'P CC'P (1)

h . #2111 . D h :. Hp . D : a eX . Da . P"a C a

:

[#40-81] 3:P tCp'\Cp'\:

[#37-265-15] 3 : P"(p'X n O'P) Cp'X n C'P (2)

h.(l).(2).Dh.Prop

#211632. h : X C sect'P . g ! X . D . _p'\ e sect'P

Z>em.

h . #40-23 . D h : Hp . D . p'X C s'X

.

[•211-631] D.|)'XC(7'P (1)

h.(l). #211-631. Dh. Prop

#211-633. h:XCsect'P.D.^'Xns'sect'Pe sect'P [#211-631-26]

This proposition shows that sect'P verifies the hypothesis of #210-252,

with the exception of sect'P~e 1, which requires g ! P.

*211'64. h : X C D'Pe . D . 8'\ e D'Pe

Dem.

h . #72-504 . D h : Hp . D . s'X = s'Pe"P/'X

[*40-38] = P"s'Pe"X (1)

h. (1), #211-11. Dh. Prop
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#211-65. h : \ C D'(Pe n /) . D . s<\ e 3>(Pe " i)

2)em.

h . #21112 . D h :. Hp . D : a e X . 3 a • « = -?Va :

[#5017] D:\ = P e"X:

[#40-38] D:s'\ = P'V\:
[#21112] D : s'\ e D'(P, n /) :. D h . Prop

*2H'66. h : a ! P . D . sect'P, D'P e~ e 1

Z)em.

h . *211'44'26

.

D h . A, <7'P e sect'P (1)

K#33'24. Dh:Hp.D.A + C"P (2)

h . (1) . (2) . #5241 . D h : Hp . D . sect'P~e 1 (8)

I- . #211-44-301 . ^hiHp.D.A.D'PeD'Pe (4)

h.*33*24. Dh:Hp.D.A + D'P (5)

h . (4) . (5) . *52'41 . 3 h : Hp . D . D fP,~e 1 (6)

h . (3) . (6) . D h . Prop

#211-661. h:Pe trans, a ! Clex'C'P - d'maxp . D . D'(Pe n 7)~el

Dem.

h . #205-111 . D h : ae CI ex'C'P -<PmaxP . D . a ! a . a

C

C'P . a C P"a

.

[*24-58.#372] D . a ! P"a . P"a C P"P"a (1)

h . (1) . #201-5 . D

b : . P e trans . D : a « CI ez'C'P - (I'maxp . D . P f 'a = P (tP"a.Rl P"a

.

[#211-12] D . P«a € D'(Pe n /) . a ! P"a .

[#1024] D
.
a ! D f<7\ n/)- t'A (2)

h. <2). #21 144. DK Prop

The following propositions sum up the above results in relation to the

hypotheses of #210. The relation Pl0 with its field limited to sections or

segments, which occurs in the following propositions, is important, and will

be considered at length in the following number.

#211-67. h : P € connex . k = sect'P . Q = Plc £ « . 3 . Hp #2101

2

[#211-6. #210-13]

#211-671. b : P e connex . k = sect'P . Q - Plc £ * . a I P ^
Hp #210251 . Hp #210252 [*211*67'66-63-633]

#211-68. h : P e trans n connex . * = D'P€ . Q = Plc £ * . D . Hp#21012
[#211-61. #210-13]

#211-681. V-.Pe trans n connex . * = D'P€ . Q = P,c fc
* . a IP 3 • Hp #210-251

[*211 '68-66-64]

#211-69. h : P e connex . k = D'(Pe n I) . Q = Plc £ a; . D . Hp #21012

[#211-62. #210-13]

#211-691. I- : P e connex . k = D'(Pe A i) . £ = P,C C> . D'(Pe A i)~e 1 . D .

Hp #210251 [#211-69-65]
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#211-692. h : P e trans a connex . k = D f(Pe n /) . Q = Plc £ *

.

g ! CI ex'C'P- d'maxp . D . Hp #210-251 [#211-691-661]

The following propositions are concerned with the relations of sections

and segments of P to sections and segments of P. When a e sect'P,

G'P — a e sect'P, and vice versa. Also, if P is connected, the maximum
of a (if any) is the precedent with respect to P (i.e. the sequent with respect

to P) of CfP — a, and the sequent of a (if any) is the minimum with respect

to P (i.e. the maximum with respect to P) of C fP — a. Hence the relations

to be proved follow easily.

#2117. h : a e sect'P . D . <7'P - a e sect'P

Dera.

h. #22-43. Sh.C'P-aCC'P (1)

h . *211\L . #371 . D h :. Hp . D : x e a . yPx . 3 . y e a

:

[Transp] D : # e a . y~e a . D .<-^>(yPx) :

[#37-1.Transp] D : « e a . D . a;~eP"(- a) :

[*37-265] D : a C - P"(C fP - a)

:

[Transp] D : P"(C"P - a) C - a :

[*37-15] D:P"(C"P-a)CC"P-a (2)

h. (1). (2). #211-1. Dh. Prop

#211-701. h : a e sect'P . E ! maxP'a . D . p'P"a C P'maxP'a C C'P - a

' h.#40'12. Dh:Hp.D.p'P"aCP'maxP'a (1)

h . #205101 . D h : Hp . 3 . maxP'a~eP"a

.

[*37-l.Transp.#32181] D . P'maxP'a C - a

.

[#33-152] I>.P<maxP'aC<7'P-a (2)

H . (1) . (2) . D h . Prop

#211-702. h:Peconnex.aesect'P.D.C"P-aCp'P"a [#202-501 . #2111]

#211-703. h : P e connex . a e sect'P - t'C'P . D . a lp'P"a
[#211-702-1. #24-58]

*211'71. h : P e connex . a e sect'P . E ! maxP'a . D .

p'P«a = P'maxP'ec = C'P - a

* h. #202-501. *211-2.Dh:Hp.D. C'P- a Cp'P"a (1)

h . (1) .#211-701 . D I- : Hp . D . C'P- a=^>'P''a (2)

I- . (2) . #211-701 . 3 h : Hp . D . P'maxP'a C^'P"a

.

[#211-701] D.P'maxP<a=p'P"a (3)

h.(2).(3).Dh.Prop
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If a is a section of P, we shall call C'P — a the complement of a. By the

above proposition, if a is a section of P having a maximum, its complement

is a section of P which is a member of P"C'P.

#211-711. h : P e connex .PCJ.ae sect'P . D .

a = C'P -jo<P"a . C'P ft p<P"a = C'P - a [*202'503 . #211-2]

#211-712. h : P6Connex.o6sect <P.E!minP f(C"P-a).D.a=P fminp <(0'P-a)

Dem.

h. #21171 ^.3

h : P € connex . £ e sect'P . E ! min//3 . D . P<minP </3 = C'P - £ (1)

h . #211-7 . #24492 . D h : a e sect'P . £ = C'P - a . D .^esect'P. a=C'P-0 (2)

h.(l).(2).D!-.Prop

#211-713. h:P € connex. a e sect'P -D'P .D.EImax/a.^Elmin^C'P-a)
Dem.

r . #211-24 . Transp . D h : Hp . D . E ! maxP'a (1)

r . *211-7123 . D h : P e connex . a e sect'P . E ! minP'(C'P - a) . D . ae D'Pe (2)

h . (2) . Transp

.

D h : Hp . D .~E ! minP'(C'P - a) (3)

h . (1) . (3) . D h . Prop
—> —>

#211714. h : P e connex . a e sect'P . D . seqP'a C minP'(C'P — a)

Dem.

b . *206'18-2 .Obicce seq/a . D . x e C'P - a (1)

h . #206-134 . D I- : x e seqP'a .l.P'xC C'P -p'P"a (2)

h. (2). #202-501. #211-2. D

h :. Hp . D : ic e seqP'a . D . P'# C a

.

[#37462] D.a~«=P"(C'P-a) (3)

h. (1). (3). #205-11. Dh. Prop
—

>

—

»

The above hypothesis is not sufficient to secure seqP'a = minP'(C'P — a),

as may be seen by putting

P = a f (a u itx
)> where g ! a . #~e a.

We then have P e connex . P"a = a . C'P - a «= t'a?

.

p
lP"a = »ut («. Thus

minP'(C'P — a) = t'# . seqP'a = A. It will be seen that o|(au i
fx) e trans, so

that it is useless to add P e trans to the hypothesis of #211-714. A sufficient

addition is P G J, as is proved in the following proposition.

#211'715. h : P e connex a Rl fJ" . a e sect'P . D . seqP'a = minP'(C'P - a)

Dem.

h. *2Q5U. Dh :xmmP (C'P- a). D.xe C'P -a.~P'xn (C'P -a) = A (1)
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h. (1). #33-152. #21 1-2.D

h : . Hp . D : x minP (C'P - a) . D . x e C'P - a - P"a . P fx C a .

[*202-501] D.X€C'Pnp'P"a.P'xCa.

[*200"5] D . x e G'P n p'P"a . P'x C -p'P"a .

[*37-l .Transp] D . as e C'P * |>'P"a - P"p'P"a .

[#206-11] D.icseqP a (2)

h. (2). #211-714. Dh. Prop

#211-72. h : P e connex . a e sect'P - D'Pe . D .

C'P-a = P''(C'P-a).(7'P-aeD'{(P)e n/} [*211-21-7'713]

#211-721. h : P € connex . a e sect'P r\ (G'maxp u CL'seqP) . D .

— —

>

seqp'a = minp'(C"P — a)

Dem.

h. #211-71. Dh:P 6 connex.aesect fPna <maxP .D.j9 fPaa=C"P- a.

[#206-13] D.s"e^ya = rmnP f(C"P-a) (1)

h. #211-714. D
—

>

—

>

h :. P e connex . a e sect'P . D : seqp'a C minp'(C"P — a)

:

[#205-3.*206-16] Dig! seq/a . D . seqP'a =mmP
c(C<P - a) (2)—

>

—

>

h . (2) . D h : P e connex . a e sect'P n Cl'seqp . D . seqP'a = minp'(C"P - a) (3)

h . (1) . (3) . D h . Prop

*211'722. h : P e connex . a e sect'P . E ! maxP'a . B ! seqP'a . D .

maxP 'a = precp'(CP — a)

Dem.

I- . #211-721-7 . 3 h : Hp . D . C'P - a e sect'P . E ! minp'((7'P - a)

.

*211-721
P
p
G 'P ~*

\
^ preV(C'P - a) = m^xp'[C'P - (C'P - a)}

[#24-492] = maxP'a
[Hp] = t'maxP'a Oh. Prop

We have always, if P e connex . a e sect'P,
—> —

>

precp'(C"P — a) C maxp'a.

The converse inclusion does not always hold, as appears (on writing P in

place of P) from the note to #211-714. To secure the converse implication,

it is sufficient to assume P G J or E ! seqp'a or ~E ! maxp'a.

#211-723. b : P € connex . a e sect'P . D . preCp'(C"P - a) C mip'a
Dem.

h . #202-11 . #211-7 . D h : Hp . D . P e connex . <7'P - a e sect'P

.

I #211-714 p .#205-102.*206-10ll D . precP'(C"P- a) C max/a : D h . Prop
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#211724, h : P e connex . a e sect'P n (<I'seqP w - (I'maxP) . 3 .

—

>

—>

maxp'a = preeP'(C"P — a)
Dem.

h . #21 1-722 . D h : P e connex . a e sect'P n d'seqP r» d'maxP . 3 .

—

»

—

>

maxP'a = precP'(C"P — a) (1)

h . #211-723 . #24'13 . D h : P e connex . a e sect'P - d'maxP . D .

—> —>
maxp'a = precP'(C"P — a) (2)

h. (1). (2). #22-91. Dh. Prop

#211-725. h : P e connex . a e sect'P n d'seqP . D .

maxp'a = precP'(C"P - a) . seqP'a = minP'(C"P - a) [*211721'724]

#211-726. h : P e connex n Rl'J . a e sect'P . D .

—

>

—> —

>

—

>

maxp'a = precP'(C"P - a) . seqP'a = minP'(C"P — a)

Dem.

h .#200-11 . #20211 .#211-7 . D h : Hp.D.Peconuex ARl'J\C"P-aesect'P.

[*211-715.#205102.#206101] D . precP'(C"P - a) = maxP'a (1)

h.(l). #211-715. Dh. Prop

#211-727. hz.Pe connex a Rl'J . a e sect'P . D :

E ! limaxP'a . = . E ! liminP'(C"P - a) [*21 1*726 . *207"44]

#211-728. h :. P e connex nBYJ.ae sect'P :~E ! maxP'a . v .

~E ! minP'(C"P - a) : D . limaxP'a = liminP'(C"P - a)

Dem.

h . #211-726 . *207'4312 . D h : Hp .~E ! maxP'o . D .

—

>

—

*

limaxP'a = minP'(C"P — a)

[*207-46.*2H-726] = liminP'(C"P - a) (1)

Similarly h : Hp .~E ! minP'(C'P - a) . D . HmaxP'a = liminP'(C"P - a) (2)

h . (1) . (2) . D h . Prop

#211-729. h : P e connex n Bl'J. a e sect'P - (<I'maxP a d'seqP) . D .

limtxP'a= liininP'(C"P - a) [#211-728-726]

#211-73. h : P e connex . a e sect'P - D'(Pe n I) . D .

C'P - a € D'{(P)e AT}- d'precP v {sect'P - D'(P).}

Z)em.

h . #211-21 . D h : Hp . D . a e sect'P - d'maxP .

[#21 1-7-723] D . <7'P - a e sect'P - d'precP .

[#2441] 3 . C'P - a € (sect'P - d'maxP - <3'precP) w

(sect'P n (I'maxP - d'precp) .

[#211-31-21] D . C'P - a e (D'(P), n /} - d'precP w {sect'P- D'(P), }

:

D h . Prop



624 SERIES [part v

*211'74. h : P e trans a connex . a e D'P e - D'(Pe n 7) . 3 .

C'P-ae D'(P)e - D' ((P)e a 7}

Z>em.

h . *21 1-431 . D h : Hp . 3 . a e sect'P a <2'maxP a d'seqp

.

[*211-7725] D . C'P - a e sect'P a d'precP n d'minp .

*211431 ~ D.C'P-ae D'(P)e - T> ({(P)e n 1) : D b . Prop

The following propositions sum up our previous results.

*21175. h:.aCC'P.Q = P.D:a6sect'P. = .<7'P-aesect<Q [*2117]

*211'75L h:.P e Ser.aCC'P.Q = P.D:
a e D'Pe . s . C'P - a e sect 'Q n (d'maxQ u - d'seqe)

h . *211'32 . 3 h :. Hp . D : a e D'Pe . = . a e sect'P n (d'seqP u - d'maxP)

.

[*211-75'726] = . C'P - a e sect'Q a (d'maxQ u - d'seqp :. D h . Prop

In the above proposition, "P etrans" is necessary in order that D'Pe

may be contained in sect'P, and "PeRl'J" is necessary in order that

"(C'P — a)~ed'seqg" may imply "a^ed'maxp." Hence the full hypothesis

"P <? Ser" becomes necessary.

*211-752. bi.Pe connex . a C C'P .Q = P.D*.

a e D'(Pe a 7) . D . C'P - a e sect'Q - d'seqe
Bern.

h.*211-41. Dh:aeD'(Pe n7).s.ctesect'P-d'maxp (1)

V . (1) . *211-7-723 . D h : Hp . a e D'(Pe a I) . D .

C'P - a e sect'Q - d'seqg : ih . Prop

*211-753. b : . P e Rl'J a connex . a C C'P . Q = P . D :

aeD'(Pe A 7). == . C'P -a <= sect'Q - d'seqe [*211*41-7'726]

*211754. h :. P e Rl'/ a connex . a C C'P . Q = P . D :

a e sect'P - D'Pe . s . C'P - a e D'(Q£ n/)n d'seqg
7)em.

h.*211-316.D

h :. Hp . D : a e sect'P - D'P e . = . a e sect'P r> (CT'maxp n - d'seqp) .

[*211-7'726] = . C'P - a e sect'Q a (d'seqQ a - d'max c ) .

[*211'41] =.C'P-ae D'(& a 7) n d'seq^ :. D h . Prop

*211-755. h.Pe trans a connex . a C C'P . £ = P . D :

a e D'Pe - D'(Pe n 7) . = . C'P - a e D'Qe - D'(Qe n 7) [*211'74]

*211'756. h :. P e Rl'J a connex . a C C'P . Q = P . D :

a e sect'P -D'(Pe a 7). = . C'P- a esect'Q a d'seqQ [*211-41-7-726]
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#211757. h :. Pe Ser. a C C'P. I):

a « sect'P - D'(Pe n /) . = . C'P - a e P"C'P [*211-756'302]

#211 76. h : P € Ser . 3 . D'Pe ~ (C'P -)"(sect'P- d'tlP)

7>em.

1- . #20713 . Transp . D h . - CFtlP = (FminP u - (FseqP (1)

h . (1) . #211-751 . D h :. Hp . D : a e D'Pe . = . a C C'P . C'P -ae sect'P- Cl'tlp.

[*24-492] = . (g/3) . /9 e sect'P - <J'tlP . a = C'P - /3 ..

[#38-13] = . a e (C'P -)"(sect'P - (TtlP) :. I> r . Prop

#211-761. h : P e Ser . D . sect'P n <PltP = (C(P -)"{sect'P - D'(P)£ }

[Proof as in #211-76]

#211-762. h : Pe Ser . D . D'(Pe n/) = (C'P-)"(sect'P- P"C'P)

Dem.

h. #21 1-757. Transp. D

h:.Hp.D:aesect'P.C<P-aoo e p«C<P. = .aeD<(Pe n7) . (1)

h . (1) . #24-492 . #38-13 . D h . Prop

#211-8. h : Ppo e Ser . a e sect'P . I) .

maxP'a = max (Ppo)'a . minP'(C'P - a) = min (P^'iC'P - a) = seq (Ppo)'a

1- , #211-13 . #91-602 . D I- : Hp . D . a e sect'Ppo (1)

I- . #211-131 . #205-111 . D h : Hp . D . maxP'a = max (Ppo)'a (2)

I- . (2) p . #211-7 . (1) . D h : Hp . D . m?nP'(C'P - «) = min (Ppo)
f(C'P-a) (3)

[#211-726] = s"eq(Ppo)'a (4)

h. (2). (3). (4). Dr. Prop

The above proposition is used in #232-352 and #234'242.

The following propositions lead up to #211-82, which is used in #213'4.

#211'83*841'9 are also used in #213.

#21181. 1- : P e Ser . a e sect'P . a~e 1 . C'P - a e 1 . D .

C'P-cc^i'B'P.P^Pta-frB'P.a^D'P
Pern.

r . #211-7-181-182 ~ . D h : Hp . D . C'P - a = t'B'P (1)

I- .#204-461

.

D h : Hp . D . P = P[: D'P-^B'P (2)

f-.(l). #211-1. Dh:Hp.D.a = D'P (3)

h
. (1) .

(2) . (3) . D h . Prop

R&W II 40
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#211-811. \".PeSer-i'A.P = Q-fra;.D.C'Qesect'P.a;=B'P.C'Q=I>'P

Bern.

V . #16111 . D h :. Hp . D : y e C'Q . D„ . yPx

:

[#2041] D:a;~eC'Q:

[*16M5] D:x = B'P (1)

K*16113.DI-:Hp. D.C'Q = D'P (2)

K (1). (2). #211-1. DK Prop

#211-812. H.PeSer-t'A.QeD'Pt.D:

C'Qesect'P.C'P-C'Qel. = .(<&a;).P=Q+>a;.= .P = Q-frB'P
Dem.

h . #204-4 . #201-12 . Dh:Hp.D.CfQ~ e i (1)

K #204-41. Dh:Hp.D. Q = P£C'Q ( 2 )

K(l). (2). #211-81. Dh:Hp. C'Q esect'P.C'P- C'Q el.D.

C'P-C'Q~i'B'P.P=Q+>B'P (3)

h. #211-811. Dh:.Hp.D:(aa;).P aa Q4>af. = .P = Q4>5'P (4)

K #211-811. DH : Hp.P=:Q4»tf. 3- C'Qesect'P. C'P- C'Q el (5)

h.(3).(4).(5).DI-.Prop

#211-82. h :: P e Ser . Q e D'Pp . D :.

C'Q e sect'P . = : (gJ2) .P~Q$R.v. (ga;) . P = Q 4> a?

:

EE:(3i2).P = Q4ii2.v.P = Q-b5<P
[*211-282-283812 . #16022 . *161"2]

#211-83. h : a ! P . a?~e C'P . D . sect'(P 4» as) =* sect'P u i'(C'P u t'#)

Dewi.

K #211-1. D
h :. Hp . D : a e sect'(P 4> #) . = . a C C'P u t'a; . (P 4» a?)"a C a (1)

K(l). #161-11. D
h :. Hp . D : a e sect'(P -+» #) % e a . = . a C C'P w i'x . P"a u C'P C a . a; e a .

[#22-41] =.«= 0'?u^ (2)

l-.(l). #161-11. D

I- :. Hp . D : a e sect'(P •+» a;) . a;~ € a . = . a C C'P w t'a? . P"a C a . #~ e a .

[#51-25] = . aC C'P. P"aC a.

[#2111] = . a e sect'P (3)

K(2).(3).Dh.Prop

#211-84. h : C'P n C'Q = A . D . sect'(P^ Q) = sect'P v, (C'P u)"sect'Q

=sect'Pv(C'Pv)"(sect'Q-i'A)

f- .#211-1
. 3 h : a esect<(P$Q) . = . aC C'P w C'Q . (P:f:Q)"aC a (1)
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h.(l). #16011. D

h :. Hp . D : ae sect'(P^Q) . a C C'P . = . aC C'P . P"aC a

.

[#2111] = . a e sect'P (2)

h.(l). #16011.3

h :. Hp . D : a e sect'(P£ Q) . a !anO'Q. = .

aCO'Pu C<

Q

. C'P w Q"a C a . 3 ! a n C'Q

.

[*24-43491] = . a - C'P C C'Q . C'P C a . Q"cc C a - C'P . 3 ! a - C'P

.

[#24-491.*37'265]

= .a-C'PCC^.C'PCa.Q"(a-C'P)Ca-C'P.a!a-C'P.
[#2111] =.a-0'Pe sect'Q - t'A . C'P C a

.

[#22-92] =. a e (C'P u)"(sect'Q-i'A) (3)

h . #211-26-44 . D h . C'P e sect'P . C'P e (C'P u)"(sect'Q o t'A) (4)

h . (2) . (3) . D I- : Hp . D . sect'(P^Q) = sect'P u (C'P u)"(sect'Q - t'A)

[(4)] = sect'P u (C'P u)"sect'Q : D h . Prop

#211-841. h : C'P n C'Q = A . D .

sect'(P4i Q) - t'A = (sect'P - i'A) u (C'P v)"(sect'Q - t'A) [#211-84]

#2119. h . sect'(# I y) — t'A v t'i'# w t'(i'ar u t'y)

Bern.

V . #21 11*26 . D h . A e sect'(# I y) . t'x v t'y e sect'(a; I y) (1)

h.*5513. 3h:x$y.D.(xly)"t'x=A (2)

h.*5513. Dh:x = y.D.(xly)"i'x~i'x (3)

h.(2).(3). Dh.(fl?^y)"i'a?Ct'fl?.

[#2111] Dh.i'#esect'(a4y) (4)

h. #2111. #54-4. D

I- :. £ e sect'(# | y) . D : £ = A . v . & = i'x . v . /3 = i'y . v . £ = t'o- u I'y (5)

h . #55-13 . 3h:x^y.D.xe(xl y)"i'y - t'y .

[#2111] D. i'y~e sect'P (6)

h. #51-23. 3h:o; = 2/.D.t'2/ = t'a; 0)
k(5).(6)

.
(7) . D h :. £ e sect'(# | y) . D : £ « A . v . /3 - t'# . v . = t'x w i'y (8)

I- . (1) . (4) . (8) . D h . Prop

40—2



#212. THE SERIES OF SEGMENTS

Summary o/#212.

The series of segments or sections of a series may be ordered by the

relation of inclusion, after the manner considered in #210. Since, as was shown

in #211, sections and segments have the properties assigned to k in the hypo-

thesis of #210, the resulting series are such that every class has either a

maximum or a sequent, and either a minimum or a precedent; i.e. the series

of segments or sections are Dedekindian. Most of the properties of the series

of sections and of the series of segments which have no maximum, only require

that the original relation should be connected. The properties of the series

of segments in general (D'Pe) require also that the original relation should be

transitive.

We denote the series of segments by <s'P, putting

s'P = PIC [;D<Pe Df.

We then have, in virtue of #21013 and #211-61,

#21223. I- : P € trans n connex . D . s'P = a$ {a, /3 e D'Pe . a C & . a + 0}

In like manner, for the series of segments which have no maximum,

we put
sgm'P = Plc tD'(Pf n/) Df,

and we have

#212-22. h : P e connex . D . sgm'P = S# {a, j8 € D'(P£ n 7) . a C . a =f £}

We do not need a special notation for the series of sections, since, in virtue

of #211-13, it is s'P* or sgm'P*. Thus, by #212-23,

#212-24. h : P* e connex . D . s'P* = a$ {a, $ e sect'P .aCS.n^J
We begin the number with various propositions on the fields, etc. of these

relations, and on the conditions for their existence. We have

#212132. h . D's'P = D'Pe - t'D'P . d's'P = D'Pe - t'A

#212133. h : a ! P . D . C's'P = D'Pe . B's'P = A . 5'Cnv's'P = D'P

#21214. r : a ! P . = . a ! s'P

#212-152. 1- . CFsgm'P = D'(P£ A I) - i<A
#21217. h : a ! s'P* . = . a ! sect'P- l'A . - . sect'P~e 1 . = . a IP

#212172. h : a ! P 3 CVP* = sect'P . 5's'P* = A . 5'Cnv's'P* = C'P

Of the next set of propositions (#212"2—'25), several have already been
mentioned. An important proposition is

#212-25. h : P t- Ser . D . 1p>P = (s'P) t lP"C<P

for this shows that the series of segments contains a series similar to P.
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We take up next the application of the propositions of #210 to the series

of sections and segments. We show that if P e connex, sgm'P and <s'P% are

series (#212'3), and that if P is also transitive, s'P is a series (#212-31). We
have

#212-322. h : P e connex . a I P . \ C sect'P . D . s'X = Umax (s'P#)'\

#212-34. K : P e connex . a ! P . \ C sect'P . D . p
c\ n G'P = limin (s'P*)'\

so that every class of sections has both an upper limit or maximum and

a lower limit or minimum (#212'35).

We then prove similar propositions for <s'P and sgm'P, except that in

place of #212 '34 we have

#212-431. r : P e trans n connex . g ! P . \ C D'Pe . D .

s
f(D'Pe n Ciy\) = limin (s'P)'\

#212 53. h : P e connex . g ! sgm'P . \ C D'(Pe nI).D.

s'{D'(Pe A 7) n Cl*p'\} = limin (sgm'P)'\

The reason of the difference from *212*34 is that the product of an existent

class of segments may not be a segment. Suppose, for example, the segments

are all those that contain a given term x, where x has no immediate successor;
—>

then their logical product is P lx \j i'x, which is a section but not a segment.

We have next (#212'6— -667) a number of propositions on the limits and

maxima of sub-classes of P"G'P in the series %'P. The interest of this

subject lies in its relation to irrationals. If a is a class contained in G'P and

having no limit or maximum, P"a is contained in G's'P, and has a limit in

<s'P. We may call this limit an irrational segment. There is no irrational

term in G'P, because in P there is no limit to a; but the limit, in s'P,

of P(ta may be called irrational, because it corresponds to no term in G'P.

It should be observed that (as will be proved in Section F) if P is similar to

the series of rationals, s'P is similar to the series of real numbers.

The most useful propositions in this subject are:

#2126. riPeSer.aCC'P.D.

m?x (s'P)'P"a = max (P'>P)'P"cl = P"maxP'a

#212 601. r :. P e Ser . a C G'P . D :

E ! max/a . = . E ! max (pip)'P<'cc . = . E ! max (s'P)'P"a

#212 602. h :. P e Ser . & ! P . a C G'P . D : E ! maxP fo . » . P"ol e~P"a

#212-61. h:?e trans n connex . a ! P . D . Umax ($<P)'P"a = P"ol

#212-632. r : P e Ser . g ! P . a C G'P . P"a~ e P^'CP . D . P"a=lt(s'P)'P"a
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#212-661. h : P e Ser . k C V'Pt . E ! It (s'P)'* . 3 .

It (s'P)<* = It (5<P)<P<V* = s'k

This shows that every limit in the series of segments is a limit of a class
—>

of what we may call rational segments {i.e. segments of the form P'x), namely
—>

it is the limit of P^s'k.

#212'667. h : P e Ser . D . D'lt (s'P) - t'A = d'sgm'P

This shows that the segments (other than A) which are limits of classes

of segments are the segments (other than A) which have no maximum in P.

The number ends with a set of propositions (#212*7—-72) on the relations

of the sections and segments of two correlated series. If 8 is a correlator of

P with Q, then S€ (with its converse domain limited) is a correlator of s'P#

with s'Q*, s'P with s'Q and sgm'P with sgm'Q (#2127r7ll-7l2). Hence

#212-72. }- : p smor Q . D . s'P% smor $'Q% . <s'P smor s'Q . sgm'P smor sgm'Q

This proposition is used in the next number, and also in #271.

#21201. s'P = PicDD-Pe Df

#21202. sgm'P= Plc tD<(Pe nJ) Df

#2121. h:a(s^P)£. = .^£eD'Pe.a!£-a-P"(a-£)
[#170-102 . #37-15]

#212-11. I- : a(sgm'P)/3 . = . er,/3 eD'(P e <S I) . g ! /3 - a

AJ&¥¥h

h . #170-102 . #37-15 . D

K:a(sgm'P)
i
8.s.a,iSeD'(Pen/).aI

J
9-a-P"(a-^) (1)

I- . #211-12 . D Y : a e D'(Pe n 7) . D . - a = - P"a .

[*37'2.Transp] D.-aC- P"(a - /3)

.

[#22-621] D.-a-P"(a-£)«-a (2)

h . (1) . (2) . D h . Prop

#21212. Y:ct(sgm'P*)ft. = .cc
1 fiesect'P.<gi ip-ct [#21113 . #21211]

Thus sgm'P^ has the same connection with sect'P as sgm'P has with

D'(Pe r\ J). When P is transitive, sgm'P^ also has the same connection

with sect'P as <s'P has with D'P£ . The following proposition makes these

facts more explicit.

#212-121. Y . sgm'P* = s'P*- Pi 1 sect'P

Dem.

r . #211*13 . D r . sgm'P* = P,c £ sect'P (1)

K #2121. *211'13.Df:a(s'P^)/3. = .a,/3esect fP.al/3-a-P*"(a-/3) (2)
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h . #21113 . D b : a e sect'P . D . a = P#"a

.

[#37-2] D.P*"(a-£)Ca.
[Transp.*22'621] D . - a - P*"(a - £) - - a (3)

h.(2).(3).Dh:a(5 (P
5„) /

e. = .cr,i3esect
fP.a!/3-a.

[*21M2] = .a(sgm'P*)£ (4)

h
. (1) .

(4) . D K Prop

*212122. h.s'P,sgm'PeRl'«7 [*170*17]

#212123. h . CVP, (7'sgm'P~ e 1 [*200"12 . #2 12122]

#21213. h:A(s'P)/3. = ./3eD'Pe -t'A [#170-6]

#212 131. h : a (s'P) (D'P) . = . a e D'Pe - t'D'P

Z>em.

h . #2 12-1 . D h : a (s'P) (D'P) . = . a, D'P e D'Pe . a ! D'P - a - P"(a - D'P)

.

[*211-301.«3715] B.aeD'Pe.aCD'P.glD'P-a.
[#24'55.#22-41] = . a e D'P€ . a C D'P . a + D'P

.

[*37-15J = .aeD'Pe .a4=D'P:DI-.Prop

#212132. h . D's'P = D'Pe - t'D'P . CI's'P = D'Pe - t'A

Dem.

V . *212*13'131 .31-. D'Pe - t'D'P C D's'P . D'Pe - t'A C CC's'P (1)

h . #212-1 . D h . D's'P C D'Pe . CC's'P C D'Pe (2)

h . *2121 . D h : a eDVP D . (a/3) • £eD<Pe . 3 ! £-a

.

[#37-15] D. a! D'P -a (3)

h . *2121 . D h : £ e CI's'P . D . (ga) . a ! ^ - a .

[#24-561] D . 3 ! £ (4)

H . (3) . (4) . D I- . D's'P C - t'D'P . CC's'P C - t'A (5)

h . (1) . (2) . (5) . D h . Prop

#212133. I- : a ! P . D . C's'P = D'Pe . £'s'P = A . 5'Cnv's'P = D'P

I- . #33-24 . D h : Hp . D . A 4= D'P

.

[#212132] D . A e D's'P . D'P e CC's'P

.

[#51-221] D . D's'P = {(D'P€ - t'D'P) - t'A} w t'A

.

[#212-132] D . C's'P = {(D'Pe - t'A) - t'D'P} u t'A u (D'P« - t'A)

[#22-63] = (D'P£ - t'A) v t'A

[#51-221] =D'P€ (1)

I- . (1) . #93103 . #212132 . D h : Hp . D . £'s'P = D'P, - (D'P, - t'A)

[#211-44] = t'A (2)

1- . (1) . #93103 . #212-132 . D h : Hp . D . J?'Cnv's'P = D'Pe - (D'Pe - t'D'P)

[#211-301] ' = t'D'P (3)

h . (1) . (2) . (3) . D h . Prop
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#212134. r:P = A.D.$'P = A [#170-35]

#21214. h : a ! P . = . a ! s'P

Dem.
r . #212-133 . #211-301 .DI-:a!P.D.g! C's'P

.

[#33-24] D.rIs'P (1)

b .(1). #212-134.:) h. Prop

#212141. h : a € Cfs'P . = . a e D'Pe . g ! P

r.*1024. DhiaeCVP.^.glCVP.
[*33-24.*212-14] 3-a*^- (1)

[*212-133.Hp] D.aeD'Pe (2)

h . #212-133 . 3 h : a e D<Pe . g ! P . D . a e C'9'P (3)

h,(l).(2).(3).DKProp

#212142. I- : a ! s'P . = . D'Pe~e 1

Dem.
K #211-66. #212-14. DI-:a!s'P.D.D'Pe^el (1)

h . #212-132 . #211-44 . D h : D'Pe~ e 1 . D . a ! d's'P

.

[#33-24] D . a ! s'P (2)

h . (1) . (2) . D h . Prop

*21215. |-:A(sgm'P)£. = ./3eD'(P€ n7)-t'A [Proof as in #21213]

#212-151. h:P = A.D.sgm'P=A [#170-35]

The converse implication does not hold in this case. For the existence

of sgm'P, it is necessary that C'P should contain existent classes having no

maximum.

#212-152. r . Cl'sgm'P = D'(Pe n 7) - t'A [Proof as in #212-132]

#212153. r : a ! sgm'P . = . 3 ! D'(P, n 7) - i'A . = . D'(Pe n 7)~ 6 1

Dem.

h . #212-15 . D h : a ! D'(Pe n 7) - t'A . D . a ! sgm'P (1)

h . #212-152 . D r : a ! sgm'P . D . a I V'(Pe n 7) - t'A (2)

r. #212-11. Dh:a! sgm'P. D.(aa,/3).aJj9eD'(Pe n7).a^/3.
[#52-16.Transp] D.D'(Pe n 7)~el (3)

h. #21 1-44. #52-181. D
l-:D'(Pe n7)~el.D.(a

)
S)./3eD f(Pe/S7).

y
8 + A.

[#212-15] D . a ! sgm'P (4)

h.(l).(2).(3).(4).3h.Prop

#212-154. h : 3 ! sgm'P . D . C'sgm'P = D f(Pe « 7)

7)em.

I- . *212153-15 . D h : Hp . D . A e D'sgm'P

.

[#212-152] D.D'(Pen7)CC"sgm'P (l)

h. #212-11. Dr.C'sgm'PCD'(PE n7) (2)

h.(l).(2).Dh.Prop
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#212155. h : a ! sgm'P . D . A = P'sgm'P [#212-152-154 . #93103]

#212156. I- : a € C'sgm'P . = „ a e D'(P€ * 7) . g ! sgm'P .

= .aeD'(P e n 7) . D'(P€ n 7)~e 1

Dem.
r . #21 2-154 . D h : a e D'(Pe n 7) . a ! sgm'P . D . a e C'sgm'P (1)

h . #10*24 . #33-24 .Dhae C'sgm'P . D . a ! sgm'P . (2)

[#212154] D.aeD'(P£ n7) (3)

h
.
(1) . (2) . (3) . #212-153 .31". Prop

#212-16. h : CFP C D'P . D . D'P e D'(Pe A 7)

Pem.
H.*37-27.Dh:Hp.D.P"D'P = D'P (1)

h. (1). #21112. Dh. Prop

#212161. 1-
: CFP C D'7J . a ! P . 3 . a ! sgm'P

7>em.

I- . #33-24 . #21216 . D r : Hp . D . D'P e D'(P€ A 7) - t'A .

[#212-15] D . A (sgm'P) (D'P)

.

[*1 1-36] D . a ! sgm'P Oh. Prop

#212162. h : CI'P C D'P . a ! P . D .

D'P = P'Cnv'sgm'P . D'sgm'P = D'(Pe n 7) - t'D'P
Dem.

h . #21216-152 . #33-24 . D h : Hp . D . D'P e (I'sgm'P (1)

h . #212-11 . #37-24 . D r- : Hp . a e D'(Pe n 7) - t'D'P. D . a (sgm'P) (D'P) (2)

h . #37-24 . D h : a e D'(P€ n 7) . D .~a I (a - D'P)

.

[#21211] D.~ {(D'P) (sgm'P) a} (3)

h . (2) . (3) . D r : Hp . D .D'(P e n 7) -t'D'P CD'sgm'P.D'P~ e D'sgm'P (4)

h . (1) . (4) . #212-154 . D h . Prop

#21217. h : a ! ?'P# = 3 I sect'P - t'A . = . sect'P~ e 1 . = . a ! P
Dem.

I- .
#212-132 . #211-13 . D h : a ! s'P# = • a ! sect 'p - 1<A ( l )

h . #212-142 . #211-13 . D r- : a ' s'-P* = sect'P~e 1 (2)

h. #212-14. Dh:a.'s'P*. = .a-'^#-

[#90141] = . a I

P

(3)

h . (1) . (2) . (3) . D h . Prop

#212-171. h . D's'P* = sect'P - i'0'P . d's'P* = sect'P - t'A

[#212132 . #211-13 . #90-14]

#212-172. h : a 1 P 3 • CVP* = sect'P . PVP* = A . P'Cnv's'P* = C'P

[#212-133 . #211-13 . #90-141]

#212-173. h : a e C's'P* . = . a e sect'P . a ! P . = . a e sect'P . sect'P~e 1

[#21214114214. #211-13]
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*21218. r. S'P*= (C'P-);CnV's'P*

Dem.

V . *21212121 . D r : a (s'P*) /3 . = . a, /3 e sect'P . g ! £ - a

.

[#211-7] =.(a7> 5). 7) Sesect
fP.« = C"P- 7 .

J
g = Cf'P-S. a !^-«.

[#24'55] = .(a7,S). 7,Se sect'P. a = a'P- 7 ./3 = 0'P-S.^/3Ca).

[*2iri.*24492j = .(a7,S). 7) Sesect
fP.a=^P- 7 .^ = Cf'P-S.~(7 CS).

[#21212.*24-55] = . a {(C'P-^Cnv's'P*} £O h . Prop

#212181. I- (s'P*) smor (Cnv's'P*) [#21218]

The above proposition is used in #252-43.

#212'2. h . sgm'P C s'P . sgm'P G s'P* [#21114 . #21211112]

#212-21. h : P e trans . D . s'P G s'P* [#21115 .#21212]

#212-22. I- : Peconnex . D . sgm'P = a/3 {a
: p e D'(Pe n 7) . a C/3 . «4=/3}

[#211-62. #2101. #21211]

#212-23. hPe trans n connex . D . s'P = &§ {a, fi e D'Pe . a C j3 . a 4= y3}

[#21013. #211-61. (#212-01)]

#212-24. h : P* e connex . D . s'P* = &$ {a, /3 € sect'P . a C /3 . a + £}

[#212121-22. #21113]

#212'25. h : P € Ser . D .]?;P = (s'P) £ ^"CP
Dem.

r . #204-33-331 . D

h:.Hp.D:a(?^P)/3. = .a
)
/3eP''C'P.aC/3.a + /3.

[#212-23.#211-3] =.a,|8e P<'C'P . a (s'P) £ :. D h . Prop

The following propositions, down to #212'55, consist of applications of the

propositions of #210, where the k of that number is replaced by sect'P,

D'Pe, or D'(Pe n/), and the Q is replaced by Plc t>, i.e. by s'P*, s'P, or

sgm'P. The propositions which follow are important, since the use of

segments, especially in connection with continuity, depends largely upon

them.

#212-3. h : P e connex . D . sgm'P, s'P* e Ser

[#211-67 . #21014 . #212121]

#212*31. h : P e trans n connex . D . s'P e Ser

[#211-68 . #21014 . (#21201)]

#212-32. h : P e connex . g ! P . \ C sect'P . s'\ e X . D . s'\ = max (s'P*)'\-

[#210-211 . #211-67 . #21217]

We write max (s'P*)'\., instead of putting s'P* below the line, because,

when we have to deal with an expression not consisting of a single letter, it

is inconvenient to write it as a suffix, especially when it contains a suffix

itself, as in this case.
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#212'321. hiPe connex . 3 ! P . \ C sect'P . s'\~ e X . D . s<\ = seq (<s'P%)*\

= lt(s<P*)<x,
[#210-231 . #211-67 . #21217 . #211-63]

#212-322. h : P e connex . 3 ! P . X C sect'P . D . s'X = Umax (s'P*)'X

[#21 2-32-321. #207-46]

#212-33. h : P e connex . 3 ! P . A- C sect'P .p lX n C'P e X . D .

p'XnCtP= mw($'P*)'X
Bern.

V . #211-671 . #210-252 . #211-26 . D

\-:Kp.D.p'XnC'Pe min (s'P*)'X u prec (s'P*)'X (1)

h. #206-2. Dh:^r>C'PeA,.3./\nC'<P~eprec(s'P*)<X (2)

h . (1) . (2) . D h : Hp . D ._p'\ n O'P e mm (s'P*)'X (3)

f- . (3) . #205-31 . D r- . Prop

#212-331. h : Pe connex . 3 ! P . X C sect'P .p'X n ClP~eX . D .

p'X n C'P = prec (s'P*)'X = tl (s'P#)'X
Bern,

h . #211-671 . #210-252 . #211-26 . D

I- : Hp . D . _p'X n C'P = limin (s'P$)'X (1)

h . #2051 . Transp .Dh-.p'Xn C'P~eX .D.p'Xrx C fP~e min (s'P#)'X (2)

h . (1) . (2) . *206'161 . D h . Prop

#21234. h : P e connex . 3 ! P . X C sect'P . 3 . jj'Ti r> C7'P = limin (s'P*)'X

[#212-33-331 . #207-46]

#212*35. h iPeconnex.glP.D.

(X) . X e {d'max (s'P#) u Cl'seq (s'P*)} n {d'min (s'P*) u Cl'prec (s'P*)}

[#210-28 . #211-671 . #212-121]

#212-36. h : . P e connex . D : X e C'sgm's'P* . D . E ! seq (s'P#)'X

h. #211-47. #212-35'3.D

h :. Hp . 3 ! P . D : X e C'sgm's'P* . 3 . E ! seq (s'P#)'X (1)

h . #33-24 .DhiXe C'sgm's'P* . D . 3 ! sgm's'P*

.

[#212-1 51.Transp] D . 3 ! s'P* .

[#21217] 3-a!P (2)

h . (1) . (2) . D h . Prop

*2124. F : P e trans n connex . 3 ! P . X C D'Pe ,s*Ae\.D. s'X= max (s'P)'X

[#211-68-66. #210-211]

#212-401. h?€ trans n connex . 3 ! P . X C D'Pe . s'\~ e \ . D .

s'X = seq (s'P)'X = It (s'P)'X
[*211-68-66-64. #210-231]
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*212'402. h : P e trans r. connex . ft
! P . X C D'Pe . D . s' X - Umax (s'P)'X

[*212-4-401 . #207-46]

*21241. I- : Pe trans n connex . ft ! P . XCD'Pe .p'X£X. Z).p'X= min(9'P)'X

[*211-68-66. #210-21]

#212-411. h : P e trans n connex . ft ! P . X C D'Pe - j/\ e D'P £ - X . D .

p<\ = prec (s'P)<X = tl (s'P)'X

[#211-68-66 . #210-23]

#212-42. I- : P e trans n connex . ft ! P . X C D'P e . p'X~ e X . D .

s'(D'P€ r> Cl'p'X) = prec (s'P)'X, = tl (s'P)'X

[#210-26-22 . #211-68'66-64]

The cases considered in #212-411 and #212-42 are not mutually exclusive,

since ifp'Xe D'Pe, we have s'(D'Pe n Cl'p'X) =p'X.

#212*421. h : P £ trans n connex . ft ! P . X C D'Pe . p'X~ e D'Pe . D .

s'(D'Pe n Cl'p'X) = P";;'\

Dem.

h . #211151

.

D h :. Hp . D : aeX . 3a . P"aC a :

[#40-81] D : P<yx Cp'X (1)

I- . (1) . #211-11 . D h : Hp . D . P"p'X e D'Pe n Cl'p'X .

[#40-13] D . P"p'X C s'(D'Pe n Cl'p'X) (2)

t- . #13-196 . #60-2 . D r :. Hp . D : aeD'Pe n Cl'p'X . Z>a . a C p<\ .a^p'X :

[*211-56-15-632] D : g ! X . aeD'Pe
n Cl'p'X . Da ,«CPy\ :

[#40-151] D : a I \ . D . s'(D fPe n Cl'p'X) C P"p*\ (3)

F . #40-2 . #37-24 . D h : X=A . D . s'(D'Pe n Cl'p'X) C D'P . P"p'X = D'P (4)

I- . (3) . (4)

.

D h : Hp . D . s'(D<Pe r> Ol'p'X) C P"p'X (5)

h.(2).(5).DI-.Prop

#212-43. h : P e trans n connex . ft ! P . X C D'Pe .^'X~eD'Pe . D .

P'^'X = prec (s'P)'X = tl (s'P)'X [*212-42'421]

Thus with regard to the lower end of a class chosen uut of C's'P, we
have three cases to distinguish: (1) if p'XeX, p'X is th« minimum; (2) if

p'Xe~D'Pe -X, p'X is the lower limit; (3) if p'X~ c'D'P* , P"p'X is the

lower limit.

#212-431. \-:Pe trans r» connex . ft ! P . X C D'P e . D .

s'{T>'Pe n Cl'p'X) = limin (s'P)'X
Xtera.

h . #212-42 . D I- : Hp .p'X~eX . D . s'(D'Pe n Cl'p'X) = tl (s'P)'X (1)

h . #22-441 . D I- : Hp . p'X 6 X . 3 . ^'X e (D'Pe r> Cl'p'X) .

[#4013] D.p'XC s'(D'Pe n Cl'p'X) (2)

h . #60-2 . D h : a e D'P£ n Cl'p'X . D . a C p'X :

[#40-151] D I- . s'(D'P< r> Cl (p'X)Cp'X (3)
h . (2) . (3) . D h : Hp . p'X e X . D . s'(D'Pc n Cl'p'X) =p'X

.

[#212-41] D . s'(D'Pe n Cl'p'X) = min (s'P)'X (4)

H.(l).(4).#207-46.Dh.Prop
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#212-44. h :Pe trans n connex . 3 ! P . D .

(A.) . X e (Cl'max (s'P) u d'seq(s'P)} n {(I'min (s'P) u d'prec(s'P)}

[*211-681. #210-28]

#212-45. h :. P e trans n connex . D : X e C'sgm's'P . D . E ! seq (s'P)'A

7)em.

h. #211-47. #212-44-31. D

r :. Hp . 3 ! P . D : A e C'sgm's'P . 3 . E ! seq (s'P)'A (1)

h . #33-24 . D h : X e C'sgm's'P . D . 3 ! sgm's'P .

[#212-151.Transp] Z) . 3 ! s'P .

[#212-14] ^-a!P (2)

r . (1) . (2) . D h . Prop

The pi-oofs of the following propositions are exactly analogous£to those of

the corresponding propositions on s'P.

#2125. h : P e connex . g ! sgm'P . A C D'(Pe n/).s'\e\.D.

s'A = max (sgm'P)*A

#212-501. f- : Pe connex . 3 ! sgm'P . AC D'(P6 n 7) . s'A~eA . D .

s'A = seq (sgm'P)'A = It (sgm'P)'A

*212-502. h : P e connex . g ! sgm'P . A C D'(Pe nJ).D. s'A= limax(sgm'P)'A

[#212-5-501]

*212'51. \-:Pe connex . a ! sgm'P . A C D'(P£ A 7) . p'A €

A

. D .

^j'A = min (sgm'P)'A

#212-511. I- : P e connex . 3 ! sgm'P . \ C D'(P, A I) . p'X e D'(Pe n I) - X . D .

p'X = prec (sgm'P)'A = tl (sgm'P)'A

#21252. h : Pe connex . 3 ! sgm'P . X C D'(Pe n 7) .p'X~eX. D .

s'{D'(Pe A 7) n Cl'p'A} = prec (sgm'P)'*- = tl (sgm'P)'A

This proposition includes #212-511, since, ifp'X eD'(Pe n 7), we have

s'(D'(Pe n i) n Ciy\} =p'\.

#212-53. f- : P e connex . a ! sgm'P . A, C D'(Pe A 7) . D .

s'{D'(Pe nl)n ClyA} = limin(sgm'P)'A [*212'51-52]

The proof proceeds as in #212-431.

#212'54. h : P e connex . g ! sgm'P . D .

(X).X€ {d'max (sgm'P) w (I'seq (sgm'P)} n {a 'min (sgm'P) u a 'prec (sgm'P)}

#212-55. h : . P e connex . D : A- e C'sgm'sgm'P . D . E ! seq (sgm'P)'A

The following propositions are concerned with the relations of maxima,
—

>

limits and sequents in P and s'P respectively. The series P>P, which is

ordinally similar to P, is contained in s'P; and if a has a maximum or
—

>

—

>

—

>

limit in P, the maximum or limit of P"a in s'P is P'maxP'a or P'ltp'a.
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In this way, a series (namely P>P) which has the same ordinal properties as

P can be placed in a certain Dedekindian series (namely s'P) in such a

way that the classes which have limits in P are those whose correlates have

limits which are members of P iiG lP, while those whose correlates have
—>

limits which are not members of PiiGtP are those which have neither a

maximum nor a limit in P. These relations are important in many con-

nections. For example, if P is of the type of the rationals, s'P is of the
—>

type of the real numbers: G"s'P — P iiGiP corresponds to the irrationals,
—> —

>

and classes contained in P"C'P but having a limit not belonging to P"(7'P

correspond to series of rationals having an irrational limit. In the original

series P, there are no irrational limits ; but if a is a class in C'P and having

no limit, P"a has an irrational limit in s'P.

*2126. I- : PeSer . aC C'P . D .

max ($'PyP"a = max {P>P)'P"o. = P"maxP'a
Dem.

f-.*205-9.*200'12.D

h : Hp . D . max (s'P)'P"a = max (PJP)<P"a (]

)

I- . #20435 . #205*8 . D

h : Hp . D . max (P'>P)'l>"a = P"mtxP<a (2)

h . (1) . (2) . D f- . Prop

#212-601. h :. P € Ser . a C C'P . D :

E ! maxp'a . = . E ! max (P
m

>P)'P"u . = . E ! max (q'PyP"a
[#212-6]

*212'602. h :. P e Ser . 3 ! P . a C C'P . D : E ! max/a . = . P"a e P"a
Dem.

h. #212-601. #210-223. D

b :. Hp . D : E ! maxP'a . = . s'P"a e P"a

.

[#40-5] s.P"aeP"a:.Oh. Prop

#212-61. I- : P e trans n connex . g ! P . D . limax (s'P)'P"a = P"a
[#212-402 . #40-5]

#212-62. h:.P e Ser.a!P.D:

E ! Hmaxp'a . ~ . E ! limax (P'>P)<P'<a .

= . limax (s'P)'P"a = P'limax/a .

= . limax (s'P)<P"a e~P"C lP
Dem.

V . #204-35 . #207-65 . D h :. Hp . D : E ! limaxP'a . = . E ! limax (PJP)'P"a (1)
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—

>

h . #20751 . D h :. Hp . D : P'limaxp'a = P"a . = . limaxP'a = limaxP'a

.

[#14-28] = . E ! limaxP'a (2)

H. (2). #212-61. D

I- :. Hp . D : E ! limaxp*a . = . Umax (s'P)'P"a *= P'limaxp'a (3)

h . #207-51 . #14-204 . D

h :. Hp . D : E ! limax/a . - . (a*) .see C'P. P'% = P"a

.

[#377] = .P"ae^"C'P (4)

h.(l).(3).(4).Dh.Prop

#212-621. h :. P e Ser . @ C C'P . D : limaxp'a e £ . = . limax (s'P)'P"a e P"£

F . #33-24 . D h : Hp . limaxp'a e /3 . D . 3 ! P . IimaxP'a e .

[#14-21] D . g ! P . E ! limaxp'a . limaxp'a e /3 .

[#212 62] D. limax (s'P)'P"aeP"/3 (1)

h . #3324 . #22-621 . D I- : Hp . Umax ($<P)'P"« e P"/3 . 3 .

g; ! P . limax (s'P)'P"a <? P"/3 n P"C'P .

[#212-62] 3 . limax <yP)'P"a eP"/3 . limax (s'P)'P"/3 = P'Hmaxp'a .

[#72-512.#204-34] D . Hmax/a e £ (2)

h . (1) . (2) . D h . Prop

#212-63. h : P e Ser . 3 ! P . a C C'P .~ E ! maxP'a . D . It (<s'P)'P"a = P"a
[*212-61'601 . #207-43]

#212-631. h :. P e Ser . 3 ! P . a C C'P . D : E ! ltP'a . h . lt(s'P)<P"a=P<ltP'a.

= .lt(s'P)'?'aeP"C"P
JDem.

h . *207'47 . D I- : E ! ltP'a . = . E ! limax/a . ~ E ! maxP'a (1)

h.(l).*212-62601.D

h :. Hp . D : E ! lt/a . = . limax ($'P)'P"« = P'limax/a .~ E ! max ($'P)'P"a .

[#207-43-11] = . It ($'P)'l?"a = P'lt/a (2)

h.(l).*212-62-601.D

h :. Hp . D : E ! lt/a . = . limax (s'P)'P"aeP"C'P .~E ! max (s'P)'P"a •

[#207-43-11] = . It (s'P)'P"a e~P"C'P (3)

h . (2) . (3) . D h . Prop

#212-632. I- : P eSer.3 ! P. a C C'P. P"oL~e~P"C'P . D . P"a= It (s'P)'Pua

Bern.

I- . #212-602 . D h : Hp . D .~E ! maxp'a .

[#212-601] D.~E!max($'P)<P"a.

[#212-61] D . It ($'P)'P"a = P"ol : D h . Prop
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#212 633. I- :. P e Ser . 3 ! P . x e C'P . C C'P . D :

x = lip'/3 . = . P'# = It (s'P)'P"/3

Dem.

h. #212-631. #14-21. D

h:.Hp.D:#=ltP'/3.:D.P'#=It(<j'P)'P''/3 (1)

h . #212-402 . D f- : Hp . ~P'x = It (s'P)'P"/3 . D . P'# = P"/3 (2)

h . #206-2 . D h : Hp . ~P'x = It (s'P)'P"£ . 3 . P'#~eP"/3 .

[#72-512.*204-34] D.«~e/3 (3)

h . (2) . (3) . #207-232 . D h : Hp . ~P*x = It (s'P)'P"£ . 3 . a; = ltP'/3 (4)

h.(l).(4).Dh.Prop

#212-65. h : . P e Ser . a C C'P . D : E ! seqP'a . = . P'seqP'a = seq (s'P)'P"a

Bern.

h . #20617 . #210-15 . #211-3 . D

h :: Hp . D :. P'seqP'a = seq (s'P)'P"a . = :

yeanC'P.Dy.P'yC P'seqP'a . P'y =j= P'seqP'a :

—

>

—

>

—

*

7 e D'Pe . 7 C P'seqp'a . 7 4 P'seqp'a . Dy . (g^) . £ e a . 7 C P'z :

[#204-33.*206*22] ~\y e an C'P .Dy .yP seqP'a

:

7 eJ)'Pe .yC(anC'P)^P"a.y^(anC'P)yjP"cc.Dy .(^z).zea.yCP'z (1)

h . #211-56 . 3 f- : Hp . 7 e D'Pe . z e C'P - 7 . D . 7 C P'z (2)

I- . (2) . D h : Hp . 7 e D'Pe . 7 C (a n C'P) u P"a . 7 4= (« n C'P) uP"«.D.

(3*).sea.7CP's (3)

H.(1).(3).D^

h :: Hp . D :. P'seqP'a = seq (s'P)'P"a . = : y e a n C'P . Dv . yP seqP'a :

[#206-21 1 .#14-21
]

= : E ! seq/a : : D h . Prop

#212-651. h :. P e Ser . a C C'P . D :

E ! seqp'a . = . seq {<s'P)<P"ae'P"C'P . = . E ! seq (P ">P)'P"a

Dem.

h . #212-65 . D h :. Hp . D : E ! seqP'a . D . seq (s'P)'?'a e Jp'C'P (1)

h . #206-17 . #210-15 . #211-3 . D

h : : Hp . D :. seq (<s'P)'P"a = P'w . w e C'P . = :

yearyC'P.^y.P'yC P'w . P'y^P'w :

7 e D'Pe . 7 C P'w . 7 4= P'w . D
y . (3*) . * e a . 7 C P'z : w e C'P :

[#204-33.*211-3] D : a n C'PQP'w : yPiv . Dy . (rz) .zea.P'yCP'z -.weC'P:

[#204-32] D : a ri C'P C P'w . P'w C a u P"a , w e C'P :

[#206-l71.*33-l5]D:w = seqP'a (2)
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h.(2).#37'7.*14'204.D

h : . Hp . D : seq (s'P)'P"a e P"C'P . D . E ! seq/a (3)

I-. (1). (3). #206-62. Dh. Prop

*212652. I- : P e Ser . a C C'P . E ! maxP'a . E ! seq ($<P)'P"a . D .

seq (s'P)<P"a = a uP"«
Dem.

H . *212'6*601 . #206-46. Dh:Hp.D.seq(s'P)'P"a=seq($'P)VP'maxP<a (1)

h . #206-17 . #210-15 . #211-3 . D

I- : : Hp . D : . /9 = seq (s'P)VPfraaxP'a . = :

£ e D'Pe . P'max/a C £ . P-maxP-a + £ :

7 eD
(Pe.7C^.7 + /3.DY . 7 C P'max/a

:

[*201-55.#210-1] D : /9 e D'P£ . g ! £ - P"(P'maxP'a u I'max/a)

:

—
7 e D'Pe .yC/3.y^^.^y .yC P'max/a :

[#211*56] 3 : £ eD'Pe . P'max/a u i'max/a C :

yeD'Pe . 7 C £ . 7 4£ . DY . 7 C P'max/a :

[*211-3J D : yS eD'Pe . P'maxP'a v t
fmaxPfa C /3 : ae/3. D*. P'a CP'max/a :

—

»

—

>

[#40-5] D : £ e D'Pe . P'max/a -j t'max/a C /9 . P"/3 C P'maxP'a :

[#202-56] D : £ e D'Pe . P'max/a u i<max/a = £ :

[*205'131"22]D:/S=owP"a (2)

h.(l).(2).Dh.Prop

#212-653. h:.PeSer.E!max/«.aCCfP.D:E!seq/a. = .E!seq(s (P) fP"a

h. #212-652. D h :. Hp. E! seq (s'P)'P"a.D. a uP"ae D'Pe (1)

h. #205-191. D I- : Hp . D . E ! maxP'(a u P"a) (2)

I- . (1) . (2) . #211-31 . D h : Hp(l) . D . E ! seq/(a v P"a)

.

[#206-25] D . E ! seq/a (3)

h . #212-65 . D h : Hp . E ! seq/a . D . E ! seq (s'P)'P"a (4)

h . (3) . (4) . Z> h . Prop

#212-66. h : Pe trans n connex . /cCD'Pe .~E!max(s'P)'*.D.~E!maxPV«:

Dm.
h. #2101. #212-23. 3

h :. Hp . D : /3 e k . Dp . (37) .y e K . {3 Cy .^ly - {3 :

—

*

[#201-5] D : /3 e « . a; e £ 3e,* . (37) . 7 e « . 3 ! 7 — P'# - t'x :

[#202-101] D : co e s'k . Dx . (37) . 7 e k . g ! 7 n P'x

.

[#37-46] D«,.a;eP"s-*:.Dh.Frop

RSWII 41
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*212-661. H:PeSer.«;CD <Pe.E!lt(s <P)'«.D.lt(s'P) <
«;= lt(s

fP) <P fV/c= s
t
«;

Bern.

h. #212-402. Dh:Hp.3.1t(s'P)<x; = s<«: (1)

h . #212-402 . D I- : Hp . D . Umax (s'P)'?'s'« = P"s<«

[*212-66] =s',c (2)

I- . #212-601 -66 . D h : Hp . D .~ E ! max (s<P)<P(V* (3)

h.(2).(3). Dh:Hp.D.lt(s'P)'P"«'* = s'* (4)

h . (1) . (4) . Z> h . Prop

#212662. h : P e Ser . * C D'Pe . E ! It (s'P)'* . 3 .

(gX) . X C P"C'P . It (s'P)'* = It (s'P)'X

[#212-661]

#212*663. h : P e Ser .x e C'P . P'# € D<It (s<p) . } .

P'x = It (s'P)'P"P'# . x = Itp'P'w

Dem.

h . #212-661 . D h : P e Ser . x e C'P . ~P lx = It (s'P)'* . D .

P^e = s<* . Ip'x= It (s'P)'P'V*

.

[#13-12.#212-66] D . P'a; = It (s'P)'P"P'# .~ E ! maxP'P'#

.

[#2064] D . P'# = It (s'P)'P"P'# . x = ltp'P'* : D h . Prop

#212-664. h :. P e Ser . x e C'P . Z> : x e ~D<\tP . = . P'# e D'lt (s'P)

Dem.

r . #212-631 . D h : Hp . as = ltP'« . D . P'# = It/P"a (1)

h.(l). #212-663. DI-. Prop

#212-665. h : P e Ser . a ! P a e D'(Pe A 2) . D . It (s'P)'P"a = a

Dem.

h . #211-4 . D h : Hp . D .~E ! maxP'«

.

[#212-601-44] D . It (s'P)'P"a = Umax (s'P)'P"a

[*212-402.*40-5] = P"a
[#211-12] = a Oh. Prop

#212-666. h : P e Ser . g ! P . D . D'lt (s'P) = D'(P£ n 7)

Dem.

h . #212-66-661 . D F : Hp . * C D'Pe . 7 = It (s'P)'* . D . 7 = s<* .~E ! maxP'

7 .

[#211-64-42] D.ryeD^PefSi") (1)

H.(l). #212-665. Dh. Prop

#212-667. h : P e Ser . D . D'lt (s'P) - t'A = d'sgm'P [*212152-151-666]
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#2127. h : S e

P

amor Q.D. sect'P = ^e"sect*Q . C's'P* = Se«C's<Q#

Dem.

h . *151-11-131 . D h : Hp . /3 C C'Q . D . S"/3 C C'P (1)

I- . #37-2 . D I- : Q"£ C /3 . D . S"Q"# C S"/3 (2)

F . (2) . #72-503 . D I- : Hp . /3 C C'Q . Q"/3 C £ . D . S"Q"8"S,(
j3 C S"l3 .

[#151-11] D.P"£"/?C;Sf"/3 (3)

h . (1) . (3) . *211-1 . D h : Hp. £e sect'Q . D . S"/3esect'P (4)

h . (4) . #151131 . D h : Hp . a e sect'P . D . S"a e sect'Q

.

[#72-502] D.«e&"sect'Q (5)

h . (4) . (5)

.

D I- : Hp . D . sect'P = &"sect'Q (6)

h . (6) . #212-17-172 . D I- . Prop

#212701. I- : S € P smor Q.D. D'Pe = &"D<

Q

e . CVP = &"CVQ
[Proof as in #212'7]

#212702. h:£ePsmorQ.3.
D'(PC n /) - *SY'D'(Qe n I) . C'sgm'P = Se"C<sgm<Q

[Proof as in #212-7]

#212-71. I- : 8 e P smor Q.D.Se fCVQ* e (s'P*) sSor (s'Q*)

Dem.

h . #71-381 . D h :: Hp . D :. a, /3e sect'Q .D:a!/3-«. = . a ! S"I3-S"ol (1)

h . (1) . #212-7 . D H :. Hp . a, /3e sect'Q . D : a (s'Q*)£ . = . S"a (s'P*)£"/3

.

[#150-41] =.«{Se5(s'-P*)}iS (2)

F . (2) . #212172 . D h : Hp . D . s'Q* G & !(«'?*) (3)

Similarly h : Hp . D . s'P* C ^5(? f

Q*) 0)
K #72-451. Dh:Hp.D.£e rCVQ#el->l (5)

h . (3) . (4) . (5) . #151-27 . D h . Prop

#212-711. h : SePsmor Q. D . &fCVQ e(s'P)smOT (s'Q)

[Proof as in #212*7 1]

#212-712. h : 8 eP smor Q . D . & fC'sgm'P e (sgm'P) s~mor (sgm'Q)

[Proof as in #212-7]

#21272. I- : P smor Q.D. s'P* smor s'Q* . s'P smor s'Q . sgm'P smor sgm'Q

[#212-71-711-712]

41—2



*213. SECTIONAL RELATIONS

Summary o/*213.

If a is a section of P, P£ a is called a sectio?ial relation of P; and if a is

a segment of P, P£a is called a segmental relation of P. If Ppo is serial,

sectional relations may be arranged in a series by the relation of inclusion

(*213'153). That is, if we call the series of sectional relations Py , we shall so

define Ps as to secure that if P^ is serial,

QP*R . = . Q, RePt"(seGt'P - t'A) . Q <Z R . Q + R (*21321).

The natural definition to take would be

Ps = PtSs'P*.

But this has the disadvantage that if ccBP,

Ptl'x = PtA.A,L cxesect tP.

Thus P[,a = P[. ft does not imply a = /3; and when P is serial, P^5s fP^

is not serial, because A(P£'s'P#) A. In order to obviate this inconvenience,

we confine ourselves to sections which are not null, putting

P,«Pti(s'P*)t(-i'A) I)f.

With the above definition, we have (#213-15ri52), if Ppo eSer,

CPPrC'Ks<P*)D-t<A}el->l

and P»smor(s'P*)D(-t'A).

The relation Ps is very useful in dealing with well-ordered series; in this
.

case, we have (as will be shown later)

p s = pp;p;p£<i<P-{->P.

It will be seen that, ii Ppo eSer, whenever P exists, P = .B'Ps(#2l3 -

158);

and whenever B'P exists, A *5'Pj(*213-155).

We have, ifPpo e Ser,

QP5R . = .Re C'P, . Q e WRt (*213-245).

Hence ReC'P s .0 ."P,<R = ~D<RS . R s = P,tC{Rs (*213'246'242).

If P is serial, the sectional relations of P are all relations such that by
adding something to them they become P, i.e. they are

{(gJ?) P - Q$R . v . (qcb) .P=Q-r>x] (#213-4).

Hence their relation-numbers are those that can be made equal to that

of P by being added to. This fact is important in connection with the theory

of greater and less among relation-numbers.

The propositions of this number are rendered complicated by the necessity

of taking account of the possibility of a section being a unit class. This
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necessitates a good many propositions which are merely lemmas; but in the

end the complications mostly disappear.

We begin with propositions on the field, etc., of Py . We have

*213141. J- . T>'PS = P£"(sect'P - t'A - l'C'P)

#213142. \-:Pw QJ.D. C'PS
= P£"(sect'P - t'A)

*21316. r . D'PS = P£"(sect'P - i'A) - i'P

#213161. V : Ppo G J. 3 \~B lP.D . P£"sect'P = P£"(sect'P- i'A)« C"PS

#213162. h : Ppo e Ser . D . <PP* = P£"sect'P - i'A

We then prove:

#21317. h : Pp0 e Ser . D . NrVP* = i + Nr<Py .

Nr'(s<P*) £ (CIVP#) = Nr'Ps

If P is finite, it follows from the above that s
fP# is not similar to P s ;

but if P is infinite and has a beginning and is well-ordered, we find

Nr's'P# = Nr'P,.

#213172. I- : Ppo , Qpo e Ser . P smor Q.D.Ps smor &
We then have a set of propositions (#213'2—'251) chiefly concerned with

the sections of R, where ReC'Ps. Besides those already mentioned, the

following are important:

#213-24. h : J3 e sect'P . R = P 1/3 . I> . sect'tf = sect'P n CI'C'R

#213243. kK'P = D'Ps

#213-25. h :. Ppo e Ser . Q, R e C'PS . D : Q e D'£ y . v . R e V'QS .v.Q = R

Our next set (#213'3—'32) is concerned with A and a;
J, y. We have

*2133. h:P = A.D.Ps = A
#21332. h:Pe2r .D.Ps = A4,P.Py e2r

We then have three propositions (#213'4r4r42) showing that a sectional

relation of P is one which becomes P by being added to. We proceed to

a set of propositions (#213'5

—

-58) on (P-f>^) 5 and (P$.Q) S , leading to

#213-57. h :Ppo G/. Nr'Q = Nr'P+i . D . Nr'Qs = Nr'P* + i

#213-58. r : Ppo G J . Qpo e Ser . C'P n C'Q= A . D .

Nr'(P4l Q)s = Nr'P,+ Nr<&

#21301. Ps^PtKs'Pdti-i'A) Df

#2131. h : QPS£ . = .

(3a,
/
S).a

J
/3esect fP-t fA. a !^-a.Q = P^a.i2 =P^

[*212-12121. (#213-01)]
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#21311. h:.Ppo eeonnex.D:QP s^. = .

(ga,£).a,£esect'P-l'A.aC/3.«4=/3.Q = P£a.£ = PD/3
[#213-1. #2ir6-l7.*210-l]

#21312. h . D'(s'P*) t (- i
1A) = sect'P - i'A - t'C'P

I- . #21212 . D h : aeD'(s'P*)£ (- t'A) . = . (3/3) . £ e sect'P . g ! /9 - a .a+ A .

[#21212] =.a4=A.aeDVP#.
[#212171] = . a esect'P- t'A-i'C'POh . Prop

#213121. h : Pp0 e Ser . D . ?'(s'P#) £ (- t'A ) = sect'P n 1 = t"£'P

I- . #212-12 . #213-12 . D h :. £ e i?(s'P*)[: (- *'A) . = :

/3esect fP-t <A-t fC"P:«€sect fP.3!/3-a.Da .a = A (1)

h. #211-3131. #3718. D

I- : /3 e sect'P . ae/3 . D . P*'# e sect'P . P#'# C/3 . g ! P*'x (2)

1- . (1) . Transp . (2) . D h : . J3 e i?'(s'P#) £ (- t'A) . D :

/3 e sect'P - t'A - t'C'P : # e /3 . D* . P*'x = £ (3)

h . #200-391 . D h :. Hp . /3 e sect'P - t'A : x e £ . Ox . P*'x = /3 . D :

/3 e sect'P - t'A :x,y eft .^^y . x = y.

[#5216] D : /3 e sect'P n 1

'

(4)

h . (3) . (4)

.

D h : Hp . D . £'( s'P#) £ (- t'A) C sect'P n 1 (5)

I- . #213-12 . #200-12 . D V : Hp . D . sect'P nlC D'(s'P#) £ (- t'A) (6)

h. #51-401. DK-.£esect'Pnl.D:«C£.a*£.D.a = A (7)

h . (7). #212-22121 . D h : Hp . D . sect'P n 1 C-(T(s'P#)t (- l
'A) (8 )

I- . (5) . (6) . (8) . #211'18 . D h . Prop

#213-122. h : Ppo e Ser . g ! £<P . D . B'(s'P) t (- t'A) = t'B'P

[#213-121. #211-181]

#213-123. h : Ppo e Ser . i?P = A . D . i?(s'P) t (- 1'A) = A
[#213-121]

#213-124. h :. Pp0 e Ser . D : E ! £'(S 'P) £ (- i'A) . = . E ! £'P
[#213*122-123]

#213125. h i Ppo G J". D . CVP* - t'A~e 1

I-. #212-17. Dh:P = A.D.C'5 <P* = A.
[#52-21] D.CVP*-i'A~el (1)

h . #212-172 . D h : g I P . D . CVP# = sect'P . C'P e C's'P* - t'A (2)

h. #211-13-3. #200-39. D h : Hp.^eD'P.D.P^ e sect'P. g !C"P-P*'# (3)

I- . (2) . (3)

.

D h : Hp . g ! P . D . C's'P* - t'A~e 1 (4)

K(l).(4).Dh.Prop
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The hypothesis Pp0 G J, in the above proposition, restricts P more than
is necessary for the truth of the conclusion. What we really require is

P = A.v.(Kx).xeC'P.'P*<a:^C<P, i.e. ~P*"C lP*i tG lP. This holds if

either (1) the field of P does not consist of a single family, or (2) there is

a member of C*P which does not have the relation Pp0 to itself. Thus the

only case excluded is that of a single cyclic family. The hypothesis
—

>

P^'C'P 4= t'C'P may be substituted for Ppo G J in most of the subsequent

propositions of this number in which Ppo G J occurs in the hypothesis. We
have, however, preferred the hypothesis Ppo G J, as it gives a more immediate

application to the case of P e Ser, which is the case in which the propositions

of the present number are important.

*213126. r : Pp0 G / . 3 ! P . D . 3 ! sect'P - t'A - l'C'P

Dem.

V . #213125 . #212172 . D V : Hp . D . sect'P - t'A~e 1 (1)

h. #2 11-26. #33-24. D r : Hp . D . C'P e sect'P - t'A (2)

K (1). (2). #52-181. Dr. Prop

#213*13. r:Pp0 GJ".D.C"(s'P*) £(- t'A) = sect'P- t'A

Dem.

r. #213125. D

h :: Hp . D :. a e sect'P - t'A . D : (a£) :/3 € sect'P- t'A : 3 ! a- /3 . v . 3 1 £- a:

[#212-12] D : (30) : a {(s'P*) £ (- t'A)} . v . {(s'P*) £ (- t'A)} a

:

[#33-132] D : a e C"(s'P#) £ (- t'A) (1)

f-.(l). #212-172. Dh:Hp.a!P.D.C"(5'P*)^(-t'A)=sect'P-t fA (2)

I- . #212-17 . #211-1 . D r : P = A . D . C"(s'P#) f (- t'A) = sect'P - t'A (3)

h.(2).(3).DKProp

#213-131. r : Ppo e Ser . D . <T(s'P*) £ (- t'A) = sect'P - t'A - i"WP
[#21313121]

#213132. h : Ppo *Ser . 3! /?P.D.<J'(s'P#) £ (-t'A)= sect'P- t'A -t't'^'P

[#213-13122]

#213-133. h : Ppo e Ser . ~B'P = A . D . (F(s'P#) £ (- *'A) = sect'P - t'A

[#213-13-123]

#213-134. I- : Ppo G </ . 3 ! P . D . 5<Cnv'(s'P*) t (- t'A) = C'P [#2131213]

#213-14. r . D'PS = P £ "D'(s'P*) p (- 1'A) . d'P, =P £ "(I<(s'P*) £ (- t'A)

.

C<P s = P£"C'(s'P*)t;(-t'A)

[#150-21-211-22]

#213141. r . D'P y = P £ "(sect'P - t'A - t'C'P)

[#213-12-14]



648 SEKIES [part V

#213142. h : Ppo G J'. D . C'P S = P£"(sect'P - t<A)
[#2131314]

#213143. J- : Ppo e Ser . D . <J'P S = P £ "(sect'P - 1<A - i"i?P)

[#213-131 -14]

#213144. h : Ppo e Ser . 3 ! P<P . D . (FP* = P £ "(sect'P - i'A - tV£'P)

[#21313214]

#213145. H : Ppo e Ser . P'P= A . D . d'P s = P£"(sect'P - i'A)

[#213143]

#213146. h : P G J". D . P£"sect'P= P£"(sect'P- 1)

Pern.

h . #37-22 . D h . P£"sect'P =P£"(sect'P - 1) v P£"(sect'P r» 1)

h . #200-35 . D h : Q e P£ "(sect'P n 1) . D . Q = A .

[#36-27] D.Q = P£A.
[#211-44] D . Q ePl "(sect'P- 1)

h . (1) . (2) . D H . Prop

#21315. I- :. Ppo e Ser . aesect'P- t'A . D : P£ a = A . = . ae 1

Pern.

r- . #200-35 .DF-:Hp.ael.D.P^«-A

(1)

(2)

(1)

(a«»y) : #0P
PoD o)y . v . y (Ppo ta)x:

a!Pp0 £a:

g ! a n Ppo"a

:

HEl-Pt* (2)

K #52'41 . Dh:.Hp.a~el.D
[#21 11.#202*1 03] D

[#11-7] >
[#37-41] D

[#211131] D

[#37-41] D

K(l).(2).Dh.Prop

#213-151. I- : Ppo e Ser . D . (P £) f (sect'P - l
lA) e 1 -» 1

K #21315.3

h:Hp.aesect^P-t'A-l.£esect^P-i'A.P£a = Pt;,3.D./3~el.

[#211-133] D . C'Pfc/3 = £ . O fP £a = a .

[Hp] D.« = y8 (1)

K #21315.3

h : Hp . a e sect'P n 1 . £ e sect'P - t'A . P £ a = P £ /3 . D . # e 1 (2)

r . (2) . #21118 . D h : Hp (2) . D . a, /3 e fc"l?'P

.

[#202-52313] D.a = /9 (3)

h . (1) . (3) . D h :. Hp . D : a, /3 e sect'P- 1<A . P£a = P£ /9 . D . a = :.

D h . Prop

#213152. h:Ppo eSer.:>.Ps smor(s<P*)£(-t'A) [#21315113]
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#213 153. h : Ppo e Ser . D . Ps e Ser [#213'152 . *212'3 . *204r4"21]

#213154. h : Ppo eSer . D . i?'P, = P£"t"i?'P [#213151121 . *1515]

#213155. I- : Pp0 e Ser . 3 ! ~B'P . D . B'PS = A

h . #213151\L22 . #151-5O h : HpO . B'PS = Pt(i'B'P)
[*200-35] = A : D h . Prop

#213 156. 1-
: Ppo e Ser . 5'P = A . D . B<PS = A [#213*1 54]

#213157. h :. Ppo e Ser . D : E ! £'P . = . E ! B<P S [#213155-156]

#213158. b : Ppo e Ser . g ! P . D . 5'P, = P
Dem.

h . #213151134 . #151-5 . D h : Hp . D . B'P S = PtC'P Oh. Prop

#21316. h . D'PS = PC"(sect fP - t'A) - i'P

Dem.

h. #21 3-1 41. D
h : Q € D'PS . = . (3a) . a e sect'P - t'A . Q = P£« . a 4= C'P (1)

h . #211-1 . D h :. « e sect'P . Q = P£ a . D : a + C'P. = . 3 WP- a .

[#36-25.Transp] =.Q + P (2)

h . (1) . (2) . D h : Q e D'PS . = . (3a) . a e sect'P - t'A . Q = P£a . Q + P :

D h . Prop

#213-161. I- : Ppo G / . 3 ! 1?<P . D . P £ "sect'P = P £ "(sect'P - t'A) = C"PS

Z>em.

h . #211-18O h : HpO . t"i?'P C sect'P nl.g! t'^P

.

[#37-245] D . Pt"i"B'P C P£"(sect'P - t'A) . 3 ! Pt;"t"?P

.

[#200-35] D. A ePJ; "(sect'P -t'A).

[#36-27] D . PtA 6 P £"(sect'P - t'A)

.

[#37-22] D . P£"sect'P = P £"(sect'P -t'A)

[#213-142] = C'PS Oh. Prop

#213-162. I- : Ppo e SerO . (I'P, = P£"sect'P - t'A

Dem.

h . #213143O h :. HpO : $ e G'PS . = .

(fta) . a e sect'P - t'A - t"B'P .Q = P£a. (1)

[#213-1 5.*211-18] D . Q e Pf'sect'P - t'A (2)

h . #213-15 . D h :. HpO : Q e P^'sect'P - t'AO .

(get) . a e sect'P - t'A - t"£'P . Q = P £a .

[(1)] D.Qed'Ps (3)

h . (2) . (3)O h . Prop
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#213163. h : Ppo e Ser

.

~B'P = A . D . C<Ps = P fsect'P - t<A

h . #213156 . D h : Hp . D . C'P = d'P, (1)

h . (1) . #213-162 . D J- . Prop

#213164. h : P^ e Ser . ^B
fP = A . D . D'PS = P £"sect'P - t'A - t'P

[#21314216316]

#21317. h:Ppo eSer.D.Nr's'P* = l+Nr'Ps .

Nr'(s'P*)|;(aVP*) = Nr<Ps

h . #212171172 . D h : g ! P . D . 5VP*= A . <JVP* = sect'P- t'A .

(*'^*)C (-M)-(s'?*)«avP«) (i)

(- . (1) . #213125 . Dh:Hp.g!P.D. dVP*~e 1 (2)

h . #212-3 . #91 -602 . D h : Hp . D . s'P* e connex (3)

h . (1) . #213-152 . D h : Hp . g ! P . D . Nr'(s'P# ) fc((IVP*) = Nr'P* (4)

h.(l). (2). (3). #204-46.3

I- : Hp . g ! P . D . Nr's'P* = 1 + Nr'( s'P*) £ (<!'s'P*)

[(4)] = i+Nr'Ps (5)

h . #21 217 . #1 50-42 . D h : P = A . D . s'P* = A . Py = A

.

[#101-201] D . Nr's'P* = 1 + Nr'P, . Nr^s'P^fc (CIVP#) = Nr'P, (6)

I- . (4) . (5) .(6).Dh. Prop

#213-171. h :. PP0J Qpo e Ser . D : P s smor Q s . = . s'P* smor s'Q*

J)em.

Y . #212172 .Dh:.Hp.a!P.a!Q.D:E! B's'P* . E ! £VQ* :

[*204-47.#91-602.*212-3]

D : s'P* smor S'Q# . = . (s'P*) f (CI's'P*) smor (S 'Q# ) £ (CIVQ#) .

[#21317] = .P s smor(>s (1)

I- . #213-158 . D h : Hp . g ! P . Ps smor & . D . g ! & .

[*212-17.#150-42] :>.&!£ (2)

h . #212-17 . D h : Hp . g ! P . S'P# smor <s<Q* . D . g ! Q (3)

r- . (1) . (2) . (3) . D h :. Hp . a ! P . Z> : s'P* smor S'Q# . = . P y smor & (4)

h . #212-17 . D h : Hp . P = A . s'P* smor s'Q# . D . s'P* = A . s'Q* = A .

[#150-42] D.PS = A.& = A (5)

H. #213-17. D h : Hp . P, smor Q, . 3 . s'P# smor s'Q# (6)

h - (5) - (6) - Dh:. Hp.P = A.D:s^P*smors'Q#.s.Pt smorQ, (7)

h.(4).(7). Dh.Prop

#213172. h : P^, Qpo e Ser. P smor Q.D.P, smor Q, [#21272 . #213171]
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*21318. h : P e connex . R e D'P S . D . 3 ! C'P n p'P"C'R

Bern.

V . #2131 - D V : R e D'PS . D . (3a) . a e sect'P - i'C'P . £ = P£ a

.

[#37-41] D . (3a) . a e sect'P - t'C'P .C'RCot.

[#40-16] D . (3a) . a e sect'P - i'C'P . p'P'a Cp'P'C'R (1)

h . #211703 . D h : Hp . a e sect'P - i'C'P . D . 3 ! p'P"a (2)

I- . #211-1 . D I- : a e sect'P - t'C'P . D . 3 ! C'P - a .

[#33-24] 3 a ! P (3)

h . (2) . (3) . #4069 . D h : Hp . a e sect'P - t'C'P . D . 3 ! C'P n p'P"a (4)

h.(l).(4).D
^_

h : Hp . R e D'PS . D . (30) . 3 ! C'P r, p'P"a .p'P"a Cp'P'C'R : D h . Prop

#213-2. h:.Ppoe Ser.a,/3 e sect'P-t'A.Q = Pt;a..B = P£/3.:>:

K #36-24. DK-aC/3.D.PtaGP£# (1)

I- . #21V133 . D h : Hp . a, /3~ e 1 . P £ a G P £ /3 . D . a C £ (2)

h . #21 1-181-182 .Dh:Hp.ael.D.a= i'B'P .

[#202-521] D.aC/3 (3)

h. #213-15. D I- : Hp. j3 e 1. a~e 1 . D . ~(P£ a GP£,£) (4)

K(2).(3).(4). Dr:Hp.P£aGPt/3.D.aC/3 (5)

h.(l).(5). Dh:.Hp.D:aC/3. = .QG^: (6)

[Transp] D : 3 la-/3. s . 3 ! Q - £ (7)

h. (6). #213-151. D

Yi.aV .D:ocC0.a^j3. = .Q(lR.Q^R (8)

h . (7) . (8) . #210-1 . #211-562 . D h . Prop

#213-21. H :. Ppo eSer . D : QPSR . = . Q, £ eP£"(sect'P- t'A) . 3 ! E - Q.

= .&£ePt"(sect'P-t'A).QG £.(> + .«

Dem.

K #213-1-2. DH.Hp.D:
QPsB. = .(ga,/3).a,^ 6 sect'P-t'A.Q = PD«-K = PD/3.a!^-Q-
-.(ga,/3).a,/3esect'P-t'A.Q=Pta.£ = P[:/3.QGi2.(>4=i2 (x )

h . (1) . #37-6 . D h . Prop

#213-22. h :. Ppo e Ser . 3 ! ~B'P . D :

QPSR - = .Q>R ePf'sect'P . 3 ! R - Q . = . Q t RePfsect'P .QCR.Q^R
[#213-21-161]

#213-23. r :. Pp0 econnex . Q,ReC'Ps .3 : Q CR .v . RGQ
[#213-1. #21 1-6-1 7. #36-24]



652 SERIES [part V

#21324. h : £ e sect'P . P = P £ /3 . D . sect'R = sect'P n Cl'C'R

Dem.

b . #36*29 . D r :. Hp . D : £ G P : (1)

[#211-1

J

D : a e sect'P n Cl'C'-R . D . a C C'P . P"a C a .

D.aesect'R (2)

K(l).#2iri.D
h :. Hp . D : a e sect'P . D . a C C'R . a C C'P . (P £ /3)"a C a (3)

K (3). #37-41-413. D
\- : Hp . aesect'i? . D . a C/3 . £ n P"(a n /3) C a .

[*22-621.*37-2] D . /3 n P"a C a . P"a C P"£ .

[#211-1] D./3nP"aCa.P"aC/3.
[#22-621] D.P"aCa (4)

H . (3) . (4) . D I- :. Hp . D : a e sect'P . D . a C C'R . a € sect'P (5)

h.(2).(5).Dh.Prop

#213-241. h : R e P£ "sect'P .D.R S GPS £C'P S

h. #213-1. D

h :. Hp . D : #P S
Q' . = . (go, a ) . a, a' e sect'i? - t'A .

Q = Rta.Q' = Rtoc'.^\a'-a.

[#213-24] = . (g«, a) . «, a' e sect'P r. Cl'C'i? - 1'A

.

Q« JRfc«.Q' = Jftfca .H!«'-«.
[#213-1] D.QP S<7 (1)

I- . (1) . *3317 . D h : Hp . D . R $ G P»pC?'i2.OK Prop

#213242. h : Ppo € Ser . P ePf'sect'P . D . Ps = Ps £C'P y

I- . #213-1 . #211-1 . D h;. Q (PS £C'PS) Q'.D:

(aa,a').a, a'esect'P- t'A . Q = P£a. Q' = P[:a' . 3 ! a'-a :

(a%7
/)-%7'esect'P-t'A.Q = JR^.Q' = Pt:7' (1)

h. #213-24-151. D

h : . HpO : a e sect'P . 7 e sect'P .Q = P£a = R£y .3 .a = y (2)

l-.(l).(2).Dh:.Hp.D:Q(P s [:C"^)^.=>-

(37>7) • 7> 7 e sect'P - t'A . Q= P£y . Q
f = P£ 7

'
. ^ » y _ 7 .

[#213-1] D.QRsQ' (3)

h . (3) . #213-241 . D h . Prop

#213-243. h.Ps'P = D'Ps

Dem.

I-
. #213-1 .Ob: Re PS'P . = . (3a, £) . a, £ e sect'P - t'A .

£ = Pt;a.P = Pt/3.a!/3-a (1)

r. #37-41. Dh.C"(P[; /?) C/9 (2)
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h ( 2) . D I- : a ! C'P - & . D . a ! C'P - C*(P £ /3)

.

[#1314] D.P^Ptfl
(3)

h . (3) . Transp . D h : /3 e sect'P . P = p[p .D .C'P = j3 (4)

K(1).(4).D h:^eP/P. = .(a«).«fsect fP-t fA. JR = P^a. 3 !a fP- a .

[#211-1] = . (get) . a e sect'P - t'A - i'CP . jR = P£a .

[#213141] = .PeD'Ps :DI-.Prop

#213-244. h : fi e C'P,* . Q e~D'R s .O.QP sR

Devi.

h . #213-24.3 . D h :. R e C'P* .3:Qe D'R, . D . QR tR .

[#213241] D . QPSR : D h . Prop

#213-245. h :. Ppo eSer . D : QP $R. = .ReC'Ps .QeWR,

Dem.

h. #21311. Dh:.Hp.D:
QPSJR. = .(3ff,

i
8).a,^esect'P-i fA.Q = P[:a. JB = Pt;/3.aCy3.a4=jS.

[#213-24] = . (3a, £) . /3 e sect'P - i'A . £ = P£/3 . a e sect'i? - i<A .

aCj8. «="=£. Q:=P|>n
[*213142.#211133.#3t3-21]

= . (ga) . R e C'P S . a esect'R - t'A . a C C'R . a^ C"i2 . Q = R £a .

[#213-141] = . i2 6 OP, . QeD'iJ, :. D V . Prop

#213246. h : Ppo e Ser . R e C'P, . D . P/£ = D'P S [#213245]

#213-247. J- :.

P

po e Ser . D : Q (Ps £D'PS ) R. = .R € D<PS .QeD'Rs

[#213-245]

#213 25. h :. Ppo e Ser . & £ e C'P S .D:Qe D',8, . v . R e D'Q S .v.Q = R
Dem.

h . #213153 . D I- :. Hp . D : QP,R . v . i2PsQ .v.Q = R:
[#213-245] D:Qe D'R S .v. Re ~D'Q* .v.Q = R:.D\-. Prop

#213-251. h:.Ppo eSer.Q,i2 € C'P l .~(Q = A.iE = A).'3:

QeC'Rs.v.ReV'Q,
Dem.

(-.#213-158. Dh:Hp. g 1R .Q = R .3 . QeC'R* (1)

h . (1 ) . #13-12 .D\-:HV .^lQ.Q = R.D.Qe C'R S (2)

K(l).(2). 3\-:Hv.Q = R.D.QeC'R s (3)

I- . (3) . #213-25 . D h . Prop

#213-3. h:P=A.D.P, = A
Dem.

h . #212-17 . D (- : Hp . D . s'P* = A .

[#150-42] D . P»= A : 3 h . Prop

#213'301. h : 3 ! sect'P - 1<A - t'C'P . D . a ! Ps [#213141]
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#213302. \-:.Ppo GJ.3:'&lP. = .'3_lP!

Dem.
V .#213126-301 . 3 h : Hp . a ! P . D . 3 ! Ps (1)

K(t). #213-3.31-. Prop

#213-31. h^y.3.(4y)S =A|(4y)
Dem.

h. #211-9. D

I- : Hp . D . mct\x iy)- l
lA = i/ l'x w t'(i'# w t'i/) . g; ! (t'a; u i'y) — l'x .

[*2131-141] 'S .{(x ly^i'xlix ly\{{x iy^d'xv i'y))

.

D'(xly) s
= L'(xly)ti<x.

[#200-35.#55-15] D . A (as I y) s (x I y) . D<(# J, y) s = i'k (1)

I- . #213-153 . #204-25 . D V : Hp . D . (cc ly) s e Ser (2)

I- . (1) . (2) . #204-27 . D h . Prop

#213-32. h:Pe2r .D.Ps = A jP.Ps e2r [#213-31]

#213-4 h:PeSer.D.

Pt"sect<P = § {(aJ2) . P= Q $ R . v . (a*) . P = £+#}

h. #211-82. #5-32. D

f-::Hp.:>:.(>ePt"sect<P. = :

QeD'P^:(jgi2).P«Q^i2.v.(|g[«).P = Q-bfl! (1)

h. #211-283. #160-5. Dh:Hp.P = Q4i 22. D.Q e D fP^ (2)

h. #161-11. Dh:Hp.P = Q+>a;.D.Q = P^CP (3)

(- . (2) . (3) . D h :. Hp : (ai2) . P= Q $ R . v . (gar) . P = Q-f** : D .

QeD'Pp (4)
h . (1) . (4) . D b . Prop

#21341. h : P e Ser . 3 ! &P . D

.

C'P, = {(a-B) . P = Q £ R . v . (a*) .P = Q+>x\ [#213-4-161]

#21342. h:PeSer.i?P=A.:>.

C<Ps = Q {(aJJ) . P = Q 41 E . v . (g#) .P = Q-frx}-i'A [#213-4-163]

#213-5. h : Ppo G «/ . #~e C'P . D . D'(P 4> a), = C"PS

Dem.

h. #213-141. #211-83. 3
h : Hp .g ! P . D . D'(P+»#) S = (P-b«)t:"(sect fP- t'A)

[#36-4.#161-l] = P£"(sect'P-t'A)

[#213-142] = C'PS (1)

h . #213-3 . #161-2 . 3 I- : P = A . D . D'(P +> x) s = A . C fP s = A (2)

l-.(l).(2).DI-.Prop
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#213-51. r:Ppo G t/.#~eC'<P.D.(P-^) s
= P s -t»(P-^ iB)

Dem.

V .#2131 . #211-83 . D r :: Hp . a ! P . D :. Q (P-frx), R . = :

(aft, /3) . a, £ e sect'P - t'A u l\GlP u t '«r) .

[*2111.*36-4] = : (ga, £). a,/3 e sect'P- t'A . a ! /3-a . Q=P£a . R=P^ . v

.

(3«) . a e sect'P - t<A.Q = P[;a.i2 = P-t»£c:

[#213-1142] = : QPSR .v.Qe C'P, .R = P+>x:
[#161-11] =:Q{Pf 4*(P4*aO}i2 (1)

f- . #213-3 . #161-2 . D f- : P = A . D . (P -*» <c) s
= A . Ps 4> (P -|» a) = A (2)

K(l).(2).Dh.Prop

#213-52. t- : . #po e connex . CP n C<Q = A . D :

(a/8). i
8nC'Q^el./8«(G«P«)"(Beot'Q-t'A).iS = (P4iQ)p

/
8.s.

(a7)-7«sect'Q-t'A-l.iS = P4iQD7
Dem.

h . #37-6 . D r : £ e (CP u)"(sect'g - t'A) . £ = (P^Q) p /3 - = -

(37) 7 e sect'Q - t'A . £ = C'P u 7 . S = (P-£ Q) £ (OP u 7) (1)

h . #160-11 . D K-: Hp . 7 e sect'Q . D :. * f(P.£Q)k (OP u 7)} y . = :

xPy . v .eceC'P .yey . v. sc(Ql <y)y :.

[*211133.*16011] D :. 7~e 1 . D . {P$Q)t (OP u 7) = P^Qfc 7 (2)

h . #24-24 . D f- : Hp . /3 = C'P u 7 . D . $ r> C'Q = 7 n OQ (3)

h.(l).(2).(3).D

h :. Hp . D : /3 n OQ~e 1 . /3 e (C'P u)"(sect'Q - t'A) . 8 = (P$Q)t/3 . = .

(g7) . 7 e sect'Q -L'A~l.S = P$Qtry./3 = C<Pvy (4)

K (4) . #10-281 . #13-19 . D t- . Prop

#213-53. r:Ppo GJ.Qpo eSer.i?Q =A.OPnOQ = A.D.
(P4LQ),=*P f$(P4LJQ f)

Pern.

h . #213-1 . #211-841 . D h :: Hp . D :. R (P$Q)sS . = :

(go, /3) . a, £ e sect'P - t'A u (OP u)"(sect'Q - t'A) .

[#211-182] = : (go, £) . a, £ e sect'P - t'A u (C'P u)"(sect'Q - 1 - t'A)

.

a!£-a.J2 = (P4LQ)t«.S«(P$Q)t0:
[#160-1 .#213-52]

= :(a«,^).a,i9esect'P-t'A. a !/3-a.i2 = Pta.S = Pt/8.v.

(ga, 7) . a e sect'P - t'A . 7 e sect'Q -t'A.P = Pka.£ = P4LQk 7 .v.

(W,8).v,&esect<Q-i<A.nn-y.R = P$Qtv.S= P$QlS:
[#213-1-142] = : RPsS .v. Re C'P, . SeC'P$

m

>Qs . v . R (P$ m

> QJ) S :

[#160-11] = : R {P s $(P$'>Qs)} S :: D h . Prop
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#213531. h :: Qp0 e Ser . a ! if'Q . C'P r> C'Q = A . D :.

(3^).j9e(C7'Pu)"(Beot^-i'A).fif«(P4iQ)ti9.s:

S«P-^5'Q.v.(a7). 7 esect'Q-t'A-tV5'Q.jS = P4.Qt7

K #21352.3

h :: Hp . D :. (a/3) . /3e (C'P w)"(sect'Q - t'A) . S = (P£Q)D# = =

(3)9) - e(C'P u)"(aect'Q « 1) . S- (P£Q)D0 v

[#211181] = : (g/3) ./3 = C'Pv i'B'Q . S = (P$Q)t0. v .

(%V) . y esect'Q- i'A- I'i'B'Q . S= P$Qtv (1)

h . #16011 . D h :: Hp . D :. x \(P$Q)t(C'P u i'5'Q)} y.= i

xPy .v.xe C'P .y = B'Q:

[*161-11] =*.x(P-\>B'Q)y (2)

V . (1) . (2) . D h . Prop

#21354. f- : a !P. PpoG/.Qpoe Ser. a!5'Q.C'PnC'Q = A. a'Q»~el.D.

Dem.

t- . #2131 . #211-841 . D H :: Hp . D :. R (P$Q)S S.= :

(got, £) . a, £ e sect'P - t<A u (<7<P w)"(sect'Q - t'A) . g ! /3 - a .

[#213-531]

= : (ga, £) . a, £ e sect'P -i'A.a!/8-a.JR = Pta.Q = Pfc£.v.

(ga) . a e sect'P - i'A . R = P £a . S = P +> B'Q . v .

(3«. 7) « e sect'P - t'A . R = P £or . & e sect'Q - t'A - t't'P'Q .

S = P$Qty.v.

(g7 ) .R = P+>B'Q.{3e sect'Q - t'A - tV.B'Q . S = P£Q

£

7 . v .

(a7.8)-7.Sesect'Q-t'A-iVJ5'Q.a!S-7.i2 = P^gt7-

[*21.31-142-132]

s:i2PtS.v.JB fi C'PJ .S = P-^5'Q.v.JB = P-t*J5'<2.iSf€P4:"a'QJ .

v.P,S e (P^")<I t^-^(P^ ; Q)>S.v. JReCtP s .SeP4l"a^s :

[*161-11.*211-133.*160-11]

= : R {Ps +> (P +» 5<Q)$.(P£i Qr^'Q.)} £ :: D K Prop
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#213-541. h : Pp0 e Ser . a ! ~B'P . CPPS e 1 . D . P* 2r

Dem.

V . #213144 . #211-26 . D f- :. Hp . D : P£"(sect'P - t'A - t'l'B'P) = t'P .-

[#211-3-13] D:#e<I'P.:>.Pt~P#^ = P.

[#202-55] D.P#^=OP.

[#200-39] D.Ppo
'# = A.

[#202-522-523] ^.x = B'P\

[#204-271] D:Ppo e2r :

[*56-lll.#91-504] D : P e 2r :. D h . Prop

#213-55. h : a ! P . Ppo G J" . Q e % . C'P n CT'Q = A . D .

Dem. As in #21354,

\-::KV .0:.R(P$Q)s S.
= :RPsS.v.Re C'P, . S = P -fr B'Q .v . Re C'P, .SeP$«a<Qs .

v.R = P+>B'Q.S€P$"a<Qs .v.R,SeP$"a<Qs .

R(P$'>Q,)S:
[m3-32] = :RP,S.v.ReC'P,.S = P-t>B<Q.v.ReC'P i .S = P$Q.

v.R=P-frB'Q.S=P$Q.v.R = P$Q.S = P$Q.
R(P$'>QS)S:

[#213-32] = :RPsS.v.Re G'P, . S = P+> B'Q.v . R € C'P, .S=P$Q.
v.R = P-frB'Q.S=P$Q:

[*16111] = :R{Ps-fr(P-frB<Q)^(P$Q)}8;:0h. Prop

#213-56. r :. Ppo G J . Qp0 e Ser . OP n C"Q = A . D :

?Q = A.D.(P^Q> = Ps 4i(P^JQJ):

a!P.a!2?Q.Q~e2r .D.

(P4iQ) s = ps -^(P-b^Q)4i{P4iJ(Q^aW}:
3[!P.Qe2r .D.(P^Q)s = Ps ^(P-^^Q)^(P^Q):
P = A . D . (P.£ Q)s = Qs [*213-5354-541-55 . #160-22]

#213-561. h : C'P n C lQ = A . D . (P£) £ C"& e 1 - 1

.Dewi.

h . #213-1 . D h : R e C'Q, . D . G{R C CQ (1)

h . (1) . D t- : . Hp . £, 8 € C'QS . D : C'P n C'R = A . OP n OS = A :

[#16052] D:P4l JR = P^S.D.i2 = S:.Dh. Prop

#213-57. h : Ppo G J . Nr'Q = Nr<P+

1

. D . Nr'Q, = Nr<

P

s + i

Dem.

h. #181-2-12. (#181-01). D
h : Hp . D . (ai2,») . iZsmor P . #~e C'E . Q = R Jpx .

[#213-51] D . (rR, x) . R smor P . x~e C lR . Q, = Rt +> (R +> x) .

[#181-32] D . (>&R) . R smor P . Nr'Qy = Nr'i^ + 1

.

[#213-172] D . Nr'Q, = Nr'P, + i:Dh. Prop

e&wii 42
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*213'58. \-iP^<ZJ.QvoeSer.C<PnC<Q=A.D.Nr<(P$Q),=NT<Ps + NY<Q,

Dem,

h.#213-53-561.:>

\-:Hp.li<Q= A.O.(P$Q)s = P<$(PpQ,).Nv<PpQ, = Xr<Q,.

[180-32] D . Nr'(P 41 Q), = Nr'P, + Nr'Q* (1)

K*213-54-561.*181-32.D

l-^p.alP.al^.a'Q^el.D.Nr'CP^Q^-Nr'Pj + i +Nr^^a^
[#204f4.6.*213157] =Nr'P, + Nr'Qt (2)

h.*213-541-55.*181-32.D

h:Hp.a!P.a <Qs €l.D.Qe2r .Nr
f(P^Q)s = Nr fPs + i + i.

[181-56] D . Q e % . Nr'(P£Q), = Nr'Ps + 2r .

[213-32] D . Nr*(P.£Q)t = Nr'P, 4- Nr'Q, (3)

I- . *160'22 . *213*3 . D h : P = A . D . Nr<(P4L Q)s = Nr'Ps + Nr'Q, (4)

K (1) . (2) . (3) . (4) . D h . Prop



*214. DEDEKINDIAN RELATIONS

Summary o/#214.

We call a relation "Dedekindian" when it is such that every class has

either a maximum or a sequent with respect to it. As a rule, the hypothesis

that a relation is Dedekindian is only important in the case of serial relations.

Dedekindian series have considerable importance, especially in connection

with limits.

When P is transitive, the hypothesis that P is Dedekindian is equivalent

to the hypothesis that every section of P has a maximum or a sequent

(#214"13); it is also equivalent to the assumption that every segment of P
has a maximum or a sequent (#214"131), i.e. to the assumption that every

segment of P which has no maximum has a limit, i.e. to

T>'(Pf n I)Ca<ltP .

When P is a series, the hypothesis that it is Dedekindian is equivalent

to the hypothesis that every segment has a sequent (#214*15), i.e. to the

hypothesis that the class of segments is the class P"C'P (#214*151). If P
is a Dedekindian series, so is P, and vice versa (#214*14). Whenever P is

connected and not null, s'P* is a Dedekindian series (#214*32), and so is

sgm'P if it exists (#214*34) ; whenever Pis transitive and connected and not

null, s
l]P is a Dedekindian series (#214-33). All these propositions have been

virtually proved already: almost the only thing new in the present number is

the definition, which is

Ded = P {(«) . a e (FmaxP u <l'seqP} Df.

#214'4—'43 give properties of series which have Dedekindian continuity.

We have

#214*4. h :. P2 =P . P e connex . D : P e Ded . = . <TmaxP = - <J
fseqP

#214*41. h :. P e Ser . D : P2 =P . P e Ded . = . (FmaxP = - <PseqP

I.e. in a series, Dedekindian continuity is equivalent to the assumption

that the classes which have a maximum are the same as the classes which

have no sequent.

#214*42. r : Pe Sern Ded .P^P.ae sect'P . D . limax/a= limin/(C"P-a)

This proposition is important in dealing with Dedekind "cuts."

#214*43. h : . P € Ser r> Ded . a e sect'P . D :

limaxP'a= limini/((7P — a) . v . maxp'aPj minP f(C fP — a)

#214*5 shows that a Dedekindian relation has a beginning and an end;

the following propositions deal with P f\J when P is Dedekindian.

42—2
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#2 14'6 shows that a relation which is similar to a Dedekindian relation is

Dedekindian.

We call a relation "semi-Dedekindian" if it becomes Dedekindian by

the addition of one term at the end ; the definition is

#214-02. semiDed = P(sect'P-t'C'PCa'maxP u(I<seqp) Df

#21401. Ded = P {(«) . a e d'rnaxp u (I<seqP }
Df

#21402. semi Ded = P (sect'P - i'C'P C <I<maxP u (FseqP) Df

#2141. h:PeDed. = .(a).aea<maxP u(I'seqP [(#214-01)]

#214101. h : P e Ded . = . - (FmaxP C <FseqP . = . - (PmaxP C (TltP

[#214-1 . #24-312 . #207-12]

#21411. f- : P e Ded . = . (a) . a e (FmaxP u (TltP . = . (a) . a e (TlimaxP
[#214-1 . *207-14'44]

#214-12. h : . P e Ded . = : a C C'P . Da . a e (TmaxP u <pseqP
[#214*1 . #205-151 . #206*131]

#214-13. h : . P e trans . D : P e Ded . = . sect'P C <FmaxP u (FseqP

[#211-272. #214-1]

#214131. h:.Petrans.D:PeDed.= .D'(P€ A/)C(I'8eqp [#211 47 .#214*1]

#214*132. f- :. P e trans . D : P e Ded . = . D'P6 C d<maxP v (I<seqP

[#214131. #211*42]

#21414. h:.PeSer.D:PeDed. = .PeDed [#206'57 . #214*1]

#214*141. t- :. P e Ser . D : P e Ded . = . (ex) .p'P"{a n C'P) e (I'maxp u <PseqP
[#206-56 . #214-1]

#21415. h : . P e Ser . D : P e Ded . = . D<P€ C (I<seqP

[#206-36. #2141. #211-11]

#214151. h:.PeSer.D:PeDed. = .D<Pe = P"C"P [#211-38 . #214*1]

P e trans n connex r> Ded . D . D'Pe C (Fseqp [#211 371]

P e trans n connex n Ded . D . D'PC = P"C'P [#211*372]

P e trans r*. connex n Ded . D , D'(Pe n I) = P"{C'P - <P(P -P*))

[#211*46]

#214*23. h : P e trans n connex n Ded .~E ! maxp'ct . D .

seqP'a = maxp ((a \j t'seq/a) . E ! maxP'(a u t'seqP'a)
Dem.

h . #214101 . D h : Hp . D . E ! seqP'a

.

[#206-47] D . seq/a = maxP'(a u t<seqP'a)

.

(1)

[#14-21] D . E ! maxP'(a u t'seq/a) (2)

h.(l).(2).Dh.Prop

#214*2. h

#214-21. h

#214*22. h
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—* —

>

#21424. h :Pe connex r» Ded . « e sect'P . D . seqP'a = min/(C'P — a)

[#211-721]
v — —

>

#214-241. h : P e connex . P e Ded . a e sect'P . D . maxP'« = precP'(C'P - a)

#214-24 p. #211-71

#2143. h::a,£6*.3a,0:aC£.v.£Ca:.

«~e 1 . # = 6/3 (a, /3e* . a C j3 . a=f=/3) :. D :.

X C a; . D K . s'\ € k : D . Q e Ser n Ded
[#210-12-253]

#214-31. h :. Hp #214-3 : X C k . Dx . p'\ n «'* e * : D . Q e Ser r> Ded
[#210-12-254]

#214-32. h : P e connex. g;! P. D . ?'P*eSer r. Ded [#212-3-35]

#21433. h : P e trans r\ connex . a ! P . D . $'P e Ser n Ded [#212-31'44]

#21434. hPe connex . g ! sgm'P . D . sgm'P e Ser n Ded [*21 2-3'54]

#214-4. h :. P 2 = P . P e connex . D : P e Ded . = . d'maxP = - CTseqP

[#211-53]

#214-41. h :. P e Ser . D : P2 = P . P e Ded . = . (I'maxP = - (PseqP

[#211-552]

#21442. h : Pe Ser r> Ded . P2=P .ae sect'P.D . limaxP'a = liminP'(C'P -a)

Dem.

h . #211-721 . D V :. Hp . D : seq/a = minP'(C'P - a) :

[#214-101] D:~E!maxP'a.D.ltP'a=minP'(C'P-a) (1)

h. #211-726. Dh:Hp.E!maxP'a.D.maxP'a = precP'(C'P-a) (2)

V . #214-14-41 . D h : Hp . E ! precP'(C'P - a) . D .~E ! inaxP'(C'P - a)

.

[#207-12] D . precP'(C"P - a) = tlP'(C"P - a) (3)

h . (2) . (3) . D H : Hp . E ! maxP'a . D . maxP'a = tlP'(C'P - a) (4)

h.(l). (4). #207-46. D

h :. Hp . D : limax/a = minP'(C'P - a) . v . limax/a = tlP'(C'P - a) :

[#207-46] D : limaxP'a = liminP '(C'P -a):.DK Prop

#214-43. h : . P e Ser r. Ded . a e sect'P . D :

limaxP'a = liminP'(C'P - a) . v . maxP'aPx
minP'(C'P - a)

Dem.
\-

. #214-11 . D h :. Hp . D :^E ! maxP'a . D . limaxP'a = seqP'a

[#211-715] = minP'(C"P-a) (1)

h . #211-726 . D h : E I maxP'a .~E ! millj*'(0'P - a) . D .

limaxP'a = tlP
'(C'P - a) (2)

h . (1) . (2) . #207-46 . D hi, Hp !<^E 1 max/a . v .~E ! minP'(C'P - a) : D .

limaxP'a = limin/(C'P - a) (3)
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b . #211-726 . D t- : Hp . E ! maxp'a . E ! minP<(C'P - a) . D .

E ! max/a . E ! seqP'a . seqp'a = minp^CP — a)

.

[#206-5] D . maxp'aPx minp'(C'P- a) (4)

h.(3).(4).Dh.Prop

The following propositions are no longer mere restatements of previous

results.

#2145. b : P

€

Ded . D . a IB'P . a \~B<P 7b<P = seqP'A .~B'P - maXp'C'P

h . #205*161 . #214-101 . D h : Hp . D . a ! seoyA

.

[#20614] D . a ! i?P . "b'P = seqp'A (1)

h . #20618-2 . D h . seq/C'P = A (2)

b . (2) . #2141 . D h : Hp . D . a ! maxP'C"P

.

[#93117] D.Rl~B'P.~B'P=ma,xI,'C<P (3)

h . (1) . (3) . D h . Prop

#214-51. b :. PeDed . D :~(#P#) . v . xe D^P^-P2
)

Xtera.
—

>

—*

b . #214-1 . D h :. Hp . D : g; ! maxpVa; . v . a - seqp't'a?

:

[*53-301.#206-42] D : a I i
l® - P'n • v . a * P ~ P*'® '

[#51-31 .#33-4] D :~ (xPx) .v.xe D'(P ^ P2
) : . D h . Prop

#214-52. ^PeDed.PGP^.D.PGJ [*214'51]

#214-53. h:P e Ded.D.D'P = D f(PAj)

Dem.

b . #214-51 . D h : Hp . xPx . D . a e D'(P ^ P2
)

.

[#3313] D.(a2/).*P2/.a-P2y.

[#34'54.Transp] D. (f[y) . xPy . x % y (1)

h . (1) .#13-195 . D h :. Hp . D : (ay) .xPy.D. (fry) .xPy.x^y:

[#3313] D:D'PCD'(PnJ):
[#33-25] D : D'P = D'(P n J) :. D h . Prop

#214-531. b : P e Ded . D . C'P = C"(P * J)

h . #93-12 . D f- :. a e £<P . D : a~e V'P : (ay) 2/-P* =

[*13'14] 3 (ay) . yPx ,x\y\
[#3313] D:« e a'(PnJ) (1)

b . (1) . #214-53 . D h : Hp. D . D'P u &P C tf'(P A J)

.

[#93-12] D.O'PCC'(PnJ).
[#33-252] D. Q'P = C'(Pn J) :Dh. Prop
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#214532. t- : P e Ded . D . d'P = d'{P n J)

Dem.
. —

y

v 4

h . #34*54 . D V : P lx = i
l
os . D . P'x = P"P'x

.

[#205123] D . maxp't'ic = A (1)

h . #206*134 . D h : P'# = i'x . D

.

y y y y /

seqp'P'a = C'P n # {t<# C P'y . P'y C -p'P'H'x]

[#53-301-01] =C'Pc\§ {i'x C P'y . Pl
y C-*P'x]

[Hp] =C'?nf {t'or C P'y ."P'y C - i'a?J

[*5M61] =A (2)

h.(l).(2). Dh:P'o; = t'a;.D.maxp <P^ = A.seqp'Pfa;=A (3)

h . (3) . Transp . D h :. Hp . D : (x) ,~P'x + t<#

:

[#51'401 .Transp] D : («) : a ! P<aj . D . a ! P'a; - i'x

:

[#33-41] D:a;ea'P.D.« e a'(Pn/) (4)

K (4) . #33-251 . D h . Prop

#214-54. h:PeDed.D.PAjr € Ded

Dem.

h . *205'111-195 . D h . maxp'a Can C7'(P A J)-P"a
[#37-201] Can 0'(P r>J)-(Pn J)"a

[#205-1 11] C max (P n J)<a

.

[#24-59] D h : ~a ! max (P A /)'« . D .~g ! maxP'a (1)

h.(l). #214-1. Dh:Hp.~a!max(Pr>jya.D.a!seqp'a (2)

h . #206-2-17 . D
h :. x seqp a . = : y e a n O'P . Dy . yPoc .y=^x:xe C'P '.

yPx . Dy . (g^) . z e a ,<^(zPy) :

[#214-531] = : 2/ e a n 0'(P nJ).Dy .y(PnJ)x:x€ C'(P n J) :

2/P« . D„ . (a«) . z e a . ~(zPy) :

[#23-43.*3'14] D : 3/ e a r. C f(P nJ).3v .y(Pf*J)x:xe C'(P n J) ;

y(PnJ)x.Oy . (rz) .zea,~{z(PfiJ)y}:

[#206-17] D:«seq(PnJ)a '

(3)

h . (2) . (3) . D h : Hp .~g ! mtx (P n J)'a . D . a ! seq (P n /)<a (4)

h . (4) . #214-1 . D h . Prop

#214-6. h : PeDed . Psmor Q . D . QeDed

Ztem.

h. #207-65. #214-11.3

I- : P e Ded . 8 eP smor Q . D . (a) . £"a e a<limaxQ .

[#71-481] D . Cl'd'S C d<limaxQ .

[#15111.#214-12] D . QeDed .O h . Prop
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#214"7. h : . P € semi Ded . = : « e sect'P . a 4= G'P . Da . g; ! (maxP'a u seqP'a)

[(#214-02)]

#21471. h . Ded C semi Ded [#214*1-7]

#214-72. h : . P e trans .D:Pe Ded . = . P e semi Ded . g ! B'P
[#214-7-13 . #205-121]

#214-73. h . semi Ded - t'A C d'B [#206-14 . #211-44 . #214-7]

The proof of the following proposition is given in a somewhat compressed

form, since, if given with the usual fullness, it would require various lemmas

not required elsewhere.

#214-74. h : P e Ser n semi Ded . D . P
fc
P%'x e semi Ded

Bern.

h . #214-7 . D h : Hp . a e sect'P . a 4= G'P . D . g ! (maxP'a u seqP'a) (1)

h . #205261 . D

h : Hp(l). P%'x~€ 1 .icea . D . max(P^P^'a;) ,ra = maxp ,r

(a n P%'x)

[#205-262] = max/a (2)

h . #211-75-56 . D h : Hp (2) . D . G'P - a C P*<« (3)

I- . (3) . #211-715 . D h : Hp(2) . Q ~ PtP*'x . D . seqP'a = minP'(P*'tf - a)

[#205-261] = min '(- a)

[*211-7l5.#206-25] = seq '(an5vaj) (4)

h.(2).(4).D
—

>

— —

>

4— —

>

<—
h : Hp (4) . D . maxp'a u seqP 'a = maxg^a n P^) w seq</(a n P^'x) (5)

h . (1) . (5) . D t- : Hp . a e sect'P . a =t= O'P . P#';c~e 1 . x e a . Q = P£P*'£c . D .

g ! [maxg
f
(« r> P%'x) u seqQ'(a r> P^)} (6)

h . #211-715 . D h : Hp . P%'%~e 1 . a = P'x . D . seq/a = mmP'P%'x
y / /

[#205-261] = min (P £ P^x)'P^'x

[#206-14] = seq(P£iV#)'A (7)

V . (7) . #206-401 . D h : Hp . P^~e 1 . D . g ! s"eq (P£P#'#)<

A

(8)

1- . (6) . (8) . D r- :. Hp . P#^~ e 1 . Q = PtP*'x . D :

£ e sect'Q - I'C'Q . P . g ! (maxQ'£ u seq</£) :

[#214-7] D:Qe semi Ded (9)

h . #214-7 . #20035 . D h : Hp . P*<# e 1 . D . P £ P#<* e semi Ded (10)

r . (9) . (10) . D K Prop

#214-75. t- : P e semi Ded . P smor # . D . Q e semi Ded
[*205'8 .#206-61 . #2127]
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Summary o/#215.

A stretch of a series is any piece taken out of it, and not having any gaps;

that is, it is a class contained in the series, and containing all terms which
come between any two of its terms. Thus it is defined as

a(aC<7'P.P"anP»aCa).

We denote the class ofstretches by "str'P," where "str" stands for "stretch"

or "Strecke." A stretch which has no predecessors is a section of P; one

which has no successors is a section of P. The properties of stretches are

chiefly important in connection with compact series. In discrete series,

stretches are the same as intervals.

If P is transitive, stretches of P are the products of sections of P and

sections of P, i.e. of upper and lower sections of P (#2 15 -16). If P is

connected, and a is a lower section, /3 an upper section, then if the two have

a stretch a a /3 in common, we have

o = P"(a */3)u(an/3).j3 = P"(a n j3) w (a * /3) (#215161).

A slightly more general form of this proposition is

#215'165. r- : Ppo e connex . a e sect'P . j3 e sect'P . g ! a ^ /? . D .

a = P*"(a * £) . = P*"(a * £) . P"a = Ppo"(« * £) . P"/3 = Pp0"(« * £)

A specially important case is when a and fl have just one term in common.

In this case we have

*215'166. H : Ppo e Ser . a e sect'P . fi e sect'P . a r> ff € 1 . D .

a n /? = t'maxp'a = t'minp'yS

When a n /? has more than one term, if the upper limit or maximum of a

and the lower limit or minimum of /3 both exist, the latter precedes the former

(#215'52); if a and fi have no common part, but together exhaust the field

of P, we have either limaxp'a = liminp'yS or limaxp'aPxlimhip'/i?, assuming

E ! limaxp'a . E ! liminp'/? (#215"54). Hence if limaxp'a has no immediate

successor, it must be identical with liminp'/J. Thus we have

*215543. r:PeSer.aesect'P./3esect'P.av;/3 = C,<P.aA/?eOul.
E ! limaxp'a . limaxp'a~e D'PX . D . limaxp'o = liminp'yS

The above propositions will be useful in Section C (#231 and #233).

#21501. str'P = a (a C C fP . P"a n P"a C a) Df

#2151. (-:aestr<P. = .aCC"P.P"anP"aCa [(#21501)]
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*21511. I- . str'P = str'P [(*215*01) . *33'22]

*21513. h . sect'P C str'P . sect'P C str'P [*215*1 . #21 ll]

*21514. h : a e sect'P . yg e sect'P . D . a n /3 e str'P

Dem.

h.*211-l.DH:Hp.D.aCC'P.P"aCa.P"/3C/3.

[*22-43.*37*21] D.a^C C'P . P"(a n /3) C a . Pi((a n /S) C /3

.

[*22'49] D . a n /3 C C'P . P"(a r> /3) n P"(a n /?) C a a /3 .

[*215-1] D . a ^ /3 e str'P Oh. Prop

#21515. h : P e trans . a e str'P .D.ou P"a € sect'P . a u P"a e sect'P .

«=(auP"«)n(auP"a)
Dem.

h . *211-27 . *215 1 . D h : Hp . D . a w P"o e sect'P . a u P"a e sect'P (1)

h . *2151 . *22-62 . Dh:Hp.D.a=au (P"a n P"a)

[*2269] = (aw P"a) n(au P"a) (2)

h.(l).(2).Dh.Prop

*21516. h : P e trans . D . str'P = 7 {(a«,/3) . a e sect'P . /3 e sect'P . 7= a n /3|

= s'((sect'P)r> "sect'P}

[*21514-15 . *40-7]

*215161. h : P e connex . a € sect'P . /? e sect'P . 3 ! a r» /3 . D .

a = P"(a r, /3) w (a a /5) . /5 = P"(a r» /?) u (a r, /3)

h . *21M . *37-2 . D h : Hp . D . P"(a n /3) u (a r. £) C a (1)

h . *211-702 . Z>h:.Hp.#ea-/3.D:ye/3.D. #P?/

:

[*37l] D: a !(an/5).D.^eP"(an/3) (2)

h.(2). Dh:Hp.#ea.D.#eP"(an/3)u(an/3) (3)

h . (1) . (3) . D h : Hp . D . a := P"{* n /3) u (a n £) (4)

h.(4)|j. Dh:Hp.D./3 = P"(an/3)u(an/?) (5)

h . (4) . (5) . D h . Prop

$215162. h : P e trans a connex . a e sect'P . /3 € sect'P . 3 ! a a /3 . D .

P"a = P"(a a £) . P"/3 = P"(a n 0)
Z>em.

h . *215161 . 3 h : Hp . D . P"a = P"P"(a n /3) v P"(a ^ /?)

[*201'5] = P"(ar>/3) (1)

Similarly h : Hp . D . P"£ = P"(a r> /3) (2)

h.(l).(2).Dh.Prop
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*215 163. H : P e trans n connex . o e sect'P . /3 e sect'P . g ! a r» /3 . 3 .

Dew.

h . *40-16

.

D f- . p'P"a Cp<P"(a a £) (1)

I- . *10-56 . *37-l . D \- :. Hp : y e a n . Oy.yPx '.zeP"{<x n /3) : D . zPx (2)

I- . (2) . *215161 . D I- :. Hp : yea n/3 . 3y . t/Pa : D : sea . Dz . zPx (3)

h . (1) . (3) . D I- . Prop
— —> —

>

—

>

*215164. I- : Hp *215\L62 . D . minP'/3=minP<(a« j3) . maxP'a = max/(a r> /3)

.

-> — —

>

->
seqP'a = seqP'(a n /3) . precP'/3 = precP

r
(a n /3) .

—* — .—

»

.—

>

ltP'a = ltP
r
(o n /3) . limaxP'a = limaxP

f
(a n /3)

Bern.

V . *215'162 . D h : Hp . D . maxP'a= a - P"(a n /3)

[*215161] = a * /? - P"(cl r, /3)

[*205111] =maxP'(an/3) (1)—

>

-*
Similarly h : Hp . D . minP'/3 = minP

f
(a ri /?) (2)—

>

—

>

h . *215'163 . *20613 . D H : Hp . D . seq/a = seqP'(a n /?) (3)
—

>

—*
Similarly h : Hp . D . precP'/3 = precP'(a r\ fi) (4)

I- . (1) . (3).*207-iri2.Dh : Hp . D . ltP'a = ltP'(a n j3) (5)

h . (1) . (5) . *207-45 . D f- : Hp . D . limaxP'a = ]imax/(a r> /3) (6)

K(l). (2). (3). (4). (5). (6). Dr. Prop

*215165. H : Ppo e connex . a e sect fP . /3 e sect'P . g; ! a n £ . 3 .

a = P*"(a a 0) j3 = P*"(a * jS) . P"a= Ppo"(a * £) . P»£ « £.»(* * £)

Dera.

i- . *21117 . D H : Hp . D . a e sect'Ppo . /3 e sect'PP0 . g ! a a /3 .

[*21 5-161] D . a = P*"(a *£)./? = P*'<(« aj8) . (1)

[*91'52] D . P"a = Ppo"(« ^ £) . P«0 = Ppo"(a a 0) (2)

I- . (1) . (2) . D h . Prop

*215166. f- : Pp0 e Ser . a e sect'P . /3 € sect'P . a n /3 e 1 . D .

a n /3 = fc

fmaxPfa = t'minP'/3

I- . *215-161 . *211-17 . D I- : Hp . D . a = (a n /3) u P^'ia n /3)

.

[*215-165] D . a - P"a = (a n /3) -P^o n /3)

.

—

>

—

»

[*205'11] D . maxP*a = max (Ppo)'(a n /3)

[*205-17] = a n /3 (1)

Similarly I- : Hp . D . minP'/9 = anj3 (2)

K(l).(2).Dr.Prop
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#21517. I" : P € trans . D . P"a * P"/3 e str'P

Dem.

r . #211-1511 . D r : Hp . D . P"0 e sect rP . P"a e sect rP (1)

h . (1) . *215'14 . D r . Prop

#21518. I- . P (a; hh y), P (ar i- ?/), P (# -{ y), P(x-y)e str'P

Dem.

I- . *211-13'3 . D H . P#'y e sect'P . P*<a e sect'P (1)

K #21116. Dh.Ppo^€sect'P.P^ '«esect'P (2)

h . (1) . (2) . #21514 .31-. Prop

#21519. b-.PtGJ.xeC'P.D.i'xe&tr'P

De,m.

h . *53301 . D I- . P"l'x n P"l<x = P'a n P'a (1)

r
.
(1) . *50'43 . D I- : Hp . D . P"i<x n P"t'a: = A (2)

I- . (2) . #215-1 . D b . Prop
—

>

—

>

#215*2. h : P e connex . a e str'P . # e a . D . P"a = a — maxp'a w P'#

.

^ —

>

<_
P"a = a — minp'a u P'#

Dem.

K #20511l.DKa-maxP<aCP"a (1)

I- . #37-18 . D r : Hp . D .~P'x C P"a (2)

K(l).(2). Dr:Hp.D.a-m"aVav^CP"a (3)

I- . #202-103 . D i- :. Hp .y eP"a. D '.ye~P'x w t'^ft

:

[#37-181] D:yeP^ut^.v.yeP"a:

[*4'73] D:yeP<xui<x.v.y€ P"a n P"a :

[*215'1] 3:^P'^^ y a:

[Hp] D:^Awa (4)

K #205-111. Dh. 2/ eP"a.D.3/~em"Sp'a (5)

h.(4).(5). D b :Hp.y e P"a.3r y €0-maxP'auP^ (6)

h.(3). (6). DK-Hp.:).P"a = a-r^a
>

xp'auP^ (7)

Similarly h : Hp . D . P"o = o - minP
ra w P<# (8)

K(7).(8).Dr.Prop

#215-21. V : P econnex . a,/?estr'P . g; ! a n /3 . D . a n tfestr'P

r.#215-2.D(-:Hp.D.(a^). a! €any3.P"aCawP^.P'^C^uP ta; .

P"aCauK. P"/3 C £ w P'a

.
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[*22-68] D . (a®) .xean/3. P'*a n P"/3 C (oa/SJu?* .

P"«n?«iSC(«ftj8)uK.

[^7'2l]D .(^x) .x ear\/3.Ptt(af\0)C(af\0)»P tx.Ptt(af\0)C(cin0)xj%x.

[#22-69] D . (ga) . x e a ^ $ . P"(« n /?) n P"(a n /?) C (a * £) v (P'a n P'a) (1)

I- . #3718 . D r : x e a n /5 . D . P'a C P"a n P"/3 . P'a C P«a n P"/3 .

[#22*49] D . P'o; n P'a C P"a n P"a ^ P"/3 r, P"£ (2)

K (2) . #215-1 . D h : . Hp . D : a e a r> . D . P'x n P'x C a r> £ (3)

i- . (1) . (3) . D I- : Hp . D . (gas) .^«a/S. P"(a r> /3) a P"(a n £) C a n /3 .

[#215-1] D . a n £ e str'P : I) h . Prop

#215-22. h : a, # e str'P .D.an/Se str'P

I- . #2151 . D I- : Hp . D . a C C'P . C C'P . P"a r, P"a C a . P"/3 r, P"/3 C /3

.

[#2247 49] D . a * £ C C'P . P"a n P"£ n P"a * P"/3 C a n /?

.

[#37-21] D.an^CC'P. P"(a * /3) n P"(a n £) C a * £ .

[#215-1] D . « n yg e str'P : D h . Prop

#21523. h : P e connex . fi C str'P . J[ ! p'/A . D . s'/a e str'P

Bern.

h . #215-2 . D I- :. Hp . x e p'j* . D : a «/* . Da P"a C a u P'a . P"a C a uft :

[#40-13] D : ae ^ . Da . P"a C«'/t vP'a . P"aO'juvP'a:

[#40-43-38] D : P"s'/a c SV w -P'<* • £"*'/* c *'/* u^ *

[#22-4969] D : P"s 'ft n P"sV C

«

'/a u (P'a r. P'#) (1)

I- . #40-14 . D f- : Hp . x ep'jj, .ae/ti.D.aea.ae str'P .

[#3718] D . P (x r\ P'a C P"a n P"a . a e str'P

.

[#215-1] D.P'anP'^Ca.

[#4013] D.P'^aP'^CsV (2)

r . (1) . (2) . D h : Hp. g I /* . D . P"sV * P"s>Cs'/a (3)

(-.#37-29. Dr :/A =A.D.P"sVnP"syCs> (4)

h . (3) . (4) . D r . Prop

#215 24. \--.fiC str'P . D . C'P nj^ e str'P

I- . #37-265 .Dr. P"(j»> n C'P) ^ P"(p> n C(P) - P"p'/a r. P"^ (1)

h . #37-2 . Dhae/i.3. P"p'/A n P"^?V C P"o n P"o (2)
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h . (2) . *215'1 . D i- :. Hp . D : a e/i . D . P"p(
fi rt P"pV C a

:

[#4015] : P"p> n P"p'fM Qp'p (3)

H. (1). (3). #215-1. DH. Prop

#21525. V-.fiC str'P . a ! fi . D . p> e str'P

h . #40*24 . #215-1 . D I- : Hp . D . p'p C C'P (1)

h . (1) . #215-24 . D I- . Prop

#215-3.

Bern.

h :. P e connex .a, fie str'P - t'A . a n /3 = A . D :

a C P"£ . = . a C#'P"/3 • s . /3 Cp<P<*a . = . /? C P"a

r . #215-1 . D I- : Hp . D . a C C'P - jS

r . #22-48 . D f- : aCP"/?. D . an P"/3 CP"/3 n P"/3

:

[#215-1] DI-:Hp.aCP"/3.:>.anP"/3C/?.

[#22-621.Hp] D.ar,P"/3 = A

|-.(l),(2).Dh:Hp.aCP"^.D.aCCrP-^-P"y3.

[#202-501] D.aCp'P"/3

r. #40-61. DH:. Hp.aCp'P"/?. D .aCP"/?

f- . (3) . (4) . D h : . Hp . D : a C P"/3 . = . a Cp<P"0

.

[#40-67] =./3CyP"a.

(6)p

h . (5) . (6) . (7) . D H . Prop

= .0CP"a

(1)

(2)

(3)

(4)

(5)

(6)

(?)

#215-31.

Bern.

V : P e trans r\ connex . a e str'P . E ! minp'a . E ! maxP'a . D .

a = P (minpfa n maxp'a)

I- . #205-2 . #90-15-151 .DhiHp.^ea.D. minp'a P*y

P
(1)

(2)

(3)

I- . (1) p . #205-102 . 3> h : Hp . y e a . D . 2/P#maxp'a

h . (1) . (2) . #121103 . D r- : Hp . D . a C P (minP'a m max/a)

r . #121-242 . #201-19 . #205-2 . D h : Hp . D .

P (minp'a m maxP(a) = t'minP'a u (P'minp'a n P'maxpV) w t'maxP
ra

[*37-18] C t'minp'o v (P"o r> P"a) u t'maxp'a

[#205-1 1-111.#215-1] Ca (4)

h . (3) . (4) . D (- . Prop
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#215*32. h : P e trans r» connex . a € str'P . E ! minp'a . E ! seqp'a . D .

a = P (rainP
fa i— seqP

r
a)

Dem.
<— —

>

(- . *206-211 . #205-2 . D h : Hp . D . a C P#rminP'a n P'seqp'a (1)

I- . *206'22 . #205*22 . D h : Hp . D . P'minP'a n P'seqp'a = P"a n (a u P"a)

[*215"1] Ca.

[*20119.*12r241] D . P (miiip'a i- seqP'a) C a (2)

h . (1) . (2) . D h . Prop

#215'33. h : P e trans r\ connex .

a

e str'P . E
!
precp'a . E ! seqp'a . 3 .

a =P (precp'a - seqp'a) [#206'22 . #2151]

*2154. h : P e connex . p e CI excl'(str'P - fc'A) . D . Pcl £ /* = Plc £ p

Dem.

|-.#8412.Dh:.Hp.D:a,/3e^.a + /3.D.art£ = A: (1)

[#170'1] D:a(Pcl [>)/3. = .a,/3e^.a!a-P"/?.

[*215-3.Transp] = . a, £ e /*, . 3 I £ - P"a

.

[(1).*170102] = . 0, /? efi . aPlc fi :.D\-. Prop

#21541. h : P e trans ^ connex . /a e CI excl'(str'P — i'A) . D . Plc £ /a e Ser

Dem.

r- . #84-12 . #170102 . D h :. Hp . D : a (Pie £ /a) £ . = . a ! £ - P"a (1)

h . #215-3 . D

|-:Hp.a,/3e^.aCP"yg.y3CP"a.D.aCP r^.aCP"
/
3.

[#215-1] D.aC/? (2)

Similarly I- : Hp (2) . I) . £ C a (3)

h.(2).(3).Dh::Hp.a,
/
8e/i .D:.aCP"y3./3CP"a.D.a=y3:.

[Transp.(l)] D :.a*£ 3 : «(PtoM0 v .£(Plc D/*)a (<*)

I- . #37-1 . D

h::Hp./3n 7 = A.~(7 CP"£).:>
[#202103] 3

[#11-61] D

[#371] D
[#201-5.*37-2] D

[Transp] D

: . (a*) xzeryiyep.^y.™ {zPy) *z%y\.

:.fas)izey:yep.Dv
*yPei.

:.yel3.Dv .(Rz).zey.yPzL

;.0CP"7 :.

:. 7 CP"a.D./3CP"a:.
:. g ! - P"a . D . a ! 7 - P"a (5)

h.(5).(l).Dh:.Hp.D:a(Plc [:/i)y3./3(P1cD^)7-3.«(PicD^)7 (6)

h.(4).(6).*l70!7.Dh.Prop

#21542. h:Pe trans n connex. /ie CIexcl'(str'P-t'A)./i~el.D.(7'Plct^=^
[#202-55. #215-41]

#215"5. h :. P € trans n connex . a e sect'P . j8 e sect'P . D :

3 l a « £ . limaxP'a = limhV/3 . D . a n & e 1 [*207'7l . #215-164]
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#215-51. h : PeSer . a e sect'P . ft e sect'P . a n ft e 1 . D .

limaxp'a = liminP'/3 «= Tf(a r> 0) [#207'72 . #215-164]

*215'52. h : Hp *215'5 . a ^ y8~e v 1 . E ! limaxp'a . E ! liming . D .

liminP
f
/3 P limaxp'a

Dem.

f- . #215*164 . D h :. Hp . D : limaxp'a= maXp'(ar\
J
0).v.limaxpra=seqp''(a n^Q):

Hminp'yS = minP
f(a r\ ft),v . liminp''/? — precP'(a n /3) (1)

(- . #205 '732 . D h : Hp . limaxp'a = maxp'(a a £) . liminp'/S = minP
f
(a r» /3) . D .

liminp'yS P limaxp'a (2)

h . #206-15 . D h : Hp . limaxp'a = seqpr(a r» ft) . iimmp'ft = rmnp'(a n ft) . D .

liminp'ySP lhnaxp'a (3)

h . (3) ^-^f - 3 I" : Hp . limaxp'a = maxP'(a r> /3) . liminp'tf = precP'(a nft).D.

liminp'ySP limaxp'a (4)

h . #206-73 . D h : Hp . limaxP'a = seqP'(a n jS) . limiV/3 = precP'(a n 0) . D .

liminp f
/3P limaxp'a (5

)

h.(l).(2).(3).(4).(5).Dh.Prop

#215-53. h : Hp #215-5 . a n £ = A . E ! limaxp'a . E ! liminp'/? . D .

limaxp'a P# liminp'yS

Dem.

\- . #207-2 . #20522 . D b : Hp . D . P'limaxP'a C P"a . P'liminp'/? C P"/3 .

[#211-1] D . PMimaxp'a C P"a . P'liminP<£ C /3 (1)

h . (1) . #37-1 . D h : Hp . lirainP'jSP limaxp'a . D . fax) . a? e a . lirainP
r^ P# .

[(1)] D. a !a*/? (2)

K (2) . Transp . D h . Prop

#215-54. h : P e Ser . a e sect'P . ft e sect'P .an/? = A.av;/3=C"P.

E ! limaxp'a . E I liminp'# . D : limaxp'a = liminpf
/8 . V .

limaxp'aP
1 Hminp'/3

Dem.

\- . #211-726 . D h : Hp . E !.maxP'a . E I mirip<# . D .

limaxp'a = maxp'a . Iiminp'/3 = seqp'a .

[#206-5] D . limaxp'a Px limmP'ft (1)

I- . #211-726 . D h : Hp .~E ! maxp'a . D .

limaxp'a = minPV? . liminp'^Q = vainp'ft (2)

H . #211-726 . D H : Hp .~E ! minp r
/3 . D .

limaxp'a = maxp'a . liminp'/i? = maxp'a (3)
h.(l).(2).(3).DI-.Prop
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*215-541. h :: Pe Ser. a esect'P.£esect'P. a u£=C'P. 3:.

any3e0ul.D:E! limaxp'a . = . E ! limhip'/?

[211-727 . *215-51]

*215542. h : Hp *215'541 . a * /3 = A . E ! limaxp'a . limaxp'a^ e BtP1 . D .

limaxp'a = liminP'/3

[*215'54.*211-727]

*215543. i- : P e Ser . a e sect'P . £ e sect'P .au j3 = C'P .an {3 eO v I

.

E ! limaxp'a . limaxP
fa~e D (PX . D . limaxp'a = liminp'^

[*215-542-51]

R&w II 43



*216. DERIVATIVES

Summary o/#216.

If a is any class, and P is any series, the derivative (or first derivative) of

a with respect to P is the class of limits of existent sub-classes of a n C(P,

i.e. ltP"Cl exf(o r\ <7'P). That is, a term x belongs to the derivative of a if

a set of terms exists which is contained both in a and in C'P, and has x for

its limit. The derivative of a with respect to P will be denoted by Bp'ou

In general, there will be members of a not contained in Bp'a, and members

of £j>
ra not contained in a. a is said to be dense in P if all its terms except

the first (if there is a first) belong to Sp'a, that is, if all its terms except the

first are limits of existent classes contained in a. a is said to be closed in P
if every existent sub-class of a which has no maximum has a limit which

belongs to a, i.e. if every existent sub-class of a has a limit or a maximum,
and the derivative of « is contained in a. If a is both dense and closed, it is

called perfect. In this case, all its terms are limits of classes chosen out of a,

and every class chosen out of a has a limit or maximum in a.

The second derivative of a is Sp'Sp'a, i.e. Bp*
c
a, and so on. (Derivatives

of infinite order cannot be dealt with till a later stage.) If P is serial, the

second derivative of a is always contained in the first (#216*14).

If P is a Dedekindian series, a is closed whenever BP'a C a. In order to

secure a Dedekindian series, it is sometimes convenient to replace P by the

ordinally similar series P>P, which is contained in the Dedekindian series
—

>

#

—

»

s'P. Then a is replaced by P"oc, and a is closed if the derivative of P"a
—

>

with respect to s'P is contained in P"a. The relation of the derivative of a
—

>

in P to the derivative of Pila in s'P has been treated in #212*6 and following

propositions. This subject is resumed below (#216*5 ff.).

The derivative of the series P will be defined as the series of its limit-

points, and denoted by V*P. Thus we put

V<P = Pt;D'ltp.

If P is a series, the derivative of a class a consists of those members x of

dcP which are such that members of a exist in every interval which ends

in x, i.e.

*216'13. b::P e Ser.3:.x € $P
(a.= :xe(I<P:yPx.Dv .'3_lan*P

(ynP'x

We have

#2X62. h . Sp'C'P = D'ltp

-

li'P

#2163. h : a e dense (P . = . a — minp'o C $P'a
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#21632. h : a e closed'P . = . CI ex'(a n C'P) C d'limaxp . V« C a

We prove (#216*4—*412) that the properties of a with respect to P, as

regards being dense, closed, or perfect, belong to S"a with respect to Q if 8
is a correlator of P with Q.

We next consider the relation of a in P to P"a in s'P (#216*5—*56).

The point of these propositions is that s'P is Dedekindian, so that a class is

closed in s'P if it contains its first derivative. (It is usual to define a class

as closed whenever it contains its first derivative; but this involves the tacit

assumption that the series P is Dedekindian. If P is the series of real

numbers, this assumption is of course verified.) We prove (#216*52) that

the derivative of P"a in s'P is P'"(C1 ex'a — G'maxp), i.e. is the class of

segments defined by such existent sub-classes of a as have no maximum ; we
—

*

show that a is dense, closed, or perfect in P according as P"a is dense, closed,

or perfect in s'P (#216'53-54 ,

56), and that a and P"a are closed if P"«
contains its first derivative (#216*54).

We end with various propositions on V'P (#216*6—'621), of which the

chief is

#216*611. h : P e Ser . a ! V'P . D . C'V'P = C'P - d'^ = 8F'C'P w ~B'P

This subject will be resumed in connection with well-ordered series

in #264.

#21601. V« = ltP"Cl ex'(a n C'P) Df

#216-02. dense'P = «(a-mTnP'aC8p'a) Df

#21603. closed'P = £ {CI ex'(a n C'P) C d'limaxp . SP'« C o} Df

#216*04. perfP = dense'P * closed'P Df

#21605. V'P = P[;D'ltp Df

#216-1. h : x eV« = (a£) . C a n C'P . a ! . x ltP [(*216*01)]

#216*101. \-:xeSP'a.=.('3_0).0Ca.'3_l0.0CP"0.x8e<iP

Dem.

h . #216*1 . #207*1 . D

h : x € Sp'a . = . (%0) . C a n C'P . g ! . n C'P C P"0 . x seqP .

[#37-15] = . (ftp) .0Ca.<3_\0.0C P"0 .x8eqP 0: D h . Prop

#21611. h.SP'aCP"a

Dem.

h . #216*101 . #206*142 . D h : xe SP'a 3 (R0) . £ C a . g ! £ . x € P"0 .

[#37*2] 3 x € P"a : D h . Prop

43—2
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#216-111. h.Sp'aCCI'P [#216'11. #37-16]

#21612. h . 5/o - V(a * CP) [*22-5 . (*216'01)]

#21613. h : : P e Ser . D : . as e

8

P'a . = :xe d'P : yPx .^.glaftP^nP^
Bern.

h . *206-173 . #216101 . D h :: P e connex . P2 G J . D :.

[*37-46] = :(a^):^Ca. a !^.^cA:yP^.^.a!^nP^:

[*24-58] D : yP* . Dv . a ! a a P'a? n P'y (1)

h . #33-41152 . D

Vi.xe

a

eP : yPa; . Dy .. a ! a n P'# n P'y : D : g ! a n P'as . a n P'# C o n C'P :

[*216'1] D:a?ltP (anP'a?).D.fl;eV« (2 )

h . #372 . #201-501 . D h : Hp . D . P"(a a ~P'x) C P<# (3)

h. #50-24. Df:Hp.D.ai~e(anP f
fl?) (4)

h . (3) . (4) . #207-232 . D

h :: Hp . xe d'P . D :. x\tP (a n Pte) . = : A? C P"(a n P<#) :

[#37-46] =:yPa?.D
tf
.aIanP'a;oP'y (5)

h . (2) . (5) . Z) h : . Hp . x e d'P : yPx . Dy . g ! a n P'x a P'y : 3 . a e SP'a (6)

h. (1). (6). #216-111. Dh. Prop

#21614. h : P e Ser . D . SP
a 'a C SP'a

J)em.

h . #71-47 . D h :. Hp . D : £ C ltP"Cl ex'a . a ! & . D .

(a*) . * C 01 ex'a . £ = ltP"* . a I £

.

[#37-26] D . (gX) . X C CI ex'a n d'ltP . £ = ltP"\ . a ! £

.

[#207-54] D . (gX) . X C CI ex'a n d'ltP . = ltP"X . a ! . limaxP'/3 = ltPVX

.

[#216*l.#37-29.*53-24.Transp] D . limaxP'/3 C SP'a

.

[#207-45] D.Itp<£CV« (!)

h . (1) . (#216-01) . Z) h :. Hp . Z) : £ e CI ex'SP'a . Z> .TtP'£ C SP'a :

[#4043-5] D : ltP"Cl ex'8P'« C SP'« :. D h . Prop

*21615. h:aC/8.D.Sp'aCSP'/3 [*37'2 . (#216'01)]

#216*16. h : P e trans n connex . D . SP'a = 8P'(a — minP'a)

Dm.

h . *24-26-101 . D h : minP'a = A . D . SP'a = SP'(« - mtnP'a) (1)

h . #51-36 .Dh:/3Ca.a!/3-E! minP'a . minP'a~ e £ . D

.

/3 e CI ex'(a — t'minP'a)

.

[*37-18] D .ltp'/9 C V(« - **minP'a) (2)
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h . *205'5 .Dh:Hp./SCa.g!/S. minP'a e . D . minP'a = minP'/3

.

[*207'262] D . ltp'/3 C ltP'(# - t'minP'«) (3)

h . (3) . #3718 . D h : Hp (3) . $ =f=
t'min/a . D . ltP'/3 C SP'(a - i'mmP'a) (4)

h . #205'194-8 . D h : E ! minP'a . D . minp'a = maxPVminP'a

.

[*207\L1] D . ltPVminP'a = A (5)

h . (5) . #2412 . D h : E ! minP^.#=t'minP'a.:>.ltP'/3C 8P'(a- i'min/a) (6)

h . (4) . (6) . D h : Hp (3) . D . hP<0 C S/(« - t'minP'a) (7)

h . (2) . (7) . Z) h : Hp . £ C a . g ! /? . E ! minP'a . D . lt//3 C 8P'(a-i'minP'a) (8)

h . (8) . *40-5-43 . D h : Hp . E ! minP'a . D . S/a C V(« - *<minP'a) (9)

h . (9) . *21615 . D h : Hp . E ! minP'a . D . V« = SP'(a - t'min/a) (10)

h.(l).(10).Dh.Prop

#2162. h . SP'C"P = D'ltP - if'P

Dem.

h . #3715 . #216111 . D h . SP'CP C D%> -~B'P (1)

h . #216-1

.

D h : x e D'ltP - hP'C'P .D.x ItPA

.

[#207"3] 5.xe~B'P (2)

h . (2) . Transp . Dr. D'ltP - ?'P C SP'C'P (3)

h . (1) . (3) . D h . Prop

#21621. h:PeWn connex . D , $P'C'P = d'P - a<(P-^P*)

[*207-35.*216-2]

#21622. h :PeRl'/n connex. PGP* .3 .8P*C'P = a iP [*216'21]

#21623. h : P e trans . D . 8/C'P = seqP"<I<sgm<P=ltP"<I'sgm'P

h . *206'25 . #216101 . D
h : . Hp . D : x e 8P<C'P . = . (g/8) . a ! £ . /8 C P"/3 . seqP (P"£)

.

[*24-58.*37-29] = . (g/3) . /? C P"/3 . a ! P"£ . seqP (P"£)

.

[#201-55] D . (g/3) . P"P"/3 = P"P . a ! P"£ . x seqP (P"£)

.

[#212152] D.xe seqP"CFsgm'P (1)

h . #211-4 . D h . seqP"(I<sgm<P = ltP"(I<sgm'P (2)

h . #212152 . (#216-01) . D r . ltP"<I<sgm'P C SP'C'P (3)

h.(l).(2).(3).Dh.Prop
—

#216-3. h : a e dense'P . = . a - minP'a C 8P'a [(#216*02)]

#21631. h : a e dense'P . = . ft C C'P . a n P"a C 8P'a

Dera.

V . #216-3111 . D h : a e dense'P . D . a - minP'a C d'P

.

[#205-11] D . a C C'P . (1)

[#205"11] D.a-minP'a=anP"a (2)

h . (1) . (2) . D h . Prop
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#216*32. h : a e closed'P . = . CI ex'(a n C'P) C d'limaxp . 8P'a C a

[(#216*03)]

#216*33. hi.aeclosed'P.^^Co.alyS.^CP^.Dp.alTtp'^.ltp^Ca

Bern.

H . #207*45 . #2051 23 . D h :. CI ex'(a n C'P) C d'limaxp . = :

/3 C a . g ! j3 . C C'P . /? C P"/3 . Dp . g ! ltP'/3

:

[#37-15] = :/9Ca.g!/3./3CP''/3.Dp.g!ltp'/? (!)

h. #40-43-5. D h:.8p'aCa. = :/3Ca. g I /3./3C C'P. D
fl
JtP'£Ca:

[#207-ll.*24'12] = :/3Ca.g!/9.#C C'P. maxP'/3 = A . D3 . ltP'/3 C a :

[*205-123.#37l5] ==:/3Ca.g!/3./9C P"£ . Dp . itp"'/9 C a (2)

h . (1) . (2) . #216-32 . D h . Prop

#21634. h : : P e connex . D : . a e closed'P . = :

£ C a . a ! £ . £ C P"/3 . Dp . ltP'/3 e a [#216*33 . #71-332 . #207-24]

#216-35. h : P e Ser . CL ex'a C d'limaxp . D . CI ex'Sp'a C d'limaxp

Bern.

h . #71-47 . #37-26 . D

V :. Hp . D : e CI ex'8P'a 3 ($*•) . XC CI ex'a a d'ltP . /3 = ltP"X . a I £

.

[#207-54]

D . (gX) . X C CI ex'a a d'ltP . /? = ItP"X . g ! £ . IimaxP'/3 = limaxP's'X .

[#37-29 .Transp]
— —

D . (gX) . X C CI ex'a n a'ltP . = ItP"A. . g ! X . limaxP'/3= limaxP's'X

.

-» —

»

[#53'24.Transp] D . (gX) . s'X e CI ex'a . limaxp'/9 = limaxP's'X

.

[Hp] D . g ! limaxP'/3 :. D h . Prop

#216-36. h : a e perf'P . = . a e dense'P o closed'P [(#216-04)]

#216-37. h : a e perfP . = . CI ex'a C d'limaxp . SP'a = a - minP'a

[#216-3-32-36]

#216-371. h : a e perf'P . = . CI ex'a C d'limaxp . a C C'P . SP'a = an P"a
[#216-31'32-ll-36]

#216*38. h : P e trans r» connex . a e dense'P . D . 8P'a e dense'P . SP'a C Bp'Sp'a

Dem.

h . #216*3*15 . D h : Hp . D . 8P'(a - minP'a) C SP'SP'a

[#216-16] D . Sp'a C Sp'Va •

[#21 6*3] D . Va e dense'P : D h . Prop

#216*381. H : P e Ser . a e dense'P . D . 8P'a = SP'SP'a . minP'Sp'a = A
[*216-38-14*ll]
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#216382. h : P e Ser . a e dense'P . CI ex'a C (I'limaxP . D . SP'« e perf*P
[*216-35-381-37]

*216*4. h-.SeP smor Q . D . SP'a = S"$Q'S"<z . $"8P'a - $</£"«

De?ra.

h . #207*63 . D r : Hp . D . S/« = £"V'£'"C1 ex'a

[*71'491] =S"\tQ"C\ex'S«a

[(*216'01)] =S<%'S"a (1)

h . (1) . #72-52 . #216-111 . D h . Prop

#216*401. h:5ePsmor Q.3 .Pt8P ta = S'>(QtSQ
tS"a)

Bern.

\- . #150-37 . D h : Hp . D . ^ {Qt&Q'S«a) = (S'>Q)tS"8Q'S"a

[#216-4.*15111] = P£8P'«:3 h. Prop

#216-41. h:.SeP smor Q . a C CP . D : o e dense'P . = . #"a e dense'Q

Bern.

h . #216-3 . *37-2 . D

h :. Hp . D : a e dense'P . D . §"(a - mlnP'a) C £"SP'a

.

[#71-3S.#205-8] D . S"a - n2iQ'S"a C £"SP'a

.

[#216-4] D . S"a - m?V£"a C V#"«

.

[#216-3] D . £"a e dense'Q (1)

h ' (1
'P,G a -

J

h :. Hp . D : £"a e dense'Q . D . ^">S"a e dense'P

.

[#72-502] D . a e dense'P (2)

h . (1) . (2) . D h . Prop

#216-411. h : . S eP smor Q . a C C'P . 3 : a e closed'P . = . 8"a e closed'Q

Bern.

h . #20764 . #37*431 . D
h :. Hp . D : C C'P . g ! £ . £ e <I'IimaxP . D .

£"/3 C C'Q . a ! S"/9 . 2"£ e <I'limaxQ :

[*71*49] D : CI ex'a C <I'limaxP . D . CI ex'S"a C Climax^ (1)

h . *37-2 . #216-4 . D h :. Hp . D : SP'a C a . D . V#"« C S"a (2)

h . (1) . (2) . #216-32 . D h :. Hp . D : a e closed'P . D . S"a e closed'Q (3)

h . (3) p n'^"" . D h :. Hp . D : £"a e closed'Q . D . £"£"a e closed'P

.

[#72-502] D . a e closed'P (4)

h . (3) . (4) . D h . Prop
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*216-412. h :. SePsSof Q .aCO'P.D : aeperf'P . ~ . S«aejyerf'Q

[*216-41-411-36]

*2165. h : P € SerO . (IVP -
~P«C'P C 8 (s'P)'P"C«P

Bern.

h. #212134. #216*1110

h : Hp . P = AO . (IVP - ^''C'P = A . 8 (s'P)<P"C<P = A (1)

h. #21 2 -632. D

I- :. Hp . g ! P . P"(t~s~P"C <P . D : P"a = It (s'P)'?'a :

[#216-1] D : a ! a . a C C'P . D . P"a e 8 ($<P)'P"C<P (2)

h. (2). #212-132. #37-265O
h : Hp . 3 ! P . e CIVP -~P"C'PO . £ e 8 (s'P)'P"C"P (3)

h . (1) . (3)O h . Prop

#216-51. h:PeSerO.

8 (s'P)<P"C<P = 8 (s'P)'CVP = D'lt (s'P) - *'A = (I'sgm'P

Dew.

K #212-661. Dh:Hp.*:CD<Pe . a?- It (s'P)'* . D . # = It (s'P)'P"s'k (1)

h . #207-13 . #212133 . D h : Hp . k C D'P* . a? = It (s'P)'* . D . * 4= t'

A

(2)

h.(l). (2). #40-26.3

I- : Hp . K C D'Pe . a ! * . x = It (s'P)'* . D . a ! s'* . a = It (s'P)'"?'V* .

[#216-1] D . * e 8 (s'P)'P"C"P (3)

h . (3) . #216-1

.

D h : Hp . D . $ (s'P)'C's'P C 8 (s'P)'P"C"P (4)

h . #211-3 . #21615 . D h . & (s'P)'P"C"P C S (s'P)'C's'P (5)

h
.
(4)

.
(5)

.

D h : Hp . D . 8 (s
tP)<P"CtP = S (s'P)'C's'P (6)

[*216-2.#212133] = D'lt (s'P) - t'A (7)

h . (6) . (7) . #212-667 Oh. Prop

#216-52. h : PeSer . a ! P-a C C'P.3 . 8(s'P)'P''a==P'''(Clex'a-(I'maxP)

Dem.

h.*216-l.Dh:.Hp.D:7 e S(s'P)^a. = .(a«).«CP"a.a!f.7 = lt(s'P)'*.

[#212402] = . (a«) . * C P"a . a I * ~ E ! max (s'P)'* . y = s'*

.

[#71-47 .#37-2] = . (a/8) . /? C a . a ! £ -~E ! max (s'P)'P"/3 . y » 5'P"/9

.

[#40-5.#212-601]= . (a£) ./3C«.a!^-~E! maxP'/3 . y = P"# .

[#37-6] =. 7 f P'"(C1 ex'a - <I'maxP) :0 h . Prop

#216-521. h : P e Ser . a C C'P . D . P"(a - rnmP'a) = P"a - min (s'P)'P"a

Dem.

h . #71-381 . #204-34 O h : HpO . P"(a - m?nP'«) = P"a - P"mmP'a

[*212-6] = ~P"a - m?n (s'P)'P"a Oh. Prop
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#216 53. h : . P e Ser . ± ! P . a C C'P . D : a e dense'P . = . P"« e dense's'P

Bern.

h . #216-52-3 . D

h :: Hp . D :. P"a e denseVP • = :

P"a - min (s'P)'P"a C P"'(C1 ex'a - (I'maxP)

:

[*216'521] = : P"(a - min/a) C P'"(CL ex'a - CFmaxP)

:

037-6] = : x e o- rainp'a . D„ . (g/3) - $ C a.a!£.~E!maxp'/3.P'#=P"/3:

[*207-521] = : as e a - min/a . D* . (g£) . £ C a . g ! £ . x = ltP'/3 :

021 6'1] = :xea — minp'a . Ox . x e SP 'a :

0216-3] = : a e dense'P : : D h . Prop

#21654. h :. P e Ser . g ! P . « C C'P . D : « e closed'P . = . 8 (<;'Py~P"a C ?"(*

Dem.

K #216-52.3

V : : Hp . D : . 8 (s'P)'P"a C P"a . = : P'"(CL ex'a - <I'maxP) C P"a :

037-6] = :/3Ca.g!/?.~E! maxp'/3 . D
fl

. (gar) .xea. P"/3 = P'a;

:

O207-521] = :/3Ca.g!/3.~E! maxP'/3 . D^ . ltP'/3 ea

:

0216-34] = : a e closed'P :: D h . Prop

#216-55. h :. P e Ser . a ! P . a C C'P . D : a <? closed'P . = . P"a e closedVP
Dem.

h . #21244 . D h : Hp . D . P"a C Climax (s'P) (1)

h . (1) . *212-54'32 . D h . Prop

#21656. h :. P e Ser . g ! P . a C C'P . D : a e perf'P . s . P"a e
perfVP

.

= . 8 (s'P)'P"a = P"a - rain {<s*P)*P"a

0216-53-54-55-36-37 .*212-44]

*216'6. h : as (V'P) y.=.x,ye D'ltP . a?Py [(#216-05)]

*216601. h : x e D'ltP o (I'P . P 6 connex . E ! B'P . D . (P'P) (VP) a?

h. #206-14. Dh:Hp.D.5'PeD'ltP (1)

h . *202-524 . D h : Hp . D . (B'P) Px (2)

h.(l). (2). #216-6.31-. Prop

*216 602. h : P e connex . E ! B'P . D . <I' v 'P = D'ltP -?P = 8P'C'P

Dem.

h . #216-601 . D h : Hp . D . D'ltP -~B (P C CI'V'P (1)

h.*216-6. Dh. CI'V'P CD'ltP -i?'P (2)

h . (1) . (2) . #216-2 . D h . Prop
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*216'603. h : P e connex . a ! V'P . D . C"V'P = D'itP

Bern.

V . #20035 . D h : Hp . D . D'ltP~e 1

.

[*202'55] D . C'V'P = D'ltP Oh. Prop

*216-61. h : P e Ser . E ! B'P . D . d'V'P = d'P - d'P
x [*216'602'21]

#216-611. h : P € Ser . a ! V'P . . (7*V'P = C'P - d'Px
= 8P'C'P w iT'P

item.

h . *216'603 . #206-14 . D h : Hp , Z> . C'V'P = (D'ltP - B'P) u i?P

[*216*2] =8P'C'Pu~B<P (1)

[*2i6-2i] = (d'P - a'p,) ul?'P

[#93-103.*24-412] ^'P-d^ (2)

h . (1) . (2) . D h . Prop

#216-612. h : P e Ser . D . d'V'P C d'P - d'Px

Dera.

V . #216-6 . D h . d'V'P C D'ltp - iT'P (1)

h . *216'2-21 . D h : Hp . D . D'ltP - B'P = a'P - a'P, (2)

h . (1) . (2) . D h . Prop

*21662. h : P e Ser . g ! V'P . D . C'V'P = seqP"C"sgm'P = ltP"C"sgm'P

Dem.

h . #216-611 . D h : Hp . D . C'V'P= BP'C'P w B'P

[#216-23] = seqP"d'sgm'P u B'P (1)

[#206-14] = seqP"(d'sgm'P w t'A) (2)

h . #211-45 . D h : Hp . a 1 a'P - a'P, . D . a I D'(P, a 7) - t'A .

[#212-153] D . a ! sgm'P

.

[#212-155] D . d'sgm'P u t'A = C'sgm'P (3)

h . (1) . #216-23 . #207-17 . D h : Hp . D . C'V'P = ltP"(d'sgm'P u t'A) (4)

h.(2).(3).(4).Dh.Prop

#216621. h : P e Ser . a I V'P . D . a ! sgm'P . a ! CI'P - a'P, [#216-62-612]
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Summary q/"#2l7.

The purpose of the present number is to prove #217*43, which is required

in the theory of real numbers (Part VI, Section A), where Q will be the series

of positive ratios including zero, P will be the series of negative ratios in the

order from zero to — oo (both excluded), a the real number zero, and Z and W
two different series either of which may be taken as the series of negative and

positive real numbers. In virtue of #2 17*43, these two series are ordinally

similar.

#217-1. r : a a C'Q = A . D . (P£Q)"a = P"a [#160*1]

*21711. h : a ! a n C'Q . D . (P£Q)"a = C'P u Q"« [#160*1]

#217*12. h.D'(P£Q)eCD'Peu(C'Pv)"D'Qe [#217*1*11 .#211*11]

#21713. h : C'P a C'Q = A . D . P"a = (P$Q)"(a - C'Q) [*217\L]

#21714. h : a ! Q"a .l.C'Pv Q"a = (P$Q)"a [*217*11]

#217 15. h : C'P a C'Q - A . D . D'Pe w (C'P u)"(D'Qe - t'A) C D'(P£Q)e

[*217-13-14]

#217*16. h :. C'P a C'Q = A :~a ! if'P . v . a llf-'Q : D . C'P eD'CP^Q)*

Dem. K #211-301. D h :~a ! 5*P. D . C'PeD'P* (1)

h . (1) . #217*15 . D h : Hp .~a ! i?'P . D . C'P cD'(P^Q)e (2)

h . #217*11 . D h : a ! ~B'Q . D . (P^Qy'lf'Q- C'P (3)

h . (2) . (3) . D h . Prop

#217*17. h : . C'P a C'Q = A :~a ! ^B'P . v . a ! ~B'Q : D .

D'(P£Q)e = D'Pe u (C'P u)"D'Qe [*217*1215*16]

#21718. h :. C'P a C'Q- A :~a ! JS'P . v .~a ! 5'Q : D .

D'(P£Q) e = D'Pe v (C'P v)"(D'& - t'A)

Dem,

h . #211*301 . D h :~a \B'P . D . (C'P u)"t'A C D'P, (1)

h . (1) . #21717 . D h : Hp .

~

a ! B'P . D

.

D'(P£Q)£ =D'Pe u (C'P u)"(D'Qe - fc'A) (2)

h . #21711 . D h :~ 3 ! 1?Q . a ! a a C'Q . D . a ! (P£Q)"a a C'Q (3)

h . #217*1

.

D h :~a * #'Q • 3 !^P-«n C'Q =A . D . (P4lQ)"a=|=C'P (4)

h . (3) .
(4)

.

D h : Hp .~a ! #'Q • 3 IB'P • ^ • C'P~eT>'(P$Q)e (5)

K (5). #217-12-15. D

h : Hp (5) . D . D'(P4LQ)e = D'Pf u (C'P v)"(D'Qe - t'A) (6)

h.(2).(6).DKProp
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*2172. h : C'P n C'Q = A . D . D'Pe n (O'P w/)"(D'Q6 - t'A) = A
Dew.

h. #211-11. D

h : D'Pe C Cl'C'P : a e (C'P v)"(D'Q6 - t'A) . D . 3 1 a n C'Q : D h . Prop

#21721. h : a ! JS'P . D . D'Pe n (C'P u)"D'Q6 = A
Bern.

h . #21111 . D h : Hp . ae D'Pe .D-glCP-aOh. Prop

#217*22. h:P,Qe trans a connex . C'P n C'Q = A . a ! J?'P . a ! i?Q . D .

5
f(P4LQ) = s'P^(CfPu)^'Q

Dem.

h . #201-401 . #202-401 . D h : Hp . D . P$Q e trans n connex (1)

r-.(l). #212-23. D
h::Hp.D:.a{s'(P^Q)}^.=:a,^eD'(P4LQ)e .aC^.a + ^:
[*217*17-21] =: a, £ e D'Pe . a C/3. a =f=

/?.v. a «?D'Pe ./3 e (C'P u)"D'Q 6 .

v . a,/3e(C'P u)"D'Q6 . aC/S . a+ £ :

[#212-23] = : a (s'P) fi.v.ae C's'P
.

e C'(C'P u)Js'Q

.

[#160-11] = : a {s'P$(C'P u)VQ} :: D h . Prop

#21723. hi.P^etransnconnex.C'PnC'Q^Ai^al^P.v.^al.B'QO.
s'(P£Q) = s'P£(C'P u)!(s'Q)C (- ft'A)

Bern,

h . #201-401 . #202-401 . #212-23 . D

h::Hp.D:.o{s'(P4iQ)}^. = :a,/3 t-D'(P4LQ)e.aC/3.a4=^:

[#217-18-2] = :a,^eD'Pf .aC^.«4=^.v.a6D'Pe .^ e (C'Pu)"(D'Qe -t'A).

v . a, & e (C'P v)"(D'Qe - t'A) . a C £ . a =}= £ :

[*212-23.#160-11] = : a {s'P4l(C'P v)K^Q)t (-*>'A)} )3::Dh. Prop

#21724. h:on^ = A.D.(au)|k Cl^el->l [#24"481]

#217'25. h : C'P n C'Q = A . D . (C'P u) f C's'Q e {(C'P u)»s'Q} smof (s'Q)

[#217-24]

#2173. h : P e Ser . D . D'P6 = P"C'P w D'(P6 A I) - d'seqp

[#211-32-302-4l]

#217301. h : P e Ser . 7 e D'(Pe a 7) - (I'seqp . D . 7 = C'P - P"(C'P - y)

Bern.

h . #211-727 . D h : Hp . D .~E ! liminP'(C'P - 7)

.

[#207'44.*21 1-7] D .C'P -ye sect'P - Cminp

.

[#211-41-12] D . C'P - 7 = P"(C'P - 7) : D h . Prop
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#21731. H : P € Ser . 7 € D'Pe . D . (a0) . 7 = P"(G*P - P"/3)

Dem.
h. *201'53. D

h : Hp . 7 =?^ . /3 = P*'s .O.C'P- P (f^ = lP^x .

[#201-53] D.P"(C'P-P"/3) = 7 (i)

h. (1). #217-3*301. Dh, Prop

#21732. V : P e Ser . D . D'(P) e = (P)e«(C<P -)"D'Pe

Dm. £ ww
h . #217-31 - . 3 h : Hp . D . D'(P> C (P), "(C'P -)"D'P6 (1)

H. (1). #3716. DK Prop

#217-33. h.(a-)rCl'ael->l
Dew.

h . #24-492 .Dh:/3Ca. 7 Ca.a-/3 = a-7.D./3 = 7:Dh. Prop

#217-34. h : P e Ser . D . Pe f (sect'P - d'ltP) e 1 -> 1

Dem.

r- . #211-1 . D H : a, j3 esect'P . P"a = P"/9 . a I /3- a . D . a ! £- P"£ (1)

r- . (1) . #205-111

.

D h : Hp . Hp (1) . D . E ! max//3 (2)

h. #211-56. Dh:Hp(2).D.aCP"#. (3)

[#205-111.(2)] D.maxP'/3~ € a (4)

K(3). !>l-:Hp(2).:>.a = P"/3.

[#205-22.(2).Hp] D . a = P'maxP<£ = P"« (5)

h . (4) . (5) . #207-232 . D h : Hp (2) . D . maxP '/9 = ltP'a (6)

h . (6) . Transp . D h : Hp . a,/3 6 sect'P .P"a = P"#.~E !ltP'a. D .#C a (7)

Similarly H : Hp . a, £ e sect'P . P"a = P"£ .~ E ! ltj>*/9 . D . a C £ (8)

h.(7).(8).Dh:Hp.a,/3e8ect fP-aHtp.P"a = P"/5.D.a = ^:Df-.Prop

#217-35. h : P e Ser . D . (P)e
|

(C'P -) f D'Pe e 1 -> 1

Dem.
b . #21733 . D H . (C'P -) T D'Pe e 1 -> 1 (1)

K*2ir76.DK-Hp.D. (C'P -)''D'P6 = sect'P -(I'tlp.

[#217-34] D . (P)e T (C'P ~)"D'Pe e 1 -> 1 (2)

h . (1) . (2) . D h . Prop

#21736. H : P e Ser . D . ?'P = (P)e5(C"P-)J Cnv's'P

Dem.

h. #21223.3

H:.Hp.D:/3(s'P)a.7 = P"(C'P-a).a = P"(C'P-/9).D.
#Ca.a*/3. C'P- a CCP-/3.

[#37-2.#2l7-35] D . 7 C 8 . 7 + 3

.

[#212-23] D.7(S'P)S (1)
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h . (1) . D 1- : Hp . 3 . (P)J (OP -)! Cnv's'P <• s'P (2)

h . (1) . Transp . D

h : Hp . S(s'P)7 • 7=P"(OP- a) . 8=P"(C'P-/3) . a, eD'Pe . D . aC/9 (3)

h.*217'35. Dh:Hp(3).D.a*£ (4)

h . (3) . (4) . *212-23 . D h : Hp (3) . D . 8 {(P)e » (OP -)» Cnv's'P} 7 (5)

h . *21731 . D h : Hp . 3 (s'P) 7 . D

.

(ga, 0) . 7= P"(C'P - a) . 8 = P"(OP - £) . a, £ e D'Pe (6)

H . (5) . (6) . D H : Hp . D . s'P <• (PV(OP -); Cnv's'P (7)

h.(2),(7).Dh.Prop

*217'37. H : P e Ser . D . (P>
|

(OP -) |*D'Pe e (s'P) slnor (Cnv's'P)

[*217-35-36]

*21738. h : P e Ser . D . (s'P) smor (Cnv's'P) [*217'37]

*2174. \-:P,QeSer.C'PnC<Q = A.ElB'P.KlB'Q.D.

5'(P4LQ) = (P)e;(C"P-);Cnv's'P^(OPu)»s f

Q [*2l7-22-36]

*21741. h : . P, Q e Ser . OP n OQ = A : ~ E ! B'P . v . ~ E ! B<Q : D .

5<(P 4lQ) = (P)e ; (CP -); Cnv's'P^OP u)J($%>)
£ (- t<A)

[*2l7-23-36]

*217411. r : Hp*21741 . D . {s'(P£Q)} t (- t'A) =

(P)f J (OP -)J Cnv'(s'P) I (- t'D'P) 4l(OP u)J (5*$) £ (- t'A)

[*217-41]

*217*42. h : Hp*217-41 . D . (s'(P£Q)) D (- t'A - t'D'(P4^)} =

(P)e 5 (OP -)JCnv'(s fP)D (- 1'A - t'D'P) -+» d'P
4i(OP y )J (s'Q) t (- t'A - t'D'Q) [*217411]

*21743. H:.P,QeSer.OPnOQ = A:~E!P'P.v.~E!P'Q:
X = (s'P) £(- t'A - t'D'P) . Y = (s'Q) £ (- t'A - t'D'Q)

.

#= {s'(P^Q)} t {- t'A - i<r><(P$Q)}

Tf=i-^a4iF.a~eOZyOF.D.

(P)e !<OP -) f (D'Pe - t'A - t'D'P) a (D'P) I a

u(OPu)|k (D'&-i'A-t'D'Q)e£snior Tf [*21737-25*42]



SECTION

ON CONVERGENCE, AND THE LIMITS OF FUNCTIONS

Summary of Section Q.

The purpose of this section is to express in a general form the definitions

of convergence, the limits of iunctions, the continuity of functions and
kindred notions, and to give such elementary consequences of these definitions

as may seem illustrative.

In the definitions usually given in treatises on analysis, it is assumed that

both the arguments and the values of the function are numbers of some kind,

generally real numbers, and limits are taken with respect to the order of

magnitude. There is, however, nothing essential in the definitions to demand
so narrow a hypothesis. What is essential is that the arguments should be

given as belonging to a series, and that the values should also be given as

belonging to a series, which need not be the same series as that to which the

arguments belong. In what follows, therefore, we assume that all the possible

arguments to our function, or at any rate all the arguments which we
consider, belong to the field of a certain relation Q, which, in cases where our

definitions are useful, will be a serial relation; we assume similarly that the

values of our function, at least for arguments belonging to C'Q, belong to the

field of a relation P, which, in all important cases, will be a serial relation.

The function itself we represent by the relation of the value to the argument;

that is, the relation oi fix) to x is to be R, so that, if the function is one-

valued, f(.x) = R c
x. (If the function is not one-valued, f(x) is any member

of R'x.) Thus we may speak of R as the function, Q as the argument-series,

and P as the value-series.

To take an illustration: Suppose we are given a set of real numbers

xlt x2) ... xv , ..., where v may be any finite integer. Here xv is a function

of v\ the argument-series is that of the finite integers in order of magnitude,

the value-series is that of the real numbers (or any part of this series which

contains all the values xly x2 ,
... xv> ...), The function R is the relation of

x v to v, so that xv = R'v. In this case, calling the argument-series Q and

the value-series P (as will be done throughout this section), we have

(I
tR=*CtQ = the finite integers, Rt'C'Q = Q'R = the class x1} x2 , ... xVi ...,

and i^Q^he series xlt xS) ...#„, .... The series which arranges xlt x2 , ...

xv> ... in the order of their own magnitudes, instead of the order of magnitude

of their suffixes, is PfcD'E or PlR"C'Q. This will not be equal to R">Q

unless the function is one which continually increases, i.e. one for which
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In general, the propositions of the present section are only important

when P and Q are series. If our assertions are not to be trivial, we must

have QlC'QnQ'R and g ! C'P n JJ"C(
Q, i.e. there must be arguments in

C'Q which lead to values in C'P. It will also generally happen that the

function is one-valued, i.e. that R e 1 —> Cls. But the above conditions,

though necessary to the importance of our propositions, are in general much

narrower than the hypotheses that are necessary for the truth of our

propositions.

The present section is wholly self-contained, that is to say, its propositions

are not referred to in the sequel. We have, in this section, carried the

subject as far as seemed suitable for the present work; its further develop-

ment belongs to treatises on analysis.

We begin (#230) with a general conception which is involved in the

notion of convergency. We shall say that the values of a function converge

(or, simply, that the function itself converges) into the class a, if for late

enough arguments the values always belong to the class a, i.e. if there is a

term y such that, if yQ^s, R iz ea, or, to avoid assuming that R is one-valued,
—

>

R'z C ct. Thus the values of the function converge into the class o if

If a term y is one such that, from y onward, all values belong to a, we write

yeRQcn a (where "en" stands for "convergent"), i.e. we put

RQca a = y-{yeC<Qn<l<R.R"Qi.<y Ca} Df.

When there is such a y t
i.e. when the function converges into the class a, we

write "RQctl
a," i.e. we put.

Qcn = Ee*(a !i$cn «) Df.

"RQcu a" may be read "R is Q-convergent into a." This means that for

arguments sufficiently late in the Q-series, the value of the function is always

a member of a. Thus e.g. if R'x^ljx, and a = iy{y<l) > RQca a, and if

*>1, zeRQcti a.

We next consider (*231) limiting sections and ultimate oscillations of

functions. For this purpose, we proceed as follows. If RQcn a, then P%"a
is a section of the P-series such that, for sufficiently late arguments, the

values of the function must belong to P%"a. Hence if we take all possible

values of a for which RQc^a, and take the logical product of all the resulting

sections P%"a, we get a section containing all the "ultimate" values of the

function; moreover this is obviously the smallest section which has this

property, because, if we take any section /S which contains all the "ultimate"

values, we have RQCQ @, and P*"$ = /3, and therefore the logical product in

question is contained in ft. The logical product in question is

p'P*'"Q'n
tR-
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In order to avoid trivial exceptions which arise when C'Q c\ Q'E = A we
define the "limiting section" as

p<P '"Qm'RfsC'P.

This "limiting section" we denote by PR8CQ, where the letters "sc" stand
for "section." Thus we put

PRscQ=p'P*'"Q'cn'RnC'P Df.

PRBC Q is the class of those members x of the series P which are such
that, given any argument however late, there are still arguments as late

or later for which the value of the function is not less than x. In like

manner, PR^Q, which we will call the "limiting upper section," consists of

those members x of the series P which are such that, given any argument
however late, there are still arguments as late or later for which the value of

the function is not greater than x. Thus the product of P_Rgc Qand PRBeQ
is the smallest stretch which contains all the "ultimate" values of the

function, i.e. it is the stretch consisting of those terms x which are such that,

however late an argument we take, there are arguments as late or later for

which the value of the function is not greater than x, and also arguments

for which it is not less than x. Thus the product of PRSCQ and PR^Q
represents what we may call the "ultimate oscillation" of the function. We
shall denote it by PR0S Q, putting

PR0SQ = PRacQnPRacQ Df.

We may express PRat.Q in a form not involving Qcn , namely (#23112)

PRacQ=p'P*'"R"'Q^"(C'Q rt d'R) n C'P.

This formula for PRSCQ may be elucidated by the following considerations.

If y is any member of C'Q, then d'R n Q%'y consists of all arguments

from y onwards. Hence R"((J'R r\ Q%'y\ i.e. R"Q*y, consists of all values

of the function for arguments from y onwards. Hence P%"R"Q%'y consists

of all members of the P-series which are equalled or surpassed by values of

the function for arguments equal to or later than y. Now if a term x belongs

to the class P%"R"Q%'y for every argument y, it is a term such that,

however far up the argument-series Q we go, we shall still find values as

great as or greater than x. When this is the case, we may say that x is

P-persistent. In this case, x may be regarded as not greater than the

"ultimate" values of the function. Now the class of arguments concerned

is C'Q n d'R. Hence the class of P-persistent terms is

p'P%"<R"tQ%"(C'Q n d'E),

where the factor C'P may be added in order to accommodate the formula to

the trivial case where C'Q r\ Q. fR = A (the only case in which the factor C'P

RSW II 44
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makes any difference). Thus the class of P-persistent terms is the limiting

section. Similarly the P-persistent terms are the limiting upper section.

These are the terms which are not less than the "ultimate" values of the

function. Thus the product PR0BQ is the terms which are neither greater

ttian all ultimate values, nor less; hence it is the class of ultimate values,

which may be appropriately called the "ultimate oscillation."

It will be seen that PR0B Q, being the product of an upper and lower

section, is itself a stretch: we may call it (alternatively) the "limiting

stretch." It consists of all members x of the P-series such that the function

does not, however great we make the argument, become and remain less

than x, nor yet become and remain greater than x. If PR0SQ consists of a

single term, that term is the limit of the function as the argument travels up

tiie series Q. (This is, of course, in general different from the limit of the

values of the function considered simply as a class of members of C'P, i.e. it

is different from \tP
tR"Ct

Q.) If PR0SQ does not consist of a single term or

none, we shall have two limits to consider, namely limaxp'P.RosQ and

liminp'PR0B Q, which give the two boundaries of the ultimate values of the

function. When the class PR0B Q is null, the function may be regarded as

having a definite limit: in this case, PRBCQ and PRSCQ are the two parts of

an "irrational" Dedekind cut, i.e. a cut in which the first portion has no

maximum and the second no minimum. Thus PR0B Q e u 1 is the condition

for a definite limit of the function as the argument grows indefinitely.

The above gives the generalization of the limit of a function when the

argument may be any member of C'Q r\ d fR. In order to obtain limits for

other classes of arguments, it is only necessary, as a rule, to limit the field of

Q to the class of arguments in question, i.e. to replace Q by Q £ a (cf. #232).

In order, however, to avoid vexatious and trivial exceptions arising when ae 1,

it is more convenient to replace Q by Q^ a. Thus the section of P defined

"by the class of arguments a is PR^ (Q#D «)• We put

(PRQ)BC'a =PRBC (Q*t«) D£

This definition is useful because we very often wish to be able to exhibit the

limiting section defined by a as a function of a. The section (PRQ^'a is-

such that, if x is any member of it, and y is any argument belonging to o,

there is in a an argument equal to or later than y, for which the function

has a value equal to or later than x. Thus x is such that the function does

not ultimately become less than x as the argument increases in the class «.

The limit or maximum of such terms as x is the limit or maximum of the

ultimate values of the function as the argument approaches the top of a.

The class of ultimate values is

(PRQ\c'a n (PRQ^'a, which we call (PRQ)0B'a.
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If the function has a definite limit as the argument increases in a, the class of

ultimate values must not contain more than one term.

Our next number (#233) deals with the limit of a function for a given

argument. The limit or maximum of the class of ultimate values is not

necessarily the value for the limit of a. It will be found, however, that, with

a suitable hypothesis, the limiting section (PiJQ)sc'a depends only upon

Q#"(a <"> CL'R), and if an CL'R has no maximum, it depends only upon

Q"(a n d'R). Thus if a n d*R and £ n Q'R both have the same limit, they

define the same limiting section. Hence if a is the limit of a, the limiting
_ —

*

section of a is (PRQX^Q'a. The upper limit of this is the upper limit of the

ultimate values as the argument approaches a from below. We put

R (PQ)'a * limaxp'CPJZQVQ'a Df.

We have thus four limits of the function as the argument approaches a,

namely

R(PQ)<a, R(PQ)'a, R(PQ)'a, R(PQ)'a.

If R is a continuous function, these four are all equal to R la\ but in general

they are different from each other and from R'a. The subject of the con-

tinuity of functions is dealt with in #234. When R (PQ)'a = R(PQ)'a, each

is the limit of the function for the argument a for approaches from below. It

should be observed that if R is defined for a set of arguments which are dense

in Q, ie. if hq'a'R^C'Q, then R(PQ)'a and R{PQ)'a are defined for all

arguments in Cf
Q.

44—2



*230. ON CONVERGENTS

Summary o/#230.

In the present number, we have to consider the notion of a function

converging into a given class, or, as we may express it, the notion that the

value of the function " ultimately " belongs to the given class. If R is the

function in question, o the given class, and Q a series to which the arguments

belong, we say that " R is Q-convergent into a " if there is an argument y
such that, for all arguments from y onward (in the Q-order), the value of the

function is an a. That is, R is Q-convergent into a if

(ay)-F^^ &R . RltQ*'y c «.

A term y which is of this nature is said to belong to the class RQca a. Thus

R is Q-convergent into a if the class RQ^a is not null. Hence we have the

following pair of definitions

:

RQcn* = C'Q nd'Rny (R"Q*'y C a) Df,

Qcn = £S(a !EQcna) Df.

In all the cases that have any importance, R will be a one- valued function

(i.e. a one-many relation), Q will be a series, and G*Q r\ (I'R will be a class

having no maximum in Q. For, if C'Q r\ Q. fR has a maximum in Q, then the

classes into which R converges are simply those to which the value for this

maximum belongs. The following propositions, though only important under

the above circumstances, are in general true under much wider hypotheses.

It is possible to generalize still further the notion of convergence, so as

to apply to any property which belongs to R when confined to sufficiently

late arguments. For this purpose, we have to consider R £ Q%z, where z is

to be confined to terms later than or equal to some term y. If, under these

circumstances, Rl Q^z always belongs to the class X, we may say that R
ultimately becomes a \. We may put

RQ^ = y [y * &Q « <*'R
' yQ** • 3, R t Q*'* « M Df,

This is the general conception of which Qcn is a particular case; in fact,

V:RQcn a. = .RQ0Tie
(b"C\<a).

Qcng will have to be used when the ultimate properties of the function with

which we are concerned are not properties of its values; but when they are

properties of its values, Qcn enables us to deal with them more easily than Qms
In this number, we prove the following propositions among others:

230171. h : y e RQ^ (P 'x) . D . x e P*"R"
4

Q*
l

y
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#230211. r- :. a C £ . D : RQcn a. D . RQm j3

#230 253. h :. R"C'Q C a . D : i^cn a . = . a ! O'Q r, a'J? .

= .RlR«C<Q.~.Rl(RtC<Q)

#2304. h . i$cn a = (I'R « Q*«(RQcri a)

#230 42. r :. Q* e connex . D : RQm a . RQm jB . = . RQ^a n £)
—

>

#23053. h :. Q e trans n connex . E ! ma,xQ'G.'R . D : RQ^a . = . R'ma,xQ'<I'RCa

In virtue of this proposition, the case when E ! max</G'R is uninteresting,

and in order to obtain interesting interpretations of our propositions, it is

necessary to suppose that (I'R has no maximum. Similarly when, in later
~~*

numbers, we consider Q'R n Q'x, we shall only obtain interesting results

when this has no maximum, which requires that Q should be a compact

series (Q
2 = Q) and Q'R should be dense in Q. These assumptions are, how-

ever, not usually required for the truth of our propositions.

#23001. RQm a = C'Qn(I'Rn§{R"Qx'yCa) Df

#23002. Qcn = RZ(nlRQm «) *>f

#230 1. h : y € RQca a . = . y e C'Q n Q'R . R"%'y C « [(#2300 1)]

#23011. V : RQm « = a 1 ML« = • to) V « C'Q n O'iZ . J2"0"*^ C a

[(#230-02)]

#23012. r- : y e iZQcna . D . Q#'y n <Pi2 C RQm a

Bern.

h. #230'1. #201'1415.D

h:yeBQma.yQ#*.*ea^0.i2"
,

S»'yCa.*eC'Qna'5.5i»'*cSi'y-

[#372] D.zeC'Qn (I'R . R'
(<
Q*'z C a

.

[#230-1

J

D.Z€RQm cc : D h . Prop

#230-13. r . i?Qcn a = (R [ C'Q) Qcn a

h. #35-64. D\-.C'Qn(I'R = C'Qn(I'(R$C'Q) (1)

h . #37-421 . D h . JJ"Q"«'y = (i2 r C"£)"Q#'y (2 )

r- . (1) . (2) . #230-1 . D h . Prop

#230131. H: JB[
k C"Q=TrC^.D.J2Qcna=7

,

5cn a [#23013]

#23014. h :yeRQcna .0 .rIC'Q nd'R .RlccnWR

Dem.

K*2301.DH:Hp.D.yeC'Qna^R.J^Ca.

[#33-41] O.yeC'Qnd'R.Rlll'y.R'yCoL.
[#22-621 .#331 5] D . 3 ! C'Q n (PE .glan D'E : D h . Prop
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#230141. KEQcnA=A [#23014 . Transp]

#230142. h:.J2 = A.v.Q = A:D. RQm a = A [#23014 . Transp . #33-24]

#23015. h

:

RQca a . D
.
a ! C'Q ft a<R .gl«n D'R [#2301411]

#230151. H : RQcn a .3 .<&\R .RlQ.ftla [#23015]

#230152. \-:.R = A.v.Q = k.v.a = A:D.~(RQca a) [#230-151 . Transp]

#23016. \-.RQcn a = R(Q*t<J'R)cn cL

Dem.

h . #23014 . D h : C'Q ft (KR = A . D . RQcn a = A . R (Q* £ d'R)cn a = A (1)

h . #90-41 . D h : a ! C'Q n a'E . D . C'(Q* £
®'R) = °'Q rt a'^ (2)

V. #37-26. Dh.B"Q'^ = E"(Qi^na'E) (3)

h . (3) . #35-102 . D H : i/ e CF# . D . J2"V*'2/ = ^"Q*D a'^V (4)

h . (2) . (4) . #2301 . D

h :. a ! C'Q r, <3<j? . D : yeRQm a . = .2,eC<(Q#t <Pi?)ft CKR. E"Q^O*E^Ca.
[#230-1] = . y e J? (Q*D<Pi2)cn a (5)

h.(l).(5).Dh.Prop

#230161. y:Q*ta<R = S*ta tR.D.RQcn a = RSi:n a [#23016]

#23017. H : y e C'Q ft Q'R.O. a ! i2"Q#'2/

Dem.

r- . #90-12 . #33-41 . D r- : Hp . D . y e Q#'y . a ! i?'y

.

[#37-18] D . a I #"Q#'y : 3 H Prop

#230171. H : y € .RQcn (P*'a:) . D . x e P^R'^'y
Dem.

h . #230-1-17 . D h : Hp . D . a ! ^"Q#'2/ R'*Q*y C P"#^

[#22-621] D . a I -K"Q#^ " P*'a .

[#37-46] 3 . a eP^"^"^^ : D H . Prop

#230*21. H : a C . D . i£Qcn a C RQm /3 [#2301 . #2244]

#230-211. H :. a C /3 . D : EQ^a . D . RQea /3 [*230-21-ll]

#230-22. H . EQcna u EQcn# C #Qcn(a u /3) [#230-21]

#230221. h :. EQcna . v . RQm$ • 3 • ^Qcn (« » £) [*230'211]

#230-23. H.J2Qcn«ftJ2Qcn /3 = i2Qcn(aft^)

Dem.

h.#2301.DH:
2
/€EQcn afti2Qcn ^. = .yeC'Qfta^.E"V#

fyCa.i2"V*'2/C/9.

[Comp.*2301] = . y e RQ^a ft £) : D h . Prop

#230-231. hiiJQ^a ft /9).D.EQcna.22Qcn /9 [#230-211]
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#23024. \-.RQm*nRQm(fl-*)=>A [#230-23141]

#23025. h . RQm*~RQm (*nI> tR)-RQm (anR«Qm<<a<R)mRQ^tl r>R«C'Q)

Dem.

b . #37-15 . D b : R"Q*'y C a . = . R'^'y Can D'R
(1 >

b . #37-18 . D h :. y e d'22 . 3 : R'?Q*'y C 12"Q#"(I'22

:

[Comp] D:22"VyC«.s.-B"
<

Sli'yCanJl«Q#«a'JJ (2)

h . #37-218 . D h . 2J"V*'y C 22"C'Q

.

[Corap] D h : iJ"^f
y C « . = . 22"tvy c " « J2"C*Q (3)

h . (1) . (2) . (3) . #2301 . D h . Prop

*230251. b . RQm{R"C'Q) = C'Q n d'22

Dew.

I- . #33 15 . #37- 2 . D b . (y) . ii"V*^ C .K"CfQ (1)

h.(l). #2301 Oh. Prop

#230252. b:R"C<QCct.'D.RQ
lsaa=C'Qna<R [*230'25*251]

#230253. b :. R^G'Q C aO : 2J<3cn« . = . g ! C7'Q n d'22 . =

.

3 ! R"C'Q . = . g ! (22 |* C'Q) [#23011 252 . #37*401 . #3564]

#230-31. b . s
lRQ^"ic C RQcn (s'k)

Dem. _
h . #230-21 . D I- : « e k . D . RQcn a C RQcn (s'K) Oh. Prop

#230-311. KQcn"/c CQlnVK

Dew.
b . #230-211 . D b : a e « . RQ^a . D . RQ^s'k) Oh. Prop

#230-32. h . RQca (p'ic) = C'Q n a'Rnp<RQm"K
Dem.

b . #230-1 . D

J" :- y e^Qcn (*>'*) s : V « CQ n d<2? . 22'%^'y C j>'* :

[#40-15] = : y eCQ n d'2J : a e «O tt . R"Q^y C a :

[#4-73] --.yeC'Qr* d'R : a e kOa . y eC'Q n d'2J . 22"Q*'y C a

:

[#2301] ~iyeC'Qr> d'R r> p'RQ^K :0 h . Prop

#230321. h : a ! «O . RQ^p'k) ^p'RQJ'x .p'RQ^'ic C CQ n &R
Dem. _

b. #230-1. Dh:ae/eOa .22QCtt
«CC"Qn(I<2Z (1)

h
. (1) . #40-23-151 O h : HpO . p'RQ^'ic C C'Q a (I'R (2)

h . (2) . #230-32 Oh. Prop
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*2304 I" #&n«= CL'R n Q*"(i$cn «)

Dem.

b . #230-11 . #90-21 . D h . RQm a C d'R . RQm a C Q*"(i$cn «) (1)

b . *201-1415 . D h : fi'^y C a . yQ*z . D .
22"^"

#'« C « (2)

K(2).*230'l. Dh:y 6 i£Qen«.y^.£ea<i^D.2 e i^cn«:

[*S7-105] Ob.d'Rn Q*"(RQ
cii

ol) C RQca a (3)

r.(l).(3).DKProp

*2$0'41. h :. Q* e connex . D : RQcu cc C i$cn /3 . v . RQm /3 C i$cn «

Dem.

h.*211*61.*201-15.D

H :. Hp . D : 4'WL«) C Q*"(£Qcn /3)_.

v

. Q/'(iJQonj8) C Q*"(RQori «) :

[Fact.#230'4] D : RQCB oc C £Qcn /S . v . iJQ^/S C £Qcn a :. D h . Prop

#23042. b : Q* e connex . D : i2Qcn a .i^^ = . ^Qcn (a « &)

Dem.f

b ^i^^l.Obz.R^Oz B^man^m0=^ma.v-^manltQm^^m fiz

[#23023] D : RQcn (« n/3) = RQcn cc . v . BQm (u « £) - RQcn& :

[230-11] D : i2Qcn « . RQnfl . D . RQm (a n /9) (1)

h.(l). #230-231. Dh. Prop ^
#230-421. h : Q* e connex . « o /3 = A . D .~ {i2Qcn a . i2Qcll^} [*230*42-i41]

#230-51. b : £Qcn a . D .p'Q^C'Q n d<£ C ^Qcna

Dem.

h . #201-14 . D h : ye C'Q n d'.K . i2"t?*'3/ C a.« ep^"(7'Q. D . £"£#'2 Ca (1)

h . #230-151 . #40-62 . D b : Hp . D , p'Q^'C'Q C C'Q (2)

h . (1) . (2) . #2301 . D h : Hp .yeRQcn a . zep?Q%"C<Q n d'R . .

zgC'Qcx d'R . R"Q^z C a (3)

h. (3). #230-1-ll.Dh. Prop

#230-511. b : y epfo'&Q D . Q^'y ^pfy'&Q
Dem.

b . #40-12 . D b : Hp . D .p^'C'Q CQ^'y (1)

h.*40-53.Dh:.Hp.^€Vy-^^ eCff<3-^-^#y:^*2 :

[#20115] 3:xeC'Q.Dx .xQ%z:

[#40-53] D:^^*"^ (2)

h (1) . (2) . D h . Prop
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*230-512. J- : d'R «p'%"C'Q C RQca ct . D . R"p?Q*"C<Q C a

Dew.

h . #230-1 . D h :. Hp . D : y e d'R n p?Q*"C'Q . D . i2' #̂'y C a

.

[#230-511] D.22"p'Si"0*QCa (1)

h . (1) . #10-23 . D h : Hp . g ! (Tie njo^"C"Q . D . £fyQ*"C"Q C a (50

h . #37 26-29 . D b : d'i2 n p'Q*"C'Q = A . D . R"p?Q*"C'Q = A

.

[#24-12] D.#vV*"C^C« (3)

r . (2) . (3) . D r- . Prop

#230 513. b:.±\Q.O: R"p?Q*"C'Q Ca. = .a^n p'%"C'Q CT^a

r- . #230-511 . D h :. y e(M n p<Q*"C'Q . D :

R"p'Q*"C'Q C « . D . y e d'iZ . £"&^ C a (1)

h. (1). #40-62. #230-1. D

I- : g ! Q . y e d'R o p'Q*"C<<3 &'p$*"O tQ Ccc.D.ye RQma (2)

b . (2) . Comm . D h :. a ! Q . D :

R"p<%"C'Q Ca.D.d'Rn p*Q*"0'Q C RQ^a (3)

I- . (3) . #230-512 . D h . Prop

#230-514. H : a I Q a lp*Q*"C'Q n Cl'iZ .
R"ptQ*"C'Q Ca.D. iegm a

h . #230-513 . D h : Hp . D . a ! p^Q^'CQ o d'R . p<Q*"C'Q n (Pi? C iZQ^a

.

[*24-58.*230-l 1] D . i^Qon a : D h . Prop

#230-52. !-:aJC'
£Qna <

JR.a!C[ <
JRA ?>

t(3^V JKQcn"/c.«:CQCI1

t
JR.D.^eQcn

f
JR

Dera.

h . #40-16 . D h : « e * . D -p*S*"**-BQ«„"* C £>'&*"£&„(* (1)

I- . (1) . #40-61 . D

hr.Hp.Dzae/c.D.^'ViJ^^CQ^.KQena.

[Fact.*230-4] D . d'R n j0
fQ*"s'^Qcn"K C RQm cc :

[#40-44] D : d'R n j9'Us"s^Qcn"* C^'£<L"* :

[#230-321] D : a ! « ^ - CL
f
i2 n^'O^^Sm"* C RQUv'*)

[Hp.*24-58] D . a 1 RQcnip'tc) •

[#23011] 1.p'K e*Qeji<R (2)

h . #230-253 . *40'2 . D b : a ! C'Q n d'R . * = A . D . p'x€%n'R (3)

h . (2) . (3) . D h . Prop
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*23053. b : . Q e trans n connex . E ! maxg'Cr.R . D

:

RQcn a . = . i£'max
<2
'(T JftC

a

r . #205111

.

D h : Hp . D . max^d'^ e O'Q o (T.R (1)

h . #205-141 . #20118 . D h : Hp . D .^'maxo'd^R n d'R = t'raaxQ'd'i2 .

[*37'26.*53-301] D . i2"(Q*'max
<2
'd'.K) = i^maxg'd'iZ (2)

h . (1) . (2) . D b :. Hp . D : E'maxg'd'iZ C a . D . maxQ'd'.R e (£Qcn «)

.

[#23011] D.-BQcna (3)

b . #20536 . D b :. Hp. liyeC'Qnd'R. WQ^y Ca.3.R"Q^'m&xQ'<l<RC<x:

[#23011] D : £Qcn a . D . £"tj#'maxQ<d'.K C « .

[(2)] D . R'maxQ'a'R C a (4)

h . (3) . (4) . D b . Prop

#230*54. h :. Q e trans n connex . E ! maxQ'd'.R . D : k C Qcn'i2 . = . p'tc e Qcn '.R

Dem.

b . #230-53 .Dh::Hp.D:.«C tL'-B = = « e * 3* . S'maxg'd'.R C « :

[#4015] = :R<max.Q'd'RQp'K :

[*23053] = :p<* e &n'-K :: D h . Prop



*231. LIMITING SECTIONS AND ULTIMATE OSCILLATION
OF A FUNCTION

Summary of *231.

In the present number we are concerned with the limiting section defined

in a series P, to which the values of a function R belong, as the arguments

to the function increase in the argument-series Q. That is, we are concerned

with the section consisting of those terras x of ClP which are such that,

however great the argument to R becomes, there are still values at least as

great as x. Such terms as x may be said to be P-persistent ; x is P-persistent

if the function does not ultimately become and remain less than x. The
class of persistent terras is called the limiting section. The limiting section

may be defined as follows. If a is any class into which R is Q-convergent,

then the section P#"« is such that the values of the function are ultimately

contained in it. The product of such terms as P^"« is the smallest section

having this property. Hence if x be any member of this section, then

ultimately (i.e. for arguments far enough along the Q series) the values of the

function R do not persistently remain less than x in the P series. Thus the

product of such terms as P% lia is the limiting section, and we may therefore put

PRBCQ = P<P*"^'R n C/P Df,

where the letters "sc" are intended to suggest "section." (The factor GlP

on the right is superfluous except when Q^R = A, i.e. when C'Q n Q'R = A.)

We will call the limiting section of P, i.e. PR^Q, the "limiting upper

section." It will be seen that if # is a member of PRSC Q, then the function does

not ultimately become and remain, as far as some of its arguments are concerned,

greater than x, that is, however great we make the argument, we still find

values not greater than x. Hence if x belongs to both PReaQ and PRRa Q,

we find values not less than x and values not greater than x however great we

make the argument. This class, PRecQ r\PRB0 Q, may therefore be regarded

as the class of ultimate values of the function. We will call it the "ultimate

oscillation" of the function, since, as the argument approaches oo , the value

of the function ultimately oscillates in this stretch of P, and no smaller stretch

has the same property. We will denote this class by "PR0B Qy" where "os"

is intended to suggest "oscillation." PR0S Q is a stretch in (7'P, because it is

the product of two sections. Hence we shall also call it the "limiting stretch."

When the function has a definite limit as the argument approaches oo , the

limiting stretch must not contain more than one term.

Limits of functions for arguments x in the middle of C'Q r\ (I'R, which

will be considered later, are derived from the limits considered in the present

number by limiting the field of Q to predecessors of x.
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In this number we prove the following propositions among others

:

#231103. h.Pi^Q=:PpoE08<2 = P*KogQ

#23112. r . PR8CQ =p'P*" tR'"
4

Q*"(C<Q n d'iZ) n C'P

#23113^ h . PRacQ € sect'P

#231141. h : Q% e connex . RQcn (P^'x) .O.xePRsaQ

1*231191. b :Ppoe connex^lPRO8Q.0^
PRmQ = P^'iPRM . P"(Plscg) = Ppo"0P*o.Q)

#231192. b :. Ppo e connex . 3 ! P£os£ . a ! P£og
<2' . D :

PiL<2= PE0S
Q'

. = . PR^Q = P^sc
g' • PRJ2 =AW

#231193. b : Ppo e Ser . Pflosg e 1 . D .

Pfl08Q - t'maxP<(P£BCQ) - t'mmP'(P£scQ)

This proposition is frequently used in the present section.

In all ordinary circumstances, we shall have C'P = PRSCQ w PRS0Q, so

that if the upper and lower limiting sections do not have more than one

term in common (i.e. if PR0SQ e 1), they define a Dedekind cut in P. The

following propositions are concerned with this fact:

#231 202. b : P*, Q* € connex . a ! PESCQ . D . C'P - (PR^Q) C PEBC<2

#231'21. h : P*, Q* e connex . C'Q n d'R C ^"^"C'P . D .

CftP = PEscQuP^scQ

#23122. h : P# , Q* e connex . £"C'Q C 6"P .^.C'P = PRKQ u P#8CQ
Note that "R"C'Q C C'P" is the hypothesis that for arguments belonging

to C'Q, the values belong to C'P.

y y

#231-24. b : P* e connex . P/'C'Q C C'P .~ {.RQ^ (P*'#)} . D . P*'# C PRacQ

#23101. PRscQ = p'P%<"Qm'RnC(P Df

#23102. PR08Q = PRSCQ*PRBCQ Df

#231-1. h . PESCQ =p'P*" t4

Qcn<R n C'P [(#231-01)]

#231-101. h . P#0BQ = P^Bcg o PE8CQ [(#231-02)]

#231102. b . PRaQQ = Ppo Rsc<3
= P*Esc (3 [#2311 . #91-602 . *90'4]

#231103. b.PRoaQ = PpoRosQ = P^.RoaQ [#231102-101]

#23111. b :. xePR8CQ . = : RQm a . X .xeP^'a ace C'P [#2311]

#231111. b i.xePRnQ . -lyeC'Q r» (I'R.R"%'yCa . DM.^^"«:^0'P
[#231 11 . #23011]
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#231112. b :. x € PR^Q . = :ysC'Qr*a<R.Dv
.x€ P*"R"% l

y zxeC'P

Dem.

h. #231-111. #2242. D

b :. x ePRB0Q .O-.yeC'Qnd'R.Oy.xe P^"R"Q^y zxeC'P (1)

h. #37-2.3

b :. y e C'Q n (L'R .1y .xeP "R«Q*'y zxeC'P-.Di

yeC'Qn (L'R . R"Q*'y Ca.Dy ,
a .xe P%"a :xeC'P:

[#231-111] D:x €PRBQQ (2)

h.(l).(2).Dh.Prop

*231'113. h -..xePR^Q . = : y eC'Q n d (R . Dy . x (P*
|
R

\

Q^y.xeC'P
[#231-112 . #37-3]

If R is a one-valued function (i.e. a one-many relation), and if we write

x^x' for xP%x, and y^y' for yQ%y', we have

xePnnQ.siyeC'Qna'R.Ov.i^.y^y.x^R'y'zxeC'P.
That is, x belongs to PRacQ if, for any argument y in C'Q, we can find an

argument y', greater than or equal to y, for"which the value is greater than

or equal to x.

#23112. b . PRBCQ=p iP* t"R" t4Q*"(C'Q o d'R) n C'P [#231-112]

This is usually the most convenient formula for PR8CQ.

#231121. b : a ! C'Q n d'R . D .

PRJ} =p'P*'"*Qm'R = p^*"^'"Q*"(C'Q n CL'R)

Dem.

b . #230253 . D h : Hp . D . a !&„<£

.

[*40-23.*37-47] D .p'P*"?Qm<R C s'P^^R .

[*40-38.*37l6] D . p'P^^'R C C'P (1)

h .
#40-23

. 3 h
:
Hp

.
D .p'P#"'22"'^"(0'Qna'i2)Ca'P^"^"^"^^" a<^)

[*40-38.*37-16] CC'P (2)

H . (1) . (2) . #231-1-12 . D h . Prop

#231-13. b . PRSCQ e sect'P [#211-631-13 . #231-12]

#231131. b.PRBCQCC'P [#2311]

#231132. b : a I <7'Q n d<£ . D . P£scg C P*"£"Q*"(T.K

h . #40-23 . #231121 . b : Hp . D . PESCQ C s'P*'"#'"Q~*"(<?'Q n d<i2)

[#40*38] C P*".R"a'tJi"(C*Q ^ (I'^R)

[#40-52.*37-265] C P*"i2"Q*"(I'ie :0 b. Prop
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*231133. b : C'P n Q'R =A . . PRKQ = C'P [#23112 . *37'29 . *40'2]

#231134. h . P^'iPRnQ) =P'^PRM [#211131 . *23M3]

#23114. I- :: -R e 1 -> Cls . D :, x eP#acQ = :

yeC*Qn d lR . Dy . (g*> . yQ#z . xP% {R'z) use C'P [*71'7 . #231113]

#231141. b:Q*e connex . £&n (P*'#) . D . # e P£BCQ

Dew.

h-*230-4OHy 6 ii!Qcn (P^).^€a tP.yQ^O.ir e i2§
CI1
(P^).

[#230-171] D.xeP^R^z (1)

h. #230171. #96*3. D

h : y e RQcn (P*'x) .zQ*y.D.%e P*"R"Q*<y . Q»'y <=V* •

[•37-2] -D.xeP^'R'^'z (2)

h . (1) . (2) . D b : Hp . y e RQcn (P*'a) . s e C<<2 n d'tf . D . * e P*"£"Q*'* (3)

K (3) . #230-11 . D h :. Hp . D : * e C'Q n d'.K . D2 . x e P%"R"Q%<z (4)

h. #230151. Dh:Hp.D. as C'P (5)

I- . (4) . (5) . #231-112 . D h . Prop

#231142. h : a e sect'P . RQBB a . D . P£gcQ C a

Dem. _
b . #231-1 . #40*12 . D I- : Hp . D . PRBCQ C P*"« .

[#211-13] D . P^8CQ C a : D h . Prop

#231143. b : i£Qcn (P#«a) . D . P^8CQ C P%'x [#231142 . #211-13]

#231144. b : RQcri
(Ppo^) . D . PEBC<2 C Ppo

'# [#231142 . #21116]

#23115. b : R"ClQ C C"P . D . C'P n p<P*"C<P C P.RecQ

I- .
#37-2

. D b :. Hp . D : .K"Qi'y c °'p '•

[#4016] D : p<P*"C<PCp<%«R<<Q*<y :

[*4023] D-.yeC'Qn d'R . Dy . p<P%"C'P C P*"R'*Q*'y :

[#23112] IzCPn p'~P#"C'P C Pfl8CQ :. D b . Prop

#231151. h : P# e connex . C'P n p'%"C'P C P#BC<2 . D . "fi'P C PRaQQ
[#202-521]

#231152. h : P* e connex

.

C'Pnp<~P%"C<PCPRac Q.'& IB'P .D.B'Pe PR^Q
[#231 -151. #202-523]
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The hypothesis C'P r\p'P%"C'PCPR80 Q is verified not only when
R"C'Q C C'P, but also under certain more general hypotheses. Two such
hypotheses, namely

C'Qnd'RCR"C'P

and C'Q n d'R C Q^"R"C'P,

are considered in the following propositions.

#231153. biC'Qn d'R C Q*"R"C'P .3. C'P*p^'CP C PRecQ
Dem.

h . «37'1 . D b :: Hp . D :. y e C'Q n d'22 . D„ : (g«) . ze C'P . z(R
\ Q*)y :

[#40-51] D„ : co ep'^'CP . D* . faz) . * e C'P . * (22 1 Q#) y . xP#z .

[*341] 1x .x{P*\R\%)y (1)

h . (1) . Coram . D

h :.Kv.x€C'Pnp^"C<P.D:y€C'Qna'R.Dy .x(P%\R\Q*)y:xeC<P:

[#231113] D:aeP22i0Q:.DI-.Prop

#231154. h : 2S"0'Q C C'P . D . C'Q n d'R C 5"acP
2)e»i.

r . #37-2 . D h : Hp . D . R"R"C'Q C R"C'P .

[#37-501] D . C'Q n d'22 C 5"(7fP : D r . Prop

#231155. r- : C'Q o d'R C S"C'P .D.CJ^n CM C Q%"R"C'P

Bern,

b . #22-43-45 . D h : Hp . D . C'<2 r» d'22 C C'Q n ^"C'P

[#90-33] C ^^"^"a'P : D h . Prop

#231156. r :. C'Q n d'R C Q*"X"<7'P . s : A~eP*"'£"%"(C'Q o d'22)

:

= '.eeC'Qn(l'R.'}t.KlC'Pr\R"%ts

Dem.

b . #37-1 . D h :. CQ n d'22 C Q*"R"C'P . s :

* 6 C'Qna'2^Dz .(a#).#eC'P.,s(Q*|£)tf:

[#373] = : * e C'Q n d'2iJ . Dz . fax) .xeC'P.xe R'^'z :

[#2233] = :z € C'Qn d'R . D2 . a ! C'P n 2£"Q*'* : (1)

[#37-265-43] = : z e C'Q n d'R . D, . a ! P*"22<%<2 (2)

r- . (1) . (2) . D h . Prop

#23116. b:P%e connex .Rl~B'P.C'Qn d'R C Q#".R"£7'P . D

.

3 ! P^BCQ . B'P ePRaoQ [*231-152'153]
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231161. b : P* e eonnex

.

a IB'P . R"C'QC 0»P . D . g I P£SCQ . 5'P e P£SCQ
[#23115415516]

83117. h : 72"OfQ CC'P.D. i$cn a C RQm (P*"a)

Dew.

h .*9013 . D h :. Hp . D :y eC'Q. D . R'^'yCC'P:

[2301] D : y e £Qcn a D . y « C'Q n a«22 . &'%'y CanO'P.

[9033] D . y e C'Q « (I'P . fi'^'y C P*"«

.

[230-1] D . y e £Qcn (P#"a) :. D h . Prop

231171. h:R«C<QCC<P.RQ
cri
a.D.RQm (P%"cC) [*23117.*28011]

23118. h : R"C'Q C C'P . D . P#8C<2 = ^'(sect'P n &„'#) n C'P

Dem.

h. #231 11. #211 13. D
*- : . x eP£gcQ . D : ^Qcn.K . ft e sect'P .Op .xe ft ixeC'P (1

)

h. #231171. D
h::Hp.D:.-BQflB

(P#"a).Dll .« e P#"a:D:i2QIB«.D..*eP*"a:.

[*13195.*23111]

D^Ca^.^-P^'a.iJ^^.D^.^e^^ea'PiD^eP^Q:.
[#21113] D:.ftesect(P.RQ

<inl3.^.xeft:x€G
{P:D:x e PRBcQ (2)

h.(l).(2).D

h :: Hp . D :.xePRseQ . = : £esect'P . RQ^ft . Ip .as eft : xe C'P :; D h . Prop

231181. h : P e Ser . £"C'Q C C'P . D . PRBCQ = C'P np'{P"CP n*Q^R)

Dem.

h . #23118 . #211-302 . #4016 . D

h : Hp . D . PReeQ C C7'P r. p'(P«C<P n (L'£) (1)

h . #40-55 . #230-211 . D h :. a e sect'P n Q"
oh'R , zeC'P* p?P"* . D :

P^e^'22:

[#40-12] D : a €p'(P"C'P n *Qm'R) ."D.xeP'z (2)

h . (2) . Comm .Ibi.xeC'Pn p'(P"C'P n Q"
cn

(
i2) . a e sect'P n &„'# . D :

xeC'P-.ze C'P np'P"a . D, . x eP'z :

[*40'41] DzxeC'Pn p*P"(C'P n p'P"«) (3)

h. #211-711. D

V : Hp . a e sect'P . D . C'P np'~P"(C fP n p<P"«) » C'P n jo'P"(C'P - a)

[*211-7-711] = C'P -(C'P -a) (4)

h.(3).(4).D
_^

h :. Hp . x e C'P n p'{P"C'P nVcn'-R) . 3 : « e sect'P n &„<£ . Da . a e a :

[#23118] DixePR^Q (5)

K(l).(5).Dh.Prop
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#231182. I- : P e Ser . R"C'Q C C'P . a ! C'P - (PRacQ) . D .

PR8cQ=p'(P"C'P n%n'R) • 3 ! <?'<?P n&n'R)

I- . #231181 . 1)

I- : Hp . a ! (?»(?P nUn'5) . D . PiL<2 =p'(P"C'P n £.'22) (1)

I- . #230-11 . D r :. Hp . P"C"P nUn'-B = A . D :

xeC'P.yeC'Qn d'R . D^ „ . ~(.R"£<y C PV) .

[*90-33.Hp] Ox , y .~(P*"R"Q*'y C P'«)

.

[*211-56] ^ „ P*<* C P*'^R"&^

.

[#90-13]
_^ ^_ ^ tf

.*€P#«12"V*'y (2)

I- . (2) . #23112 . D r : Hp . ~P"C'P n Q'jR = A . D . C'P C P.RSCQ (3)

I- . (3) . Transp . D h . Hp . D . a ! P"C"P n *Qm'R (4)

I- . (1) . (4) . D h . Prop

#23119. V'.Pe trans . Q% e connex . R"C'Q C C'P . D .

PRosQ =p'(sir'P n%n'R) n C'P
Dem.

h. #23118101. DI-::Hp. I):.

_ ^ 4—
xePRoaQ .= : <xe sect'P . fi e sect'P . a, ft e Qcn'R . D

,
„ . «ea n /3 : xe C'P :

[#13'191.*ll-35] = : (get, /3) .a esect'P . /3 e sect'P . a,fieQcn'R . 7 = a n /3 . D7 .

zey.xeC'P (1)

I- . #230-42 . D I- :. Hp . D : <x,/3eQ'cn'R . = .an fieQ'jR (2)

I- . #21516 . D

I- :. Hp . D : (a«,/3) . a esect'P . /3 e sect'P . 7 = a n /3 . = . 7 estr'P (3)

h.(l).(2).(3).D_

I- :: Hp . D :. xePRosQ . = : 7 e str'P . i2Qcn 7 . Dr
. # e 7 :: I) h . Prop

#231-191. I- : Ppo e connex . ft 1 ^RosQ - ^

PR*CQ = P*"(PRQaQ) P"(PR
ScQ) = Ppo"(-P3o.G)

[#215165. #231-13101]

#231-192. H :. Ppo e connex . g ! P£0SQ . g ! PRoa
Q' . D :

Pfl0SQ = PRoa
Q'

. = . PR6CQ = PilseQ' . PRSCQ = PRSC
Q'

[#231191101]

#231193. h:Ppoe Ser.PEosQ e l.D.

PRozQ = t'maxP'(PB3CQ)= t<minP'(P2lscQ)

[#215166 . #23113-101]

This proposition is of fundamental importance.

r&w 11 45
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*231*2. I- : P#, Q* e connex . C'Q n d'R C Q#"R"C'P . D .

C'P-(PRacQ)CPReoQ
Dem.

h.*23V112.D

I- : x e C'P - (P^SCQ) . D . (ay)

.

y e C'Q n (FK .xeC'P- P*"£"V*'y (1)

I- . #202-501 . #90*33 . D

I- :MV .xeC'P-P^R^y.D:a) ep t% t\R^ynGiP):

[*96-3] D : yQ*z . Dz . # ep'P*''(£"&*'* n C'P)

:

[*40-61] : 2/Q^ z € (Pi? . Dz . # e P*"(-R"Q*'* « C'P) .

[*37-265] ^z .xeP^"R"%'z: (2)

[#90-12] DzyeC'Qn d'R .D.xe P^'R'^'y

:

[*96-3.*37-2] D : y e C'Q n d'R . *Q#y . Dz . a: e P*"i2"^'* (3)

h . (2) . (3) . #202137 . D h :. Hp . y e C'Q n d'.R . # e C'P - P*"R'^*'y . D :

zeC'Qn a iR . Dz . xeP^'R'^'z -.coeC'Pi

[*23ril2] D-.xePR^Q (4)

h . (1) . (4) . D h : . Hp . D : # e C'P - (PR8CQ) -O.xe PR8CQ : . D h . Prop

This proposition is fundamental in the theory of limiting segments.

#231201. I- : P*, Q* e connex . R"C'Q CC'P.D. C'P - (PRBCQ) C PR&0Q
[*23r2154155]

*231'202. I- : P*, Q* e connex . a ! PBSCQ . D . C'P - (P#8CQ) C PRecQ
Dem.

h . #40-22 . Transp . #23112 . D

I- : Hp . D . A~eP*'"R"<Qx"(C<Q n d'R) .

[#231-156] D . C'Q n a'i2 C Q#"R"C'P .

[#231-2] 3. C'P-(PRM C PiJscQ : ^ I" • Prop

#231-21. V : P*, Q* e connex . C'Q n d'R C Q*".R"C"P . D .

C'P =PRM" PRM
Dem.

V . *231'13 . D I- : PESCQ C C'P . PRmQ C C'P (1)

h. #231-2. Dr :Hp.D. C'P CPR8CQvPRscQ (2)

K (1) . (2) . D r . Prop

#23122. I- : P*, Q* e connex . E"C'Q C C'P . D . C'P = P£8CQ u P£SCQ
[*231-20113]
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#231-23. I- : . P* e connex , R"C'Q C C'P . D :

a !
R"Q*'y -%'x . D .%<x C P»"R"%'y

Dem.

V . #9014 . D I- : Hp . D . R'^'y C C'P (i)

I- . (1) . #90-21 . D I- : Hp . a I R«Q*'y-%'* . D . a ! P*"ii"V*^ - P*'« -

[#211-56.*20213] D . iy# C Ppo".R"Q*^OK Prop

#23124. r : P* e connex . R"C'Q CC'P.~ [RQGn {P*'x)} . D . P*'a C PBecQ
Dem.

r . #23011 . D I- : . Hp . D : y e C'Q n CC.R . :>„ . a ! i2"Qji'y - P#'# •

[#231-23]
_^

D^'aCP^'l^y:
[*91-54.#40'44] D : P#'« Cp'P^"R"^"(C'Q n d'R) (1)

I- . (1) . #23112 . #9014 . D I- . Prop

#23125. I- : . P e Ser . Q% e connex . R"C'Q C C'P . PE0SQ = A .

E ! limax/(PflscQ) . D : limaxP'(PR8CQ) - \immP'(PRs<iQ) . v .

]imaxr'(PR^Q)Pl \\mmP'{PRBCQ)
[*21554-541 . #23113-22]

#231-251. I- : Hp #231-25 . limaxP<(PE8CQ)~<F D'P, . D .

\ima,xP'(PRBCQ) = liminP'(PEscQ) [#231-25]

#231-252. I- : P e Ser . Q* e connex . R"Q'Q C C'P . PR^Q e u 1

.

E ! limaxP
f(P^gcQ) . ]imaxP

t(PRKQ)~e'D tP1 . D .

limaxP<(P#8CQ) = KmmP'(PRB0Q)

[#215-543 . #231-13-22]

#231-4. \--.Qe trans n connex . E ! max^'CCi? . D . P-Rac£=P#"JR'max</(I<.K

h. #23053. #231121. D

I- :: Hp . D :. x e P£S0Q . = : ^max^'CM C a . Da . a e P*"a :

[*37-2.*22-42] = : x e P*"R'ma.xQ<a'R :: ^ r . Prop

_ —

*

#231-41. h : Qe trans n> connex. mR'ma,xQ'a'R.D.PRBCQ= P*'R'ma.xQ'a'R

Dem.
h. #30-5. #2314. #53-3l.D
I- : Hp . D . PPSCQ = P^'t'lS'maxg'a'iZ

[#53-301] = P%'R'ma,xQ'G.'R : D h . Prop

45—2



*232. ON" THE OSCILLATION OF A FUNCTION AS
THE ARGUMENT APPROACHES A GIVEN LIMIT

Summary q/*232.

In the preceding number, we considered the ultimate oscillation of a

function when the argument grows without limit. If, in the propositions of

the last number, we confine the field of Q to Q'x, where xed'Q, the ultimate

oscillation becomes the ultimate oscillation as the argument approaches x

from below. If the ultimate oscillation consists of a single term, this is the

limit of the function as the argument approaches % from below. If, instead

of confining the argument to Q'x, we confine it to any other class whose limit

is x, we shall, under a very usual hypothesis, obtain the same value for the
—

*

ultimate oscillation as if we confined it to Q'x. And more generally, under

a similar hypothesis, if a and /3 are two classes of arguments which define the

same section (i.e. such that Q%"a = Q#"/3), then, whether or not this section

has a limit, the ultimate sections and the ultimate oscillation are the same

for a as they are for /3. Hence we are led to consider first the result of

confining the field of Q, not to Q'x, but to any class a. In order not to have

to exclude explicitly the case in which a el, we deal with Q%t a > no *i Qt a-

Hence we are led to the following definitions:

•232-01. (PRQ)sc 'ct = PRBC (Q*t«) Df

#23202. (PRQ)oa'ct=PRos (Q*t«) Df

Most of the propositions of the present number are immediate conse-

quences of corresponding propositions in #231. The most important

application of the propositions of the present number is to the case where a

is of the form Q'x, x being a member of Bq'CL'R. We may, in this case, take

in place of Q'x any other class of arguments (e.g. a progression of arguments

#lf x3 , ... x„, .,.) having x for its limit, without altering the limiting sections

or the ultimate oscillation. Hence the limit of the function for a given

argument (if it exists) may be determined by choosing any selection of

arguments having the given argument as their limit (cf. #233*142, below).

From the definition of (PRQ\G'a we obtain immediately

#23211. \-:.xe(PRQ\c<a. = :

yean C'Q n d'R .Dy .xe P%"R"(ol r> Q%'y) : x e C'P

We prove that (PRQ)8C'cL=-.(PRQ)Be '(ct n C'Q n d'R) (#232131), and that

if a n C'Q r\ d'R = A, the two limiting sections and the ultimate oscillation

are all equal to C'P (#23215). Also we have

#23214. \--.Qe trans n connex . a n C'Q ~ e 1 . D . (PRQ)Ja - Pflsc (Q£ a)
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Thus the substitution of Q% for Q in our definitions has the effect of
making them applicable to unit classes, and of enabling us to substitute the
hypothesis Q% e connex for Q e trans n connex. But when Q is transitive and
connected (and therefore when Q is a series), the substitution of Q% for Q in

the definitions makes no difference unless a is a unit class. This case is

trivial, since the only interest of our definitions is when a has no maximum
inQ.

From *231'22 we obtain

*232 22. I- : P*, Q* £ a

e

connex . R"{* n C'Q) CC'P.3.

C'P = (PRQ)
ao<cLu(PRQ)ao<a

We have next a set of propositions concerned in discovering circumstances

under which two classes a and /3 which determine the same section in Q (and

therefore have the same limit, if any) give the same values for the two

limiting sections. For this purpose, it is only necessary to discover circum-

stances under which we may substitute Q#"(« r\ d'R) for a. When this can

be done, the ultimate oscillation of the function as the argument approaches

the limit of a can be determined by taking any set of arguments having this

limit. We have

#232-301. h . (PRQ)sc'a C (PRQ)m'Q*"(a n d'R)

*232-32. I- : (PRQ)os'Q*"(a n d'R) eOul.D. {PRQ)Ja e v> 1

Thus if the function has a limit as the argument approaches the limit of

Q%"(a n d'R), it also has a limit as the argument approaches the limit of a.

#232 33. I- : P*
, Q* £ a e connex . R"(a n C'Q) CC'P.D.

(PRQ)**'* « {PRQ)»'*=(P%Q\*'Q*"(* " <I'22) « (PRQ)sc'Q*"(« n d'R) = C'P

whence

#232-34. I- : Hp #232-33 . (PRQ)„'Q#"(a n d'R) = A . D .

(PRQ)sc'« = (PflQVQ»"(« " a'^) (PRQW* = (PRQWQ#"(« « <*'&)

We have also

#232341. I- : P* e connex . a ! (PRQ)os'ol . (PRQ)oa'Q*"(* * d'R) el.D.

(PRQ)sc'« - (P«QVQ#"(« « d'5) .
(P£0SC

'« = (PRQ)Se'Q*"(* « CI'U)

Hence we arrive at the conclusion that, if Ppo is a series, and x is the

limit of the function for the class Q%"{ct n d'R), if x is a member of

(PRQ)sc'a, it is its maximum (#232-352), while if x is not a member of

(PRQ)SG'a, it is its sequent (#232-356), assuming (PRQ)ac'a u (PRQ)8C'a = C'P,

which, as we saw (#233
-

22), is generally the case, and assuming also P e Ser.

On the other hand, if {PRQ)sz'a has no maximum, x is the minimum of

(PRQXc'a; and if (PRQ)ac'ct has a maximum other than x, this is Pfx
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(#232-357*358). This latter case is impossible unless x has an immediate

predecessor, Hence we arrive at the following proposition

:

#23238. V : P e Ser . Q* D « e connex . R"(a n C'Q) C C'P .

(PRQ)08'Q*"(a n d'R)e 0u(l- QW.) . 3 .

limaxJ.'(PBQ)BC'a= limax/CPaQV^'Co n d'JS)

.

liminp^PSQ^'a = liminP'(P#Q)gc<Q*"(a rt a '-ft)

Applying this to a series having Dedekindian continuity, we know that

P2
= A, and that the Umax and limin always exist. Hence

#232-39. I- : . P e Ser n Ded . P» = P . Q* e connex . R"C'Q C C'P . D :

(P£Q)oS'Q*"(« « CI'22) e u 1 .JJ.

.

limaxP'(PKQ)gc'a = limaxP'(PflQ)sc'Q*"(a n d'i2) =

liminP'(P£Q)8C'a = limmP'(PiJQ)sc'Q*"(a n d'R)

That is to say, if the value-series P has Dedekindian continuity, and

contains all values for arguments in C'Q, then, provided the function has

a definite limit for the class Q#"(a r\ d'R), this is its limit also for the class a;

that is to say, any collection of arguments having the same limit or maximum
as a given section will give the same limit for the function.

#232 01. {PRQ)8CS
'ct = PRS0 {Q*t«) ^

#232 02. {PRQ)03 'a = PR08 (Q*tct) Df

#2321. h (PRQU« = PiU<2*D «) [(#232-01)]

#232-101. I- . (PRQ)os
'« = PR™ (Q# t «) = (PRQ)J* « (PRQ)*'* [(#232-02)]

#23211. \-:.xe(PRQ)8c'a.~=:

yeanC'Qn d'R .Dy .xe P*"£"(a n Q^'y) : x e C'P
Dem.

h. #90-41 -42. #231*112. D

hi.xe (P#Q)8C'a . = : y e a n C'Q n d'R .Dy
.xe P*''#"(Q^j>)'y : « e C'P :

[#35-102] --.yectnC'Qrs d'R .Dy .xe P^"R"{d n Q#'y) : x e C'P :. D r . Prop

#23212. I- . (PRQ)Ja =p'P%'"R'"(a n)"Q"#"(a « C'Q « d'#) n C'P

[#232-11]

#232121. I- : 7 = an C'Q n a'E.D.CPEQ^'a^p'P*'"^"^ n)"Q^"7 n C'P

Dem.

h .#90-13 . D I- . a n Qx'y^ct n C'Q n Q#'y

.

[#37-26] D I- . £"(a n V*'y) = ^"(« « C'Q n <!'£ n &*'#) (1)

I-. (1). #232-1l.Dh. Prop

#23213. I- : a n C'Q n CF.fi = £ n C'Q n d'R . D . (PRQu'ct = (PRQ)K'/3

[#232-121]
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#232-131. I- . (PRQ)ae'a = (PRQ)ac'(a n C'Q n (F22) [#23213]

From the above propositions it follows that the values of (PRQ)S0 'ct,

(PRQ)ao'a, and (PRQ)m'a depend only upon :: r\C'Qr\ Q.'R; thus if a is not

contained in C'Q n (I'R, the part not contained in C'Q r> (I'R is irrelevant.

#23214. r- : Q e trans n connex . a n C'Q~e 1 . D . (PRQ\c 'ct
= PR9C (Q £ a)

[*232'1 . *202*54'541]

#232-15. r : a n C'Q n d',R =A . I) . (P£Q)ac'a = (PRQ)Ba'a = (PRQU'a = C'P

[#232-1 2-101 . #37-29 . #40-2]

#232151. I- : a ! P . (PRQ)oa'a = A . D . a ! a n C'Q n d'iJ

[*232'15 . Transp . *d3'24]

#2322. hzC'Qn d'R C a . D . (PRQ)B0'<x
= P£BCQ

Z)em.

h. #22-621. #23211. D

h :: Hp . D :. x e (PRQ^'a .= :yeC'Qn d'R ,^y .xe P^'R"%'y :

[#231-112] = : as e PRSC Q :: D r . Prop

#232-21. h : P*, Q#£ a e connex . a n C'Q n CF.R C Q*"(a n ,R"C(P) . D .

C<P = (PEQ)sc<«u(PBQ)gc
<«

#231-21 %t_a
q _

*232'22. I" : P* , Q# £ a e connex . R"(a n C'Q) C CP . D .

CP = (PRQ)sc'ct
w (P£Q)sc'a [#231-22]

#232-23. r : y e C'Q n d'£ . D . (PRQ\c'i'y = P*''R'y

Bern.

Y . #23211 . #13 191 . D

I- :. Hp . D r *

e

{PRQ)J*>'y - = . * e P*"R"(i'y n %<y) :. D h . Prop

#23224. \- :Q e trans n connex . E ! maxe'(a n (I'R) . D .

(P^Q)sc'a = P*"i?max '(a n d'.R)

I- . #23214 . D I- : Hp . a n C'Q n (I'.R~e 1 . D .

(P^Q)sc
'« = P^gc_[Q[:(ana^)}

[*231'4.*205-9] = P*".R'maxe'(a n (I'ii) (1)

h. #205-17. #232-23131. D

I- : a n C'Q n <!'£ e 1 . D . {PRQ)9C'a = P^'R'maxQ'ia n (I'^R) (2)

r.(l).(2).Dl-.Prop
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#232 3. \-:aCa<R.D. (PRQ%c'a C (P#Q)sc'Q*"a

Bern.

\-.m-3.D\--.yeQx<<a.D.(<&z).2eanC<Q?Q*<zC%'y.

[Fact.#37'2] D . (rz) .zeanC'Q. P*«R"(* nQ#*z) C P*"R"{a n^'y) (1)

I- .(l).^S2-ll.Dh:.UV.xe(PRQ)^.^:yeQ^a.D.xeP^R
t((anQ'^y) .

[#9033] _ D.weP%"R«(Q*"<x<lQ*'y)i

[#232'11] D : m e (PRQ)sc'Q#"cl :. D h . Prop

#232-301. I- . (PRQ^ol C (PRQ)ac'Q*"(a n d'R)

Dem.
\-

. #23213 . D I- . (PRQ)Ja = (P#Q)8C'(a n CPE)

[#232'3] C (PRQ)w'Q#"(a n (FU) . D I- . Prop

#232 31. h . (PRQ)os'a C (PflQ)03'Q*"(a n d'22)

I- . #232-301 ~ . D I- . (PE<2)SC
<« C (PMQ\o'Q*"(* « CI'-B) (1)

I- . #232301 . (1) . #232-101 . D I- . Prop

#232 32. I- : (P£Q)OB*Q*"(« n (Fi2) e u 1 . D . (PRQ)0R'a

e

u 1 [#232*31]

#232-33. I" : P*, £# £ a e connex . tf"(a n C'Q) C C'P . D .

(PRQXc'z " (P^Q)s/«= (PRQ%c'Q*"(« n d'12) u (PKQ)SC<<2*"(« n d'22) = C'P

Dem.

I- . #232-22-301 . D

I- : Hp . D . C'P C (P£Q)SC'Q*"(« n a'22) u (PiJQ)sc<Q*"(a n (I'M) (1)

l-.(l). #231-131. Dl-. Prop

#23234. h : Hp #23233 . (P#Q)0S'Q*"(a n <3<R) = A . I> .

(PiSQVa = (P^Q)BC^*"(a « &&) (PS<2)sc'« = (PRQ)SC'Q*"(« « CW2)

[#23233 301 . #24-482]

#232-341. h : P* e connex . g ! (PRQ)oa 'cL . (PRQ)OB'Q*"(.a n d'JR) e 1 . D .

(P#Q)8c'a = (PRQ)3C^*"(« n d'i?) . (PUQVa = (P12QVQ*"(« « a'^)

[#231-192 . #23231 . #6038]

#232-35. h : P* e connex . (PRQ)oa'Q*"(a n d'R) = t<# . D .

{PRQXJa QP 'w . (PROMaQP+'a
[#232-301 . #231191]

#232-351. h : Hp #232-35 . x e (PRQ)gc'a . D . (PRQ)ac'a = P*'oc

Dem.

V . #231-13 . D I- : Hp . D . P#<# C (PRQ)M'a (1)

h. (1). #232-35. Dh. Prop
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*232-352. I- : Hp *232'351 . Ppo G J . D . % = maxP'(PEQ)gc<a

[*211-8 . *205197 . *232-351]

*232353. I- : Hp *232-35 . (PRQ)ac
<a u (PRQ^'a = C'P.x~e (PRQ)Ja . D .

(PRQ)Ja=%^
Dem.

r . *231'13 . D I- : Hp . D . x e (PRQ)BC'a .

[*232-351] D . (PRQ)6c'a = %'x : D r . Prop

*232'354. r : Hp *232353 . Ppo G ,/ . 3 . # - minP'(PiJQ)8C'a 1*232*352 ^

*232'355. I- : Hp *232-353 . D . (PRQ)gc'a = j^ <#

2)e?n.

I- . *232-35 . D I- : Hp . D . (PRQ^'a C ~P%'x - t'ar

[*9l-542] CJV# (1)

I- . *232353 . D r : Hp . D . C'P -%'x C C'P - (PRQ)sc 'ct

.

[*202-101.Hp] D . Ppc> C (PRQ)8C'a (2)

I- . (1) . (2) . D h . Prop

*232356. r :. P e Ser . (PRQ)0B'Q*"(<x n <3<E) - t<#

.

(PRQ)8C'a u (PEQ)8C'a = C'P . D : #~e (PRQ^'a . D - * = seqP'(PEQ)se'a

[*206'172 . *231-13 . *232'355]

*232357. I- :Hp *232 35

.

PP0G J.~E ! maxP '(PRQ)Ja.D.x=mmp'iPRQ^'a
Dem.

h . *232-352 . Transp . D h : Hp . D . x~e(PRQ)sc'a .

[*232'354] D . x=mmP'{PRQ)8<)'aOh. Prop

*232-358. I- : Hp *23235 .Pvo CJ. (PRQ)8Q'a o (PRQ)8G'a = C'P . _
E ! ma,xP'(PRQ)sc'a . ma,xP'(PRQ)8C'a$x . D . max/(PRQ^'ct P,

#

Dem. _
I- . *232352 . Transp . D h : Hp . D . x~e (PRQ)aQ 'ct .

[*232-356] D . x = seqP'(P#Q)9C'a

.

[*206'5] D . maxP'(P.RQ)s(/a P,« : D H . Prop

*23236. I- :. P € Ser . (PRQUQ*"^ n d'R) = t'x

.

{PRQ^'cc u (PBQj.e'a = C'P . D :

« e (PRQXs'a .O.x = ma,xP'(PRQ\e'a = min^PEQ^a :

x € (PRQ)BC'ct
- (PBQ)»'a . D . * = maxP'(P£Q)ec'a = prec/CPtfQVa

:

a; e (PRQ)bc'cl
- (PRQ^'ct .?.x = seqAPRQ^'a = mm^PRQ^'a

[*232-352-354356]
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*232'361. I- : Hp *23236 . x~e CCP, . D . x = \ima,xP
l{PRQ)^(x

Bern.

V . *232358 . Transp . D

I- :. Hp . D : E ! maxp'(P#£)8c'a . D . max/(PiJQ)8c'a = x (1)

I- . *232\352 . Transp . D

r :. Hp . D :~E ! ma,xP'(PRQ)ac<a . D . x~6(PRQ)ac'a .

[*232-356] D.x = seqP'(PRQ)'a (2)

l-.(l).(2).*207*46.DI-.Prop

*232'37. I- : P € Ser . (P#<2)08'Q*"(« n (l'R) e 1 - Cl'd'P,

.

(PRQ^'ol » (PRQ)
ac 'cL = C'P^ D

.

lima,xP'(PRQ)S0<ct = ma,xP'(PRQ)sc'Q*"(a n d'R)

="i'(PRQ)os'Q*"(«"a'R)
[*232'361.*231'193]

*232'38. I- : P e Ser . Q% £ a e connex . £"(a n C'Q) C C'P .

(P#Q)0S'Q*"(a n d^R) eOu(l- Cl'C'PO . D

.

Hintxp t(P^g)8c
ta= lirntxp^PHQXe'^'^a n CFi2)

.

liminP'(Pii:Q)8c<a = lirmnp'(P£Q)sc<Q*"(a n d'R)

[*23233*34'37]

*232'39. r :. P e Ser n Ded . P2 = P . Q% e connex . ^"C'Q C C'P . D :

(PRQ)os'Q*"(« « ^'12) eOulA.
nmaxP<(Pi?Q)8C<a = limaxp'(P#Q)8c

<Q*"(a n (F12)

= liminP'(P3QVa = HminP'(PSQ)M'Q#"(a n d'12)

Bern.

V . *201-63 . *232-38 . D I- : Hp . {PRQ)JQ*"(* n d'.R) £ u 1 . D .

limaxP'(PSQV« = limaxp<(PEQ)sc'Q*"(a « a'^)

liminp<(PflQ)8C<a = \immP<(PRQ)6e'Q*«(ci n d<£) (1)

h . *231 193 . D I- : Hp (1) . (PRQ)„'Q#"{a n d'.R) e 1 . D

.

limaxp'(PRQ)BC<Q*"(a n d'R) = liminP'(PBQ) 110
'Q

i
|
8"(a n d'E) (2)

h . *21442.*232-33 . D I- : Hp (1) . (P5Q)OB'Q*"(a n d'i?) = A . D .

limaxp<(PEQ)sc%"(a n d'J2) = liminp'(P#Q)sc%"(a n d'i?) (3)

h.(l).(2).(3).DI-.Prop

*232-5. I-

.

(PRQxJQ'x^C'P np{z e~Q'xr>d'R .Dz .ye P%"R«(Q'x n*Q*'z)}

[*232-ll]

*232"51. \-:Qe trans n connex . E ! max</(Q<# n d'R) . D .

(PRQXJQ'X = P#"R'maxQ'(Q<se n d'iZ) [*232-24]
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#232-511. I- : Q e trana a connex . E ! R'mtixQ'(Q'x a d'R) . D .

(PRQWQ'v - iyi2'maxe'(Q<# a (FE) [*232'51]

*232-52. f- : Q e connex . yQ# . Q'x a (Q'y w ty) * &R = A . D .

(PRQ\jQ'x = (PRQ)
BjQ'y [•232-13]

*232'53. h : Q e connex .« Q'#aCFE . 3 . (PRQ)B0'Q'x = (PRQ)BC'(Q'<v nQj*)
Dem.

b . #232*5 . *96-3 . D I- :. Hp . y e (PflQ)^^ . D :

ueQ'xn Q#'z a d'R . DM . y e P#"R"(Q'x a ##'«) . Q#'u C Q*"> :

[*22-621.#2S2'll] D : y€(PRQ)ac'(Q'x^Q^'z) (1)

f- . #23211 . *37-2 . D h :. Hp . y e (PRQ^'iQ'x a*Q*'z) . D :

u e Q'x a Q*"* a <PE . Du . y e P#"R"(Q'x a Q#'u) (2)

[*963] D : u e Q'x a Q#'z a d'R . Du . y e P#"R"(Q'x aV#'*) (3)

h . (2) . (3) . D h :. Hp (2) . I> : w e Q'a a CPE . DM . y e P#"JB"(Q'« aV*'") :

[*232'5] D:ye (PRQ^'x (4)

h.(l).(4).Dh. Prop



*233. ON THE LIMITS OF FUNCTIONS

Summary q/*#233.

There are four limits of a function as the argument approaches some

term a in the argument-series, namely the upper and lower limits of the

ultimate oscillation for approaches from below and above respectively. If

the ultimate oscillation for approaches to a from below reduces to a single

term, i.e. if (PRQ)0B
f

Qfa e 1, that one term is the limit of the function for

approaches to a from below. If this one term is also the ultimate oscillation

for approaches from above, we may call it simply the limit of the function for

the argument a. This may or may not (when it exists) be equal to the value

for the argument a. It, is characteristic of continuous functions that the limit

exists for every argument, and is always equal to the value for that argument.

Continuous functions will be considered in #234.

The upper limit or maximum of the ultimate oscillation as the argument

approaches a is the upper limit or maximum of the ultimate section. Hence

if we put

R(PQ) ta = \ima,xP<(PRQ)8C'Q'a Df,

the four limits of the function as the argument approaches a will be

R{PQ)<a, R(PQ)'a, R(PQ)'a, R(PQ)'a.

It will be seen that R (PQ) la is a function of Q'a. It may happen that, if we

put a in place of Q'a, the function will have a definite limit as the argument

increases in a, although a has no limit or maximum. Thus if, for example,

Q consists of the series of rationals, and P of the series of real numbers, if a

is a class of rationals not having a rational limit, we may regard the limit of

the function (if it exists), as the argument increases in a, as the value of the

function for the irrational limit of a. In this way we can extend the domain

of definition of a function.

In order to be able to deal with the cases in which a has no limit, we put

(PRQ)lmx'a = \ima.Xp'(PRQ)
fl0

t
tt Df.

If P is a Dedekindian series, (PMQ)imx
ta always exists. If we take a to be

any segment of Q, we thus get a new function, derived from R, but having

segments of Q instead of members of C'Q as its arguments. Thus if R had

rationals for its arguments, this new function will have real numbers for its

arguments. (Real numbers may be regarded as segments of the series of

rationals.)
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The function R(PQ) la is a particular case of the above; thus we take as
our definition

R(PQ)'a = (PRQ)lmxH}<a Df,

or, what comes to the same thing,

R(PQ) = (PRQ\mx \Q
f

Df.

The following propositions of this number are important:

#23315. h :. P e Ser n Ded . (PRQ^'a u (PRQ\c'a - C'P . (PRQ^'ct =A . D

:

(PRQ)^'* = (PRQ)lmx'a . v . {(PRQ)lmx'a} P, {(PJSQW«1

#23316. h :. P e Ser r> Ded . P" = P . Q* € connex . E"C"Q C CP . D :

(PflQ)0S'a e u 1 . Da . (PRQ)lmi'a - (Pi20IIM<a

#2332

—

'25 are applications of the more important of the propositions

#232*34—'39, showing circumstances under which the limit of the function for

the class a is the same as for the class Q#"(a n <2'-R).

#233*4 and following propositions apply the earlier propositions of #233 to

the case where a is replaced by Q'a, and therefore (P^Q^^'a is replaced by

R(PQ)'a. We have

#233'43. h : Pp0 e Ser . (PRQWQ'a e 1 . D .

R (PQYa = R (PQYa = S(PRQ)0B<Q'a

*233'433. h : . P e Ser . Q* £ ~Q'a e connex . E"(?a C CP . (PRQ) jQ'a = A

.

E ! E (PQ)'a .E ! R (PQYa . D :

R(PQ)'a = jB (PQ)'a . v .
{
R (PQ)'a} P, {E (PQ)'aj

#23345. I- :. P e Sern Ded . P2 = P . Q* e connex . R"C'Q CC'P.D:

R (PQYa - E (PQYa .
=
a . (PRQ) jQ'a «0ul

i".e. in a series having Dedekindian continuity, the necessary and sufficient

condition that the two limits of the function as the argument approaches a

from below should be equal is that the ultimate oscillation should not have

more than one term.

We have next a set of propositions (#2335—'53) on the possibility of
—

>

.....
replacing Q'a by a class a having a for its limit, without altering the limits

of the function. We have to begin with

#2335. h : Q

e

Ser

.

a = 11</(« a d'R) . D .

~Q
{a = Q*"(a a d'JB)

in virtue of #207'291. Thence by earlier propositions of this number,

#233512. h :. Hp #233-5 . P e Ser . R"(a n C'Q) C G'P . (PRQ)0B'Q'a = i
(x . D :

x = R (PQYa = R (PQYa : x = (PRQ)lmx'a . v . (PRQ^'aP, x
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whence we obtain

#233-514. h : Hp *233'512 . #~ e C'P, .S.x = (PRQ)lmx 'cL = (PRQ)lmx 'ct

Thus if P, Q are series, and x is the limit of the function for the argument a

(x being a term which has no immediate successor or predecessor), x is the

limit of the function for any class of arguments whose limit is a. Hence we

arrive at the proposition

#233-53. \-:Q€Ser.PeSerr>~Ded.P*=P.R"C'QCC'P.<xQ(I'R.E\\tQ
ia.

(PRQ)oa'Q*"«eO»l.3.

(-PBQW« = (PRQ)im*'« = ft (-PQ)IV« = * (PQ)'iV«
Thus if P has Dedekindian continuity, and a is a class of arguments

having a limit, and if the ultimate oscillation as the argument approaches

this limit has not more than one term, the limit of the function for the class a

exists, and is equal to the limit of the function for the argument Jt^'a.

#233-01. (i\R#)lmx = limaXi>|(P£Q)8C Df

#23302. R(PQ) = (PRQ)lmx
\~Q Df

#233-1. h : y {(PRQ)lmx \ a. = .y (limaxP) {(PRQ^'a] [(#233-01)]

#233101. I- : y = (PBQ)lmx'a . = . y = limaxp'(PEQ)„c'a [#233-1]

#233-102. I- : E ! \ima.xP
t(PRQ) ao<a . = . (PRQ)lmx'a = KmaxP'(PZiQ)Ja

.

= . E ! (PEQ),mx'a [#233-101 . #14-28]

#233-103. h : P e connex . D . (PRQ)lmx e 1 -* Cls [#20741 . #233-1]

#23311. I- :. P e Ser . D : y = (PKQ)lm/a . = .y eC'P ,~P<y = P"(PRQ)K'a

[#207-51 . #233-101]

#233111. h :. P eSer . a ! P"(PRQ)sc'a . D :

y = (PEQWa . = .~P'y = P"(PiJQ)8C'a [#20752 . #233-101]

#23312. h:.PeSer.~E!maxP'(P.R#)8C <a.:>:

y = (PSQWa ^•yeC'P.'P'y- (PRQ)ec'a

Dem.

h . #23113 . #211-41 . D h : Hp . D . (PRQ)ac'a = P'<(PRQ)sc <a (1)

h . (1) . #233-11 .Dr. Prop

#23313. h : P e connex n Ded . D .

E ! (PRQ)lmx'a . (PRQ^'a = limaxP<(Pi^)8C
<a

[#233-102103. #21411]

#233-14. h : PeSer.(PRQ)08<a « 1 . D . (PEQ)lmx
(a=(P^Q)lni/a=^(PEQ)08

Ja

[#231-193 . #233102]
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#233141. h :. P e Ser . (PRQ^'a u (PRQU'a - C'P . (PRQ^a - A . D :

E!(P3QWa. = .E!(P3QWa
[#211727 . #233102 . #23113]

#233142. I- : P e Ser . Q% £ a € connex .

JR"(a ftCQ) C C'P . (P#Q)08'Q*"(a a d'E) e u 1

.

E ! (Pi2Q)lmx'Q*"(a a d'JR) . (P5QWG»"(« a a'£)~e C'P, . D

.

(PRQ)lmx'a = (PRQ\mx'a = (Pi^)lnJI'Q*''(a a d'JR)

Dem.

h.*23l-2520h:HpO.(P^)lm^"(ana'E)=(PEQ)lmx'Q*''(ana'i2) (1)

h . #23237 . #23314 . D h : Hp . (PRQ)„ tQ*"(ct a d'R) e 1 . D .

(PRQ)im*'« =<PBQW« - (P3QWQ»"(« a d'JR)

-(PSQWQ^and'JR) (2)

I- . (1) . #232-34 . D h : Hp . (PRQ^'Q^'ia a <J'jR) = A . D .

(PEQ)lmx'a = <PflQWQ*"(« a d'JR) = (Pi2<2)lmx'Q*"(« a d'JR)

= (PRQ)i„*'« (3)
h . (2) . (3) . D h . Prop

#233-15. f- : . P e Ser a Ded . (PRQ^'a u (PRQ\ 'a = C'P . (PRQ)QB'a - A . D

:

(i^QWa = (Pi2QW« v . {(Pi^)lmx '«} P, f(P3QW«)
[#214-43 . #233-13 . #23113]

#23316. h :. P « Ser a Ded . P* = P . Q* e connex . £"C'Q C C'P . D :

(PRQU'a e u 1 . D. . (PRQ)lmx'a= (PRQ\mx'a
Bern.

h . #232-22 . D I- : Hp . D . C'P = (PflQ)sc'a v, (P#Q)ec'a (1)

h.#201-65.DI-:Hp.D.P]
= A (2)

h
.
(1)

.
(2) . #233-14-15 . D I- . Prop

#23317. I- :. a a C'Q a d'E - A . D : y =(PSQW* , = .y = B'P

Dem.
(-.#23215. #233101.3

h :. Hp . D : y = (PRQ^'ct . = . y = limaxP'C'P

.

[#206-2.#931l7] =.y = JB'P:.Dh.Prop

#233171. h : a a C'Q a d'jR = A . D .~ {(PEQ)lmx'a = (PRQW'a)

I- .#93102 . D h.~(B'P = B'P) (1)

h.(l). #23317.31-. Prop
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#233172. I- : a n C'Q r> (I'R = A . E ! (P#Q)lmx'a . E ! (PRQ)lmx'a . 3

.

(PEQ)oa'a~e0ul
Dem.

h. #233171. #23215. D

h : Hp . 3 . (PRQ)lms'a, (PRQUx'a e (PRQU'a . (PRQ\mx'a * (PRQ)lmx'a .

[*52'41] D . (PRQ)0B'a~e ul:Dh. Prop

*233173. h : (PRQ^'ct e u 1 . E ! (PRQ\mx'a . E ! (P#Q)Imx 'a . 3

.

3 ! a n C'Q a d'JR [*233172 . Transp]

#233174. I- : PQ J. (PRQ)oa'ae 1 .D.glanC"^ (KJ?

Dew.. _
H . #200-12 . D h : Hp . D .~ {C'P C (PRQ)0S'a}

.

[*23215] D . g; ! a r% C'Q rv CPE : D h . Prop

#233-2. 1- : Q* t a e connex . P e Ser . #"(a n C'Q) C C'P

.

(P£Q)OB'Q*"(a * a'JB) = A . E ! (P5QWQ»"(a * CI'«) 3

<PSQW« = (P£QWQ*"(« « era*) • (PRQ)imx
l* = (P*QWQ»"(« * a<«)

[#23234 . #211-727 . #233102]

#233-21. 1- : Ppo « Ser . g ! (PRQU'a . (PflQ)os'Q*"(« n d'i*) « 1 . D

.

(PflQ)lmx'a = (PEQ)lmi'a = (PflQ),mx'Q*'^(a a d'jR)

= (P»QWQ*"(« a d'R) = >(PiJQ)0B'Q*<'(« * d'E)

[#232-341. #231-193]

#233-22. h : . P e Ser . (PRQ)QB
'Q*"(a na'JJ)= t'#

.

(PRQ)«l« « (P5QVa = C'P . D :

* = {PRQhmx'a . v . (PRQ^'aP^. (PEQW« = max^PEQ^'a
Bern.

h . #232-352 . D I- : Hp . x « (Pi2Q)se'a • => « = (PRQ)mx
ea (1)

I- . #232-356 . D h : Hp . x~

e

(PfiQ)flC'a .~E ! maxP'(Pi?Q)BC'a . D .

* = (PBQ)1im'« (2)

h . #232-358 . #207*42 . D h : Hp . ic~e (PRQ)BC'a . E ! maXi>'(PflQ)8c'a . D .

msiXp'iPRQya P,x . (P£Q)lmx'a = maxP'(PRQ)sc'a (3>

h.(l).(2).(3).DI-.Prop

#233-23. I- : Hp #23322 . D .

x = (PfiQ)lmx'Q#"(a a d'fl) = (PflQ)lmx'Q*"(an d'22) [#231-193]

#233-24. h : Hp #23322 . x~ « a'P, .D.x = (PRQ)lmx 'a [#233-22]

#233-241. h : Hp *23322

.

x~ e C'P, . D . x - (PEQ)lmx'a

-

(PRQ)lmx'«

#233-24 -p. #23324
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#23325. h : . P eSer * Ded . P2 - P . Q*

e

connex . R"C(Q C C lP . D :

(PiJQ)08'<2*"(« ft a'#) eOul.D.

(PRQ)lmx'a = (PRQ)lm*'Q*"(a* d'R) = (PRQ)lm*'a =.(PRQ)lmx'Q*"(a a Q'JB)

[#232*39]

*2334. »-:y[JB(PQ)}a. = .y{(PSgW}"?« [(#283-02)]

#233401. \-:y = R{PQya. = .y = (PRQ)lrajQ'cL [#233-4]

#233402. h : P e connex . D . jR (PQ) e 1 -* Cls [#207-41]

#23341. h : y = R (PQYa . = . y = (PRQ)lmi'($'a a d'R)

Bern.

h . #23213 . D h . (PRQ)s
jQ'a = (PRQX^a a d'R) (1)

I- . (1) . *233-401101 . D h . Prop

#23342. h:.Q € trans a connex . E ! msLXQ'(Q'a a d<E) . D :

y = R (PQYa . = . y « limaxP'P*"jR'maxe'(#'a a CPE)

[#23224. #233-401101]

#233-421. h : PcRI'Ja trans . Q e trans a connex. E'max '(a a d'JR) eC'P.D .

JB (PQ)'a = i2'maxe'(Q'a a d'JR)

h.*233-42.DI-:.Hp.D:y= JR(PQ)'a. = .y = limaxp'P^jB tmaxe'(Q'ana'JB).

[#205197] = . y = _R'maxe'(Q'a a d'JK) :. D I- . Prop

*233'422. h :.~Q'a a d'JR = A . D : y = R (PQYa . = . y = P'P [#233-17]

#233423. h : ~Q'a a d'JK = A . D .

~

[R (PQYa = R (PQYa} [#233*171]

#233-424. \-:tya*a (R=A.ElR(PQYa.E\R(PQYa.OAPRQ)OB'tya~eOvl

[#233-172]

#233425. f- : (PRQ)jQ'a e u 1 . E ! R (PQYa . E ! R (PQYa . D . g[ !^a a d'R
[#233-424 . Transp]

#233426. \-:PGJ. (PRQ)jQ'a e 1 . D . g; ! Q*a a d'R [#233'174]

#233-43. h : P^ € Ser . (PRQ^tQ'a e 1 . D .

£ (PQ)'a = £ (PQ)'a = ^'(PRQU'Q'a [#231193]

#233-431. h : P e trans a connex . (PRQ^'Q'a^e u 1

.

E ! E (PQ)'a . E ! R (PQYa .3.{R (PQYa) P {R (PQYa)

[#21552 . #231-13101]
__ —>

#233432. h : P e trans a connex . (PRQ^Q'a = A .

E ! R (PQYa .E\R (PQYa . D . {R (PQYa) P* {R (PQYa) [#215-53]

r&w II 46
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#233433. h :. P e Ser . Q*tQ'a e connex . R"Q'a C C'P . (PRQ)0B'Q'a = A .

E!E(PQ)^.Eli2(PQ)'aO:E(PQ)'a=E(PQya.v.{i2(PQ)'a}P
1
[E(PQya}

[#215'54. #232-22]

#233-434. h : P e Ser . Q*p^a e connex . R"Q'a C C'P . E ! R (PQ)'a .

E ! R (PQ)'a ,D.[R (PQ)'a} (P, c; P*) [R (PQ)'a} [*233'43-431-433]

#233*435. h : P e Ser . R (PQ)'a = E (PQ)'a . D . (PRQ^Q'a eOwl
[*233-431 . Transp]

#233*44. h :. P e Ser . Q*tQ'a e connex . E"Q'a C C'P . E ! R (PQ)'a

.

E ! R (PQ)'a .~ {E (PQ)'a e D'P, . E (PQ)'a e d'P,} . D :

# (PQ)'a = R (PQ)'a . = . {PRQ)oa'Q'a

e

u 1 [#233-426-43433'435]

#23345. h :. P e Ser rv Ded . P9 = P . Q* e connex . E"C'Q C C'P . 3 :

E (PQ)'a =£ (PQ)<a .
=
a . (PRQ^'Q'a e u 1

[#23313 . *201*65 . *23344]

#233 5. \-:Q€Ser.a = \tQ'(ar\a<R).3.Q'a = Q*"(an<I'R) [#207*291]

#233-501. \-i.QeSer.a = ltQ\ana<R).3:'&lQ'an(I'R. = .'&larsC'Qrx(I tR
Bern.

V . #233-5 . 3 I- :. Hp . 3 : a ! Q-a n d'fl . = . a ! Q#"(a n CPE) n d'R , (1)

[#37-29-265] D . g ! a r% d'E n C'Q (2)

h . #90-33 . #22-43 . D h : x e a r> C'Q r> d'JR . D . # e £*"(« a d'E) . x e d'JR (3)

h . (3) . #10-28 . D\-;<&lanC'Qn(I'R.
,

}.<&lQii
"(ar>a'R)n(I lR (4)

h.(l).(2).(4).Dh.Prop

#233-51. h : Hp #2335 . P e Ser . £"(a rv C'Q) C C'P . {PRQ)jQ'a = A .

E ! R (PQ) (a . D . (PRQj^a = £ (PQ)'a [#233'2-5]

#233-511. h : Hp #233-5 . P e Ser . g ! (PK<2) b'« (PRQ)oa'Q'a e 1 . D .

(PRQ)imx'« = (PEQW« = R (PQ)'a = 72 (PQ)'a «^'(PBQ^a
[#233-501*5-21]

#233-512. I- :. Hp #2335 . P e Ser . R"(a * C'Q) C C'P . (PRQ)os'~Q
(a= i'x.3:

x = R (PQYa = R (PQ)'a : x = (PRQ)lmx'a . v . (PRQ)lmx 'a P,x

[#233*22-23 . #232-22]

*233'513. I- ; Hp #233-512 . s-^ed'P, . 3 . x « (P£Q)lmx'a [#233512]

#233-514. V : Hp #233-512 . x~ e C'P, . D . a = (PRQ)lmx'a = (PEQ)lms'a

#233*513 p .#233-513
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*233515. h : P, Q

e

Ser . a = 1V(a r> d'JK) . £"(£'# * a) C C'P

.

(PRQWQ'a * w 1 . E ! R (PQ)<a . R (PQ)'a~ e G'P, . D

.

(-PfiQW« =(^QW« *• * (PQ)'a = B (PQYa
[*233*1425]

*233516. h : P, Q

e

Ser . E ! R (P0'lte'a . R (PQ)%'«~e C'P,

.

JR"(C"<3 * a) C C"P . {PRQ)jQ t
\tQ

fa e u 1 . D

.

[*233-515]

#233 52. I- :. Hp *233o . P e Ser rv Ded . P2 = P . R«C'Q COP . D :

(PJ^W« = (PBQW« - *W"= R (?Q)'a [*233'25]

#233 53. hiQeSer.PeSerrvDed.P^P.jR^^CC'P.aCa'U.EJlVa.
(PEOb/V'aeOul.D.

(PRQ)lmx'a - (PflQ)lms'a = ii (PQ)%'a - JB (PQ)'lta'a

[#233*52]

46—2



*234. CONTINUITY OF FUNCTIONS

Summary o/#234.

In the present number we are concerned with the definition and analysis

of the continuity of functions. The following definition of continuity is given

by Dini*:

"We call it [the function] continuous for x — a, or in the point a, in which

it has the value /(a), if, for every positive number <r, different from but as

small as we please, there exists a positive number e, different from 0, such

that, for all values of 8 which are numerically less than e, the difference

f(a + 8) —f(a) is numerically less than a. In other words, f{x) is continuous

in the point x — a, where it has the value f(a), if the limit of its values to

the right and left of a is the same and equal to /(a).../'

By the second form of the above definition, the function R of previous

numbers is to be called continuous at the point a if

R (PQ)'a = R (PQ)'a = R (PQ)'a = R (PQ)'a = R'a.

The first form of the definition can also be so stated as to be free from any

reference to number, and derivable from the ideas dealt with in the previous

numbers of the present section. For this purpose, instead of "a positive

number <r" we take an interval in which R'a is contained, say P(z — w).

Similarly the "values of 8 which are numerically less than e" are replaced by

arguments in a certain interval containing a.

By #233423, if the limits of the function as the argument approaches a
are to be all equal, a must not be the maximum or minimum of Q'JR. We
therefore take the interval containing a to be an interval in which the

end-points are not included, say Q(y — y"). Thus our definition becomes

(A) R'aeP(z-w).3z>w .

(&y,y').y,y'e(l'R.aeQ(y-y').R«Q{y^y')<:P(z-w)

We require further, what is tacitly assumed in Dini's definition, that R'a
is a member of C'P which has no immediate predecessor or successor, i.e.

R'aeCP-CP^.
In order to deal more easily with the above definition, we analyse it into

the product of four factors, which concern respectively P and Q, P and Q,

P and Q, P and Q. In the first place, it is obvious that (A) is the product of

(B) R'a eP(e-w).^z>w . (<&y) . y e d'R . y e~Q'a . R"Q (y v~ a) C P {z - w)

* Theorie der Funetionen einer veranderlichen reellen Gr'6sse
>
Chap. iv. § 30, p. 60.
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and a factor obtained by substituting Q for Q in (B). If Q^econnex, and
Ppo e Ser, (B) is the product of

(C) R'a €

P

vo
lw . Dw . (ay) . y € (J'R .y€~Q<a. R"Q (y I- a) C P*'m;

and a factor obtained by writing P for P and * for w in (C); and in virtue of
R'a ~ e CtP1) (C) becomes

JR (aePpo'w.Dw .(^).y e a' JR.ye^a. JR"Q(yi^a)CPpo«w,

i.e. if Q is transitive,

(D) R'a ePpo
'W . Dw . R (Q# f <?a)cn (Pp(»

Hence the function is continuous for the argument a if a satisfies (D) and

the three other hypotheses resulting from replacing P by P, or Q by Q, or

P and Q by P and Q. If we substitute x for .R'a, and Q for Q#£Q'a,
(D) becomes

(E) PP0
«<PV0<xCQ'JR

Hence continuity can be studied by studying the hypothesis (E), and
—

>

replacing x by R'a and Q by QxtQ'a.

The hypothesis (E) is an interesting one on its own account. We put

sc (P, QYR = C'Pnx (Pvo
t(Pvo

tx CQcn'R) Df.

Thus "#esc(P, QyR" means that a; is a member of the value-series such

that, if y is any later member, the function ultimately becomes less than y.

If we put further

os (P, QYR = sc (P, QyR n sc (P, Q)'R Df,

then, if a; is a member of os (P, QyR, the function ultimately becomes less

than any later member of C'P, and greater than any earlier member.

Hence x is the limit of the function as the argument increases indefinitely,
—

>

—

>

Hence, if we substitute Q$X Qi(l f°r Q> an(* if # e os (P, Q% I Q'ayR, x is the

limit of the function as the argument approaches a from below, is.

R(PQ)'a = R(PQ)<a = x.

(This is proved in *234*462.) Hence, putting R'a in place of x, the function

is continuous from below at the point a if

R ta€0^{P,Q^lQiayR,

and is continuous from above if

R'aeos(P,QxtQ<ayR.

These results, and various others connected with them, are proved below.

The equivalence of Dini's two definitions is proved in *234'63. It will be

observed that practically nothing in the theory of continuous functions

requires the use of numbers.
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We use the symbol "ct (PQYR" for the class of arguments a for which

the limit of the function for approaches to a from below is R'a. Thus, in

virtue of what was said above, we may put

ct (PQYR = & {R'a e os (P, Q* IQ^'aYR - C'PJ Df.

Then a function is continuous at the point a if a belongs to the two classes

ct (PQ)'R and ct (PQYR- Hence we put

contin (PQYR = ct (PQYR a ct (PQ)'R Df.

The function R is continuous with respect to P and Q if it is continuous for

all arguments in O'Q. Thus we put

P contin Q = R {a !CQ a d'R . C'Q a d'R C contin (PQYR] Df.

Our propositions in this number begin with the properties of sc(P, QYR
and os (P, Q)'R> We have

#234 103. I- : P^ e Ser . a ! os (P, QYR . D . PRosQ eOwl

Thus the hypothesis a ! os (P, QYR enables us to use propositions of

previous numbers having the hypothesis PRoaQ eOwl.

The identification of our definitions with the usual definitions of continuity

of functions proceeds by means of the proposition

#23412. h : : Q* e connex . D : . x e os (P, QYR a D<P a <PP . = :

areD^PAa'P^eP^-^.^^.E^fP^-w)}
We have a collection of propositions dealing with the relations of

sc(P, QYR to PEscQ and PR8CQ. sc(P, Q)'i2 is an upper section of

P (#234-131); sc(P,QYR ia the complement of P'^PR^Q), i.e. of PR^Q
without its maximum (if any). This is expressed in the following pro-

position :

#234174. h : Ppo e Ser . Q% e connex . R«C'Q C C'P . D .

C'P a jp'Ppo"sc (P, Q)'i2 = P"(PRBCQ) - C'P - sc (P, Q)'i£

WT
e thus arrive at

#234182. h : P e Ser . Q* e connex . ^"C'Q CG'P.D.

limaxP'(P£scQ) = min/sc (P, Q)'^
—

>

_ —> w_
Thus os (P

} Q)'i2 is contained in max/(PR^Q) v m'mP'(PR6CQ) (#234-201),

and therefore has not more than two terms (#234'202). If PRoaQ has one

term, this is the only member of os (P, QYR (#234-203). If os (P, QYR has

two terms, they have the relation Pj (#234*242); hence if P is a compact

series, and os(P,QYR is not null, its only member is both limaxP
f(PJRg0Q)

and liminp^Pi?^) (#234-25), while conversely, if limaxP'(Pi2BCQ) and

limin/(P.RB0Q) are equal, each is the only member of os (P, QYR (#234-251).
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We now apply the above results to the limits of a function as its argument
approaches the limit of a class a. This is done, as before, by substituting

Q*t<t for Q. We arrive at the proposition (*234*33) that if P has Dede-
kindian continuity, and os(P, Q^ a)'R is not null, it's only member is both

\j _
(PRQXmxCt and (-Pi2QXmx'a, i.e. is the limit of the function as the argument
increases in a.

We then take for a the particular value Q^a, so that we become concerned
with what happens when the argument approaches a from below. For the
comparison of oar definition of continuity with such definitions as the one
quoted from Dini above, we have

#23441. b ;:Qe trans . Q% £ Q'a e connex . D : .

x e os (P, Q% I ~Q'a)'R a D'P a d'P . = :

x € T>'P a d'P

:

xe P (*- w) . Dz>w .

(>&y).yeQ*arya*R.R«Q(y>-a)CP(z-w)

I.e. if # is neither the first nor the last member of the P-series, x belongs to

os (P, Q%[, Q'ayR when, and only when, given any interval P (z — w), however

small, in which x is contained, there is an argument y earlier than a, such that

the value of the function for all arguments earlier than a but not earlier than y
lies in the interval P(z — w).

We deduce from previous propositions that, with the usual hypothesis as

to Q, if P is a Dedekindian series,

R (PQ)'a = liminp'sc (P, Q* £ Q'a)'R (*234'422),

and if P is a series and os (P, Q% £ Q'a) is a unit class, its only member is both

R (PQYa and R (PQYa, i.e. is the limit of the function for approaches to a

from below (#234-43). The following proposition sums up our results:

*234'45. r :. Pe Ser . Q e trans . Q#l Q'a e connex . R"Q'a C OP.P^P . 3:

a ! os(P, Q*t Q'aYR . = . os(P, Q*t'Q'ayR= L<R(PQya.

= . os (P, Q% t
~Q'ayR = 1'R (PQYa .

= . R (PQYa=R (PQ)'a

Thus g !os(P, Q^Q'aYR is, in a compact series, the necessary and

sufficient condition for the existence of a definite limit of the function as

the argument approaches a from below.

->
Without assuming P2 = P, if a? is a member of os (P, Q%1 Q'ayR, and if x

has no immediate predecessor or successor, so that in the neighbourhood of x

the series is compact, we still have x= R(PQya = R(PQ)'a (*234'462).
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We next consider ct (PQ)'R. By the definition we have

#234*5. h : a

e

ct (PQ)'R . s . R'a e os (P, Q* £%»'«)'# - G'P,

Thus a is an argument for which the function has a single value which

has no immediate predecessor or successor in P, and which, in virtue of

#234*462, is the limit of the function as the argument approaches a from

below (#234*52). The cases when R'a = B'P or Ria = B iP require special

attention; excluding these cases, we arrive at

—

»

#234*51. h :: Q e trans . Q% £ Q'a e connex . R'a e B'P a (FP . 3 :.

aect(PQ)'i2 . = : R'a^eG'P, :R'aeP(z-w). DZiW .

(<Ky).ye~Q'aKa<R.R"Q(y*a)CP(z-w)

This proposition is analogous to #234*41.

We prove (*234"562) that if P, Q are series, and a is any class of

arguments for which all the values belong to C'P, and if a has a limit at

which the function is continuous from below, then the limit of the function,

as the argument increases in a, is the value of the function at the limit of a.

We next consider contin (PQ)'R, which is defined as ct (PQ)'R a ct (PQ)'R.
<-»

We show that if P is a series whose field contains R"Q'a, and Q is transitive,
«-> "

and Q% £ Q'a is connected, and R'a is neither B'P nor B'P, then if a belongs

to the class contin (PQ)'R, R'a is. the limit of the function for the argument

a for approaches either from below or from above (#234'62). If P is compact,

the converse also holds (#234-63). Our definition of a point of continuity is

thus identified with the second form of Dini's definition quoted above. It is

identified with the first form by the following proposition: In the circumstances

of #23462, if R'a e D'P a d'P, we have (#23464)

a e contin (PQ)'R . = :R'ae O'P - O'P, :R'aeP(z-w). Dz> „

.

(<Zy,y).y,y'6a'R.a6Q(i,-y f).R''Q(y*y:)CP(z-w),
i.e. a is a point of continuity when, and only when, the value R'a for the

argument a is a member of the P-series having no immediate predecessor

or successor, and if R'a is contained in the interval P(z — w), then, however

small this interval may be, two arguments y, y' can be found such that a lies

between them, and the values for all arguments from y to ^ (both included)

He in the interval P (z — w).

We end with a few propositions on continuous functions. The last of

these (#234*73) states that, if P is a compact series and Q is transitive and

connected, then R is continuous with respect to P and Q when, and only when,

it has arguments in C'Q, and for all such arguments a we have

R (PQ)'a =R (PQYa = R (PQ)'a = R (PQ)'a = R'a,

i.e. the value for every argument is the limit for that argument for approaches

either from above or from below.
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*234 01. sc (P, Q)'R = C'P a x (Ppo"Pp> c &n'£) Df

#23402. os (P, Q)'R = sc (P, Q)'R a sc (P, Q)'R Df

#23403. ct (PQ)'R = & {R'a e os (P, £*£&»'# - 0'P
X }

Df

#23404. contin {PQ)'R = ct (PQ)'R a ct (PQ)'£ Df

#23405. P contin Q = R {g ! C'Q a d'R . C'Q * G'# C contin (PQ)'R\ Df

#234 1. \-:.x€Sc(P, Q)'R . = : x e C'P : aPpow . X . £Qcn (Pp<» :

= : x e C'P : aPpow . Dw . (ay) . y e C'Q a G.'R . fl"^ C

P

P(>
[#230'11. (#23401)]

#234101. H : Ppo e Ser . # e sc (P, Q)'i2 3 < RRB0Q C P*'a

1- . #40-16 . (#234-01) . D

h : Hp . D . x e C'P . p'P^Qcn'R a C'P C?'P*'''iV'Pp(> a C'P

[#91-574] Cp'Ppo"Pp<> a C'P

[*20465.*9l-602] C P#'# (1)

h. (1). #231-1. Dh. Prop

#234-102. h : Ppo e Ser . x e os (P, Q)',R . 3 . PRosQ C l'#

Dew.

h . #234-1101 . (#234-02) . D h : Hp.. D . x eC'P . PR^Q C P#'x a P*'a;

.

[#200-39] 3 . P#oaQ Ct'aOh. Prop

#234103. h : Ppo e Ser . g ! os (P, Q)'i2 . D . PROBQ eOul
Dew. H . #234-102 . D h : Hp . D . (gas) . PR09Q C t'a> .

[#51-401] D . P£oaQeOulOK Prop

#234104. h : 22^ (P%'x) . Z> . a e sc (P, Q)'R

Dem.

h. #91-52. Dh:^.D.P^CP^ (1)

f- . (1) . #230-211'151 . D h :. Hp . 3 : xP^z . 3Z . iZQcn (P^'z) :xeC'P

:

[#2341] D:^esc(P,Q)'R:.3!-.Prop

#234-105. h : Ppo e Ser . x e sc (P, #)'£ a D'P, . D . RQcn (P%'x)

Dem.

h . #201-63 . #121-254 . D h :: Hp . xP
x
z . D :. yP^z . D:~(xPvo y) :

[#202-103] 3:yPvox.v.y = x (1)

h . (1) . #91-54 . D h :. Hp . xP
x z . D : Ppo

'* C P#'# :

[#230211] Z> : i2Qcn (Ppo'*) . Z> . £

Q

cn (P*'a) (2)

1- . #2341

.

3 h : Hp . 3 . (a*) . aP, * . 22^ (Ppo'*) (3)

K (2) . (3) . 3 h . Prop
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When x<^€T> tP1 , the above proposition is not necessarily true: it may fail

ifcc = mmP<sc(P ) QyR.

It is to be observed that sc(P, Q)'R and os(P, Q)'R are functions of Ppo ,

so that they are unchanged when P^ is substituted for P. Hence the

hypothesis Pp0 6Ser is as effective, with regard to them, as the hypothesis

P e Ser. This is stated in the following proposition.

#234106. h.ac(P,Q)' JB = sc(Ppo ,Q)'JB.os(P,Q)'J2 = os(Ppo ,Q)'-B [#2341]

#234107. H : . x e C lP - D<P, . D : x e sc (P, Q)<

R

. = . ~P#«Pvo
tx C tL'#

Dem.

I- . #121-254 . D h :. Hp . D : x^eB^P^ :

[#201-61] 3 : tf-eD'tPpo-s-Ppo-l

:

[#10-51] D:xPvoy.D.xP^y.

[#91-574] 3 . (a*) . *Ppos . P*<* C PpoV (1)

h.(l).*230'211.D

I- : . Hp : xPp0 y . Dy . RQcn~P*'y : I> : xPvoy . Dy . RQ^'y (2)

K #9154 . #230-211.3

h :. aPpo ^ . D, . iiQen Ppo'y : ^ : «PPOy ^ - RQcJ>* l

y (3)

h . (2) . (3) . D h :. Hp . D : P*"PPo^ C§m'& s . Ppo"Ko'« <=Un'^ (4)

I- . (4) . #234-1 . D h . Prop

#234-11. h :. a; e D'P a d'P :*eP(*-»).3^. RQcn {P(z ~w)}: = :

xeD'Pr\a'P:xeP(z-w).DZtW .

(3^) -yeC'Qn d'R . R<?Q*<yCP(z-w) [#230-ll]

#234-111. bz.xe D'P a d'P : x e P (z - w) . Dz> „ . jRQcn {P (s - w)} : 3 .

aeos(P,Q)'jR
Bern.

h. #230-211. D

h :: Hp . D :. a e D'P a d'P :. sPpo «; : fag) . zPvox : D„ . 22Q*?p<> :.

[#91-504] D :. a e D'P : aPpow . Dw . RQcnPV0'w :.

[#234-1] Z>:.a 6 sc(P,Q)'jR (1)

Similarly h : Hp . 3 . sc (P, Q)'R (2)

h.(l).(2).Dh.Prop

#23412. h : : Q* e connex . D : . a e os (P, Q)'jB a D'P a d'P . = :

xeJ> tP n a tP:xeP(z-w). ,

DZjW .RQCQ {P(z-w)}
Dem.

\- . *2341 . D h :. a * os (P, Q)'R a D'P a d'P . = :

* e D'P a Q'P : aPpow . Dw . RQcn (Pvo<w) : zPpox . Dz . RQcnfo :

[*ll-71]^:^ eD'PAa'P:^Ppo^.^PpoW .^iW .Kan (Ppo^).i2(3cn(Ppo^) (1)
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h . #230-42 . D h :. Hp . D : EQcn~Ppo
tw . RQcn (Pv0'z) . = .

RQ^iPvo'znP^w) (2)

K(l). (2). #1211.31-. Prop

#234121. h . B'PQ sc (P, Q)'R [#93104 . (#23401)]

#234122. h : . Ppo e connex . x = B'P . D :

* e os (P, Q)'i2 . = . a e sc (P, Q)'R . h . Ppo"a (P C Q>
C11<R

[#234-121 . (#234-02) . *2341 . *205253]

#23413. h : x e sc (P, Q)<£ . 3 . P*'a C sc (P, Q)<#

Dem.

I- . #96-3 . #91-74 . #90-13 . D h : xP%

z

. D .Ppo'* C P^'a .zeC'P.

[*37-2] D.Pp^'P^C^'Ppo^.^C'P (1)

K (1). (#234-01). 3 h. Prop

#234-131. I- . sc (P, Q)*R = P#"sc (P, Q)<£ . sc (P, Q)'jR e sect'P

Dem.

h . #90-21 . #234*1 . D h . sc (P, Q)<# C P#"sc (P, Q)'jR (1)

I- . #234-13 . D h . P*"sc (P, Q)'jR C sc (P, Q)'£ (2)

h. (1). (2). #211-13. Dh. Prop

#234*14. h-.Q^e connex . a e sc (P, Q)'jR . D . * e O'P . P^'x C PESCQ
Dem.

h . #234-1 . D I- :. Hp . D : x e C'P : xP^z . D, . RQ^ (Pvo'z) .

[#230-211] Dz .RQ^(P*'z).

[#231141] Dz . zePR^Q :. D h . Prop

#234141. I- : Q% e connex . g ! sc (P, Q)'jR . D . g ! Pfl^Q [#2341 4]

#234142. h : g ! sc (P, Q)'R n D'P . D . g ! C'Q a d'R

Dem.

h . #234-1 . D

h :. x e sc (P, Q)'jR n D'P . D : x e D'P : (gw) . xP^w . Z> . g ! C'Q a (F22 :

[#91-504] D : g ! G'Q a CE'jR :. 3 h . Prop

#23415. h : P*
, Q* e connex . g ! sc (P, Q)'jR . 3 . PfiscQ " PRBCQ = C'P

Dem.

h . #231-202 . #234-141 . D h : Hp . D . G'P-PR^QCPR^Q (1)

h. #231-1. D\-.PRBCQvPRecQCC'P (2)

K(l).(2).DKProp
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#23416. h : Ppo e Ser . Q% e connex . D .

PRacQ Cp'P*"sc (P, Q)'R . Ppo"sc (P, Q)'i2 C PR^Q [#23410114]

#234161. h : Ppo e Ser . R"C'Q C C'P . PtfgcQ C ~P*'x . D :

Dem.

h. #231-24. D I- : Hp . ~ [RQca (p*'x)} .0 .%'xCPRscQ

,

[Hp.*22-4I] D . P#'# = P£BCQOK Prop

#234162. H : Ppo e Ser . R"C'Q C O'P . P*'« = P^9CQ . « e C'P . D .

x esc (P,Q)'R
Dem.

V . #202-5 . D h :. Hp . xP^z.O :z~ € PRBCQ :

[*23112] 3 : (ay) . y e C'Q n d'P . *~ e P*"R'H}*'y :

[#211-56] 3 : (3y) . y e CQ a CFS . P^'^'yC P^'z

:

[#90-33] D : (ay) .ye^Qn d'R . i2"^'y C P^'* :

[#230-11] D:RQcn (Pv0
'z) (1)

h. (1). #2341. Dh. Prop

#23417. h :. Ppo e Ser . R"C'Q CC'P.D:

x e sc (P, Q)'i2 . = . x e C'P . PR8CQ C P#'<»

h . #234-1-101 . D h :. Hp . D : x esc (P, £)'jR . 3 . a; e C'P . PR^QCP^x (1)

h . #2341 61 162-104 . D h :. Hp . 3 : a e C'P . PiZBCQ C ^'a . D .

x€$c{P>QYR (2)

h.(l).(2).Dh.Prop

#234171. I- : Ppo e Ser . R"C'Q CC'P.xe C'P - sc (P, Q)'R . D .

P^xCP'^PRM
Dem.

h . #234-17 . b : Hp. D . g ! PR8CQ-~P#'x (1)

h . (1) . #211-56 . #23113 . 3 h : Hp . D . iV# C P^'iPR^Q) (2)

h . (2) . #231-134 . D h . Prop

*234172. h : Ppo € Ser . I> . C'P - sc (P, Q)'jR = C'P n p'iV'sc (P, Q)'i2

De/n.

*- . #200-5 . D h : Hp . D . C'P a p'Pp0"sc (P, Q)'i2 C C'P - sc (P, Q)'i2 (1)

r- . #234-131 . D
H : x e sc (P, Q)*R .yeC'P-sc (P, £)'# . D . ~ (#P#y) . x, y e <7'P .

[#202103]
'

D.yPpox (2)

K(l).(2).Dh.Prop
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#234 173. H :P^ e Ser
.
g

!

&c(P, Q)*R .D.C'P-sc (P, Q)'R = p'^'sc (P, Q)'R

[#234-172. #40*61. #37-15]

#234174. H : Ppo e Ser . Q* € connex . R"C'Q CO'P.O.

C'P « JP«"?Po"sc (P, Q)'iJ = P"(PRacQ) = CP - ac (P, Q)'R
Dem.

h . #234171172 . D \- - Hp . 3 . P*"{C'P a p'Ppo"sc (P, Q)'J2) C P"(P#SC<2)

.

[#90-21] I> . C'P a p'Pp0"sc (P, Q)'R C P"(PRSCQ) (1)

I- . *234-16.#37-2O h : Hp . D . P"{PRS0Q) C PVP*"sc (P, Q)'R

[#4037.*91-52] Cp'P^"sc(P, Q)'iJ (2)

K #37-15. D h . P"(PRSCQ) C D'P (3)

I- . (1) . (2) . (3) . #234-172 . 3 h . Prop

#234175. h : Hp #234174 . a ! sc (P, Q)'£ . D . p
(^ "sc(P

3
Q)'i2= P"(Pft8C£)

[#234-1 7 4. #40-61. #371 5]

#234-18. r : Ppo e Ser . Q% e connex . R"C'Q CC'P.D.

C'P = sc (P, Q)'J2 u P"(P£BCQ) . sc (P, £)<# a P'^PR^Q) - A .

sc(P,Q)'i2=C<P-P"(Piy2)
Dem.

h . #234-174 . #24-411 . 3 h : Hp . D . (7'P = sc (P, Q)'JR u P"(P#SC#) (1)

h . #234174 . 3 h : Hp . D . P"(PRSCQ) C p'Pp0"sc (P, #)<£

.

[#200-5] D . sc (P, Q)'J2 a P"(PRacQ) = A (2)

h . #24-492 . #234-174 . D h : Hp . D . sc (P, Q)'R = C'P - P"(PRBGQ) (3)

h.(l).(2).(3).Dl-.Prop

In virtue of this proposition, P"(PRSCQ) an^ sc (P, Q)'R are complementary

sections of P, i.e. they constitute a Dedekind cut in P.

#234-181. h : Ppo e Ser . Q% e connex . R"C'Q CC'P.D.

PRseQ « sc (P, Q)'^ = ™xP'(PRacQ) .

sc (P, Q)'i2 = (C'P - PR^Q) « mtxP<(PKscQ)
Dew.

I- . #23418 , 3 h : Hp . 3 . PBSCQ a sc (P, Q)'R = PJ^Q - P'^PR^Q)

[#205-111] = m?xP<(P#scQ) (1)

h. #24-412. #231130
I- : Hp . Z> . C'P - P«(PRS0Q) = {C'P - (PR^Q)} u {{PRjft - P"(PRS0Q)\ .

[#234-18.*2051 11] D . sc (P, Q)'i? = (C'P - P#SCQ) " maxP'(PEscQ) (2)

h.(l).(2).Dh.Prop
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#234182. h : P e Ser . Q* e connex . R"C'Q C C'P . 3 .

limaxP'(Pi28cQ) = minP'sc (P, Q)<

R

Bern.

h . *207-51 . D h :. Hp . D : a = limaxp^Pi^Q) . =

.

xe C'P
.

~P'x = P"(PRSCQ) .

[#234174] = .xeC'P.P'x = C'P a jp'P"sc (P, Q/jR (1)

h . #20052 . D

h : Hp .xe C'P . P'x=O'P a p'P"sc (P, Q)'i2 . 3 . C'P$ C'P a p'~P«sc (P, Q)'R

.

[*40-2.Transp] D . g I sc (P, Q)'i2 .

[#40'62] 3 . C'P a jp'P"sc (P, Q)<£ =jp<P"sc (P, Q)'P

.

[#1312] D.P'#= p'P"sc(P,Q)<£ (2)

I- . #22-621 . D

h : P'a = p'P"sc (P, Q)<# . 3 . P<# = C'P a jp'P"sc (P, Q)'^ (3)

h.(2).(3).DH:.Hp.ajeC*P.D:

P'a = C'P a p'P"sc (P, Q)'iJ . = . ~P'x = p'P"sc (P, Q)'£ (4)

h.(l).(4).D
^ _^ _^

h :. Hp . D : a = limaxp<(P#8CQ). = . x e C'P . ~P'x = jp'P"sc (P, Q)'iJ

.

[#205'67] = . x = minp'sc (P, Q)'£ : . D h . Prop

#234183. H : Hp #23418 . sc (P, Q)'i2 = A . D . PRacQ = C'P. ~ El B'P

[#234181121]

*234'2. H : Ppo e Ser . R"C'Q C C'P . Q* e connex . D .

os (P, Q)'P = {n?nP'(PBscQ) - PBacQ} u {tn?Xp'(PBacQ) - PtfacQ} u

{iSxp'(PP80Q) n inTnp'(P£scQ)}

I- . #234181 . 3 h : Hp . D . os (P, Q)'R= {(C'P - PRBCQ) u rntxp'(P£BCQ)} n

{(C'P-P 8̂CQ)AinTnp'(PfiscQ)j (1)

I- . *231'201 . 3 h : Hp . 3 . (C'P - PRSCQ) a (C'P - PR8CQ) = A (2)

h . (1) . (2) . 3 h . Prop

*234201. I- : Hp #234-2 . D . os (P, Q)'i2 C maxP<(PKacQ) u minP'(PRaaQ)

[#234-2]

#234202. I- : Hp #234-2 . D . os (P, Q)'22 e v 1 u 2

[#234201 . #205681 . #60'391]

#234203. h : Hp #2342. P#osQ e 1.3.

os (P, Q)'R e 1 . os (P, Q)'i2 * t'maxp'(PB8CQ) = i'mmP'(PRscQ) = PR^Q
[#2311 93103 . *20568 . #2342]

#234204. H : Ppo e Ser . PRosQ ~ e u 1 . D . os (P, Q)'R = A [#234103]
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#234-21. H : Hp #2342 . PRQBQ = A . .

os (P, Q)'R = m&xAPRaoQ) v minP'(?B-0Q)
Bern.

K#205-irill.D

h : Hp . D . ^Lp'iPSjQ) C - (PRSCQ) ™nP'(PRscQ) C - (PR6CQ) (1)

K (1). #234-2. DK Prop

#23423. I- : . Hp #234-2 . PR^Q ~ e 1 . os (P, Q)'R e 1 . D :

PE0BQ = A : os (P, Q)'R = i'maxP'(P#8CQ) . ~ E ! min/CP/^Q) . v .

os (P, Q)'R = i<minP'(P£BC<2) . - E ! raax/(Pfl8CQ)
Dem.

V . #234103 . D H : Hp . D . Pi?08 <2
= A (1)

[#234-21] D . os (P, Q)'R - nmxP f(P^scg) v, minP'(PEacQ) (2)

H . #52-4.1 . D h : PRoaQ = A . E ! maxP'(P#BCQ) . E ! mmp'iPR^Q) . D .

{maxp'CPi^Q) u mmP'(PR8CQ)} ~ e 1 (3)

K(l).(2).(3).Transp.D

h : . Hp . D : ~ E ! maxP ((PRS0Q) . v . ~ E ! minP
<(PR8CQ) (4)

K (2) . #205-681 . D 1- : . Hp . D : E ! maxP'(P#scQ) . v . E ! minP'(P#8C<2) (5)

h . (1) . (2) . (4) . (5) . 3 h . Prop

#23424. h :. P e Ser . Q% e connex . R"C'Q CC'P.3 :

os (P, QYR € 1 . D . os (P, Q)<£ = i
fIimaxP'(P#scQ) = i'IiminP<(P#BC

X>em.

h . #234203 . #207-42 . 3

b : Hp . PRoaQ e 1 . D . os (P, Q)'E - t'Iimax/(P£scQ) = i<limmP<(PRSCQ) (1)

H . #23423 . #211-728 . #207*42 . 3

h : Hp .PR0SQ~e 1 . D . os (P, 0'iZ= I'limax/CPiLQ) = i'liminP'(P#BCQ) (2)

K(l).(2).DKProp

#234-241. h : Hp #2342 . os (P, Q)'R

e

2 . D . P#08 <2 = A
Dem. _

h . #234-103 . D H : Hp . D . PRoaQ eOul (1)

1- . #234-203 . Transp . D H : Hp . D . PRoaQ~ e 1 (2)

K (1) . (2) .
D h . Prop

#234-242. h : Hp #2342 . os (P, Q)'R e 2 . D .

os (P, Q)'i2= i'maxP'(P#sc<2) u t<minP'(P^, Q) . maxP'(PEse<2)A minP'(Pj^Q)

Dem.

H . #234-201 . *205'3 . D h : Hp . D . E ! maxP'(PiL<2) E ! minP'(PJ!BCQ)

.

maxP<(P#8cQ) + minP<(Pfl8cg) (1)
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h . *234-241-15 . I> h : Hp . D . PRaoQ = C'P - PRKQ

.

[#211-8.(1)] D r maxP'(P£BCQ) = max (PV0)<(PR8CQ) .

minP<(PilBC<2) = seq (P^YiPR^Q) .

[*206'5.*201-63] D . {maxP'(Pfl8CQ)} (Ppo) 1
{minP<(P£8CQ)}

.

[*121-254] D . {maxP'(P£8CQ)} P, {minP<(PRB0Q)} (2)

h . (1) . (2) . *234'201 . D I- . Prop

#234-243. H : Hp *234'24 . g ! os (P, Q)<# . D .

E ! limaxP'(P#BCQ) . E ! liminP'(P#8CQ)
Dem.

(1)

(1)

Dem.

V . #234-202 . D H : Hp . D . os (P, Q)'R e 1 u 2

I- . (1) . *23424242 . 3 h . Prop

*234244. h : Hp #2342 .

P

2 = P . D . os (P, £)<£ e u 1

h . #234-242"202 . D H : Hp #2342 . os (P, Q^i^e w 1 . D . g ! Px

h . (1) . Transp . *201'65 . D h . Prop

#234 25. r : Hp #234-2 . P2 = P . 3 ! os (P, Q)'^ . D .

os (P, Q)'.R = t'limaxP'(P£BCQ) = i<UminP<(P#B(!Q)
[#234-244-24]

#234-251. r : Hp *234'24 . limax P'(P£BC<2) = liminP<(P#BCQ) . D .

os (P, Q)'R = t'limaxP'(P#Be<2) - t'minP'sc (P, £)<£ = t'maxP'sc (P, Q)'R

h . #234-18 . #207-51 . D

h : Hp . D . sc (P, $)<# = C'P - P'limaxP<(PiJBcg) .

sc (P, £)<# = C'P - P<liminP<(PRmQ) •

[Hp.#202-101] 3 . os (P, Q)'£ = C'P n t'limax^Pi^Q)

.

[#51-31] = L
i\imB,Xp c(PR6cQ)

[#234-182] = t
fminP'sc (P, Q)'R

' PI

K(l).(2).(3).Dh.Prop

h:.Hp*234-2.P2 = P.D:

a ! os (P, Q)'i2 . = . os (P, Q)'R = L<limB,xp'(PRacQ)

.

= . os (P, Q)<U = t<liminP<(Pfl8CQ)

= . os (P, Q)'R = i'minP'sc (P^'-R

.

= . os (P, Q)'R - t'maxP'sc (P<2)'#

.

s . limaxP'(PE8CQ) = liminP<(P#8CQ)
[#234-25-251'182 . #51-161]

= t'max/sc(P,Q) <
JR

(1)

(2)

(3)

#23426.
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#23427. h : Hp #234-24
. x e os (P, Q)'R - d'P1 . D . x ~ limaxp^Pi^Q)

Dem.

V . #234-24 . D H : Hp . os (P, Q)'R e 1 . D . x = Hmaxp^Ptf^Q) (1)

h . #234-242 . 3h : Hp . os (P, Q)'R e 2 . D . x = limaxp^P^Q)
(2)

h .#234*202 . D h : Hp. D . os(P, Q)'iJel w 2
(3 )

h . (1) . (2) . (3) . 3 h . Prop

#234-271. h : Hp #23424 . x

e

os (P, $)<# - D'P, . D . x = liminp^P^Q)

r pi
#234-27 p

#234-272. h : Hp #234-24 . x e os (P, Q)«jR - CiPl . .

a; = limaxP<(PRi0Q) = liminP'(PR8eQ) [*23427'271]

The remaining propositions of the present number are for the most part

immediate consequences of those already proved. In order to obtain, from

propositions already proved, propositions concerning the limit of a function as

the argument approaches the limit of some class of arguments a, we only have

to substitute Q#£ a for Q. In order to obtain the limit of a function as the
—

>

argument approaches a given term a, we take Q#D Q'a *n P^-ce of Q.

#234-3. h : . * e sc (P, Q% £ a)'R . = :

x e C'P : *PP0W . Dw . (ay) .^ftnC'^a'ii. R"(cl n fti',y)CP>
[#234-1]

#234-301. H :: Q*£ a e connex . 3 :. or e os (P, Q*£ a)'# a D'P a d'P . = :

as € D'P a d'P : # e P (* - w) . D
Zi w .

(W) -yeanC'Qn <I'R . R«(a a Q^y) CP{z-w)
[#234-12]

#234-31. h : Pp0 e Ser . Q* f a e connex . £"(« a C'Q) C C'P . D .

C*P - sc (P, £* £ «)'* = &? « JP'Ppo"w (P, <2* t «)'£ = P"{PRQ)J*
[#234-174]

#234-311. r : Hp #23431 . D . CP - bc (P, Q* f «)<# u P"(P|Q)BC
<«

.

sc (P, Q* t a)'-R " P"(PRQ)J* = A •

sc (P, <2* t «)'* - &P ~ P^PRQ^cl
[#234-18]

#234-312. h : . P e Ser . Q* £ a e connex . £"(« n 0*Q) CCP.D:
E ! (PflQW« = • E ! minp'sc (P, &£ «)'fl

.

= . (PRQ)lmx'a = minp'BC (P, Q* C a)'B

[#234-182]

#234-32. t-:.PpoeSer.Q*^a econnex.iJ"(anCfQ)C(7fPO:(PEQ)08
fael.D.

os (P, Q* t a)<R = (PRQ)oe'a = t'maxp'(P£Q)sc<a = t'mmr'(PRQ)K
'a

[#234-203]

b&w ii 47
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*234'321. h :: Hp*23432 . os (P, Q# £ a)'B el.D:. (PRQ)0B'a~el . D :

(PRQ)on'a = A : os (P, Q* £ a)'R = t<maxP<(P£Q)sc
<a .~ E ! minP'{PRQ)^a

.

v . os (P, Q#t ct)'R = i'minP'(PRQ)ac<a .~E ! maxP f(PEQ)sc'a

[#234-23]

#234322. H : Hp *234'312 . os (P, Q* £ a)'R el.D.

os (P, Q*t: ct)'R = i<(P£<2)lm> = i'(PflQW« [*234'24]

#234329. h : Hp #234*32 . os (P, Q# [ a)'# e 2 . D .

os (P, <3*£ «)'# = i'maxP'{PRQ)m'ci w I'minp'CPflQVft .

{maxp<(Pi^)se
<a} P, {

minp<(Pfl<2)sc<«}

[#234*242]

#23433. I- : Hp #234*32 . P2 = P . a ! os (P, Q* £ a)'.R . D .

os(P, g*D «)'*- ^(PflQJbnx'a- t'(-PBQ)im,'« [*234-25

#234-331. h : Hp #234-312 . (PEQ)lmx'a = (PflQWa . 3 .

os (P, Q*D«)'^ = ^(PBQk/a = t'(P^Q)lmx'«

= i<minp'sc (P, Q* £ aYR = I'maxp'sc (P, Q* £ «)'#

[#234-251]

#234-34. h :. Hp #23432 . P* = P . D :

3 ! os (P, Q*D «)'* • = • os (P, Out «)<£ = t'(PfiQW«

.

= . os (P, Q*C a)'E = i'(P5QW« .

=.(P5QW«-(P5QW«
[#234-26]

#234-35. I- : Hp #234-312 . x e os (P, Q# t o)'B - a*P, .O.x = (PRQ)lIDX'a

[#234-27]

#234-351. I- : Hp #23431 2 . x

e

os (P, Q# £ a)'R - D'^ . D . x ~ (PRQ)lmx<a

P
#23435 „

]

#234352. h : Hp #234312 . as e os (P, £* £ a)'# -C^ . 3 .

a? = (PEQW* = (PRQWa [#234-35-351]

#234-4. h : . x e sc (P, Q* £^»-\R . = :

« e C^P:«P^w.Dw .to).ye^'ana'iJ.iJ"Q(yi-a)CPB0
'MF

[#234-3 . (#121-012)]
—

#234*41. H : : Q e trans . Q% £ Q'a e connex . D :

.

^eos(P,^^"^a) fiJrvD fP«a'P. = :^eD-Pna'P:

^eP(^-ttf).Dz
,
w .(a3/).ye^ana'i2.^"Q(yi-a)CP(^-w;)

[#234-301 . (#121-012) . #201-18]
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#234 42. I- : . P e Ser . Q e trans . Q% t Q'a e connex . R"Q*a C O'P . D :

72 (PQYa = imnP'sc (P, Q#£ Q'aYR [#234-182]

-* -»
*234'421. h :. Ppo e Ser . Q e trans . Q# £ Q'a e connex . i2"Q'a C O'P . :

sc (P, Q* DW# = A . D .iJ(PQ)'a - B'P [#234-183]

*234'422. h : Hp #234-42 . P e Ded . D . R (PQ)'a = hminP'sc (P, #*{;'Q'aYR

[#23313 . #234-42]

#23443. I- : Hp #23442 . os (P, Q% £ Q'aYR el.D.

os (P, Q* t
~Q'a) =^ (PQ)'a = i

lR (PQYa [#234-322]

#234439. h : Hp #234421 . os (P, Q%IQ'aYR e 2 . D .

os (P, Q* £ £<«)<£ = l'R (PQYa w i'i2 (PQ)'a

.

{
R (PQYa} P, [R (PQYa) [#234*329]

#23444. h : Hp #234-421 . P2 = P . g ! os (P, Q* [ Q'a^iJ . .

os (P, Q* £ oViJ = t'ii (PQ)'a = l'R (PQYa [#234-83]

#234441. h : Hp #23442 . R (PQYa = R (PQYa . D .

os (P, <2* £ Q'a) = t'P (PQ)'a = l'R (PQ)'a [#234-331]

*234'45. I- :. P e Ser . Q e trans . Q* IQ'ae connex . iJ'^a C C'P . P2 = P . D :

a ! os (P, Q*£qVp . = . os (P,fctW = l'R (PQ)'a

= • os(P, (2^N^=l^ (-PQ)'a.

= . R (PQYa = IS (JPQ)'a [#234'34]

#23446. I- : Hp #234-42 . as e os (P, Q% £ Q'aYR - d'A . D . a? = R (PQYa

[#234-35]

*234'461. h : Hp #234'42 . x e os (P, Q% £ Q«a)'iS - D'Pi . } . a? = U (PQYa

#234-46 ^

#234462. h : Hp #234-42 . x e os (P, Q* IQ'aYR - G'P, . D .

x = R (PQYa = R (PQYa [*234'46-461]

#2345. I- : a e ct (PQYR . = .R'afOS (P, Q*£ Q*p»'# - O'P, [(#234-03)]
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—
#234-51. I" : : Q e trans . Q* £ Q'a e connex . R'a e D'P n d'P . D ;.

a € ct (PQ)'R . s : R ta^eC'P1 :R'aeP(z-w). Dz> w .

(>&y).ye~Q'ar>a<R.R"Q(y*a)CP(z-w)
Dem.

V . #234-5-4 . #5331 - 3

h :: Hp . D :. ae ct {PQ) lR .= : iS'aeD'Pn (I'P- G'PX : R'aeP(z - w) . Dz>w .

to) -yeQ'a* a*i2 . £"£ fyi-a)CP(«-«;). £"t'a CP(«-w) (1)

h.(l). #121-242. Dh. Prop

#234*52. h : . P e Ser . Q e trans . Q* £ Q'a e connex . R"Q'a C C'P . 3 :

a € ct (PQ)<# .D.R (PQ)'a = U (PQ)'a = R'a [*234'462-5]

#234-521. h : Hp #23452 . a e ct (PQ)'-R - . os (P, Q#£~Q'a) '£= t'#'a

[#234-441-52]

#234-522. h : . Hp #23452 .? = ?,}:
a e ct (P<2)-\R . = . iJ (P<2)'a = R (PQ)'a = #<a

I- . #234-45 . D

h :. Hp . D : R (PQ)'a = E (PQ)'a = R'a. 3. os (P, Q*D oV-B = I'R'a .

[*234-5.#201-65] D . a e ct (PQ)'i2 (1)

r
. (1) . #234-52 . D r . Prop

#234*53. h : : Ppo e connex . Q e trans . J2'a = B'P . D :

.

aect (PQ) 1^ . = : B'P^e^P, : w e d'P . Ow .

(^ .yeQ'an d'R . B"Q(yHa)C?>
Dew.

I- . #234-122 . #53*31 . #234*5 . D
r :: Hp . D :. a e ct (PQ)'R . = : 3<P~eD^ : (B'P) Ppow . Dw .

(33/) .ye'Q'an d'R . R«(Q*'y « <?a)CP> . i2"t'oCP>

:

[*202-522.*205-253.*201-18] = : B'P~e T>'P1 :

w € d'P . Dw . (gy) .yeQ'an d'R . R"Q (y i-t a) CPP> :: D f- . Prop

#234-54. r : a e ct (PQ)'R . D . a e d'E n <2P0"(I<.R . iJ'a e C'P

Z>ew.

r . #234*5-1 . (#234-02) .Oh :Rp.D . R'aeG'P (1)

K(l). #234-5. (#234-02). D

H :. Hp . D : a ! sc (P,

Q

# f"Qp»<B n D'P . v . a 1 sc (P, $*£<£»<£ * &P '

[#234-142] D : a ! Qp> n d'iS :

[#37-46] D : a e (^"(TE (2)

r
. (1) . #14-21 . #33-43 . D h : Hp . D . a e d'iJ (3)

K(l).(2).(3).DKProp
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#23455. I- .~ (min (Qpo)'CW* « ct (PQ)'R] [*234-54 . Transp]

#234-56. r : Hp #234-52 . a e ct {PQyR . D

.

{PRQiJW* eOyjl.ElR (PQYa . R (PQ)<a~ e O'P, .R<a=R (PQY<*

Dem.

r . *234'5 . 3 h : Hp . I) . 3 ! os(P, Q^iQ'a)'R • R 'a~ e C'pi •

[#234103] 3 • (PRQ) JQ'a eOul. R'a~e C'P, (1)

r . #234-52 . D h : Hp . D . R'a = E (PQ)'a . E ! U (PQ)'a (2)

r . (1) . (2) . D h Prop

#234-561. h : P, Q e Ser . a e ct (PQYR . a = 1t</(a n d'^R) . ^""^a C C'P . D .

(Pi^)lmx'a ~ E'a = (PRQ\mx 'cL [*233 :515 . #234-56]

#234562. h : P, Q e Ser . 1t</(a n d'#) e ct (PQYR #"(a a C'Q) CC'P.D.

(P%Q)imx'a= (P-SQWa = R'ltq'* [#233-516 . #234-56]

That is, if a is any class of arguments having a limit at which the function

is continuous, then the limit of the function, as the argument approaches the

limit of the set of arguments, is the value of the function for that limit.

*234'6. Viae contin {PQYR . s . a e ct {PQYR rx ct (PQYR [(#234-04)]

#234-61. I- :: Pp0 e Ser . Q e trans . Q^Q'a e connex . R'a e D'P n d'P . D :.

a e contin (PQYR • s : iJ'a~e C'P, : £'a eP (z - w) . Dz> w .

(<3.y,y').a € Q(y-y').y >
y'e(I'R.R''Q(y>-<y)CP(z-w)

Dem.

h . #234*51 . D h :; Hp . D :. a e contin (PQYR = :

iJ'aeD'P rv d'P- 0'Pi : JJ'aeP («- w) . D,, w .

(ay. 2/') y

«

"Q'a rt a'# y' e<Q'a rt a^
i2»Q(yi-ia)wJ5"Q(aMy')CP(*-w) (1)

r . (1). #201-19 . #202-17 . D h . Prop

#234*62. r r. Hp #234'61 . P e trans . R"Q'aC C'P. D : a e contin (PQ)'# 3

7J (PQ)'a = R (PQYa = # (-PQ)'« = R(PQY* = -R'a

[#234-52-6]

#234-63. I- : . Hp #234-62 .P2 = P . 3 : a e contin (PQ)'iJ . = .

R (PQYa - # (PQ)'a = £ (PQ)'a = £ (PQYa = #'a

[#234-522-6]

#23464. h :: Hp #234-62 . R'a e D'P n O'P . D :. a e contin (PQ)'# . = :

R'a € C'P - C'P, :R'aeP(z-w). Z) „ .

(ny,y
>

).y 1
y'e(I'R.aeQ(y-y').R''Q(y*y')CP(z-w)

[#234-51-6]
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#2347. h: Re Pcontin Q . = . a ! C'Q n d'£ . C'Q n d'P C contin (PQ)'R

[(#234-04)]

#23471. H : E e P contin Q.D.R [C'Q e 1 -» Cls . i£"C"g C C'P

Dem.
h . *234'7-6'5 . D

b:.H.V .D:aeC'Qn<J'R.3.R'a608 (P, £*£&»< fl

.

[#2341] D. R'a e C'P. (1)

[#14-21] D . E ! £<a (2)

I- . (2) . #71-572 . D \-
: Hp . I> . R [C'Q e l->Cls (3)

K (1) . (2) . #37-61 . D h : Hp . D . R"(C'Q n CE'iJ) C C'P (4)

I- . (3) . (4) . #37-26 . D h . Prop

#23472. h :. P e Ser . Q e trans r> connex .ReP contin Q . 3 :

a <= C'Q n d'.R . Da . R (PQ)'a = £ (PQ)'a = R (PQ) (a = R (PQ)'a = R'a

[*234-62-7]

*234'73. h :: P e Ser . P2 = P . Q e trans n connex . D :.

72 e P conlim Q . = : g; ! C'Q n (I'^R : aeC'Qn (TP . Da .

R (PQ) (a = R (PQ)'a = R (PQ)'a = R (PQ)'a = R'a
Dem.

h .*234-7'71 . D H :: Hp . 3 :. PePcontinQ . = : g! C'Qn d lR.R"C'QCC'P:
aeC'Qn d'R .Oa .ae contin (PQ)'P :

[#23463] = : 3 ! C'Q « d'P . P"CQ C C'P : aeC'Qn d'R . Da .

R (PQ)'a = R (PQ)'a = R (PQ)'a = R (PQ)'a=R'a (1)

h . #233-401-101 . D

bz.aeC'Qn d'R . Da . P (PQ)'a> = R'a:D:aeC'Qn d'R . Da . R'a e C'P :

[#37-61-26] D : R"C'Q C C'P (2)

h . (1) . (2) . I> K Prop


